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G ~ (G, X) is isometric and cobounded
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Let X, Y be two generating sets of a group G. We say that X is
dominated by Y, written X < Y, if

sup |¥|x < oc.
yeY

=< is a preorder on the set of generating sets of G and therefore
it induces an equivalence relation by:

X~Y & X=<YandY < X.

We denote the equivalence class of X by [X].
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If X C Y, then Y < X (Inclusion reversing)
(X]<[Y] &= X<V

If G has a finite generating set X, then [X] is the largest
structure

If [X] =[Y], then T'(G, X) is quasi-isometricto T (G, Y)
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THE POSET OF HYPERBOLIC STRUCTRES

DEFINITION (ABO)

A hyperbolic structure on G is an equivalence class [X] such
that (G, X) is hyperbolic.

We denote the set of hyperbolic structures by #(G) and endow
it with the order induced from above.

Elements of #(G)

!

Equivalence classes of cobounded actions of G on hyperbolic
spaces (up to a natural equivalence)
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THEOREM (ABO)
For any group G,

H(G) = He(G) LU Hi(G) U Hap(G) U Hgt(G)

> Let A(G) denote the limit points of G on 90X
> He(G) contains elliptic structures. i.e. [A(G)| =0

He(G) = {[G]} always and is the smallest structure

> 7H,(G) contains lineal structures. i.e. |A(G)| =2

> Hqp(G) contains quasi-parabolic structures. i.e. |A(G)| = oo and G fixes a point
of 90X

> g4 (G) contains general type structures. i.e. [A(G)| = oo and G has no fixed
points on 9.X.

» Parabolic actions are never cobounded

> H(G) is a way to study all possible cobounded actions of a group on hyperbolic
spaces, upto q.i.
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THEOREM (ABO)

If [A] € Hop(G), then there exists [B] € H,(G) such that
[B] = [Al.

» Consequence of the Buseman pseudocharacter (Manning)

THEOREM (ABO)
Haqp(Z wr Z) contains an antichain of cardinality continuum.

» Obtained by factoring through Z, wr Z acting on the Bass-Serre tree.



QUESTIONS

1. Does there exist a group such that |#q(G)| is non-empty
and finite ?



QUESTIONS

1. Does there exist a group such that |#q(G)| is non-empty
and finite ?

2. Does there exist a group such that Hq,(G) contains a
chain of cardinality continuum ?



QUESTIONS

1. Does there exist a group such that |#q(G)| is non-empty
and finite ?

2. Does there exist a group such that Hq,(G) contains a
chain of cardinality continuum ?

3. Does there exist a group such that Hq,(G) contains a
chain and antichain of cardinality continuum ?



QUESTIONS

1. Does there exist a group such that |#q(G)| is non-empty
and finite ?

2. Does there exist a group such that Hq,(G) contains a
chain of cardinality continuum ?

3. Does there exist a group such that Hq,(G) contains a
chain and antichain of cardinality continuum ?

41 [Hap(G)] # 0, s [HA(G)| < [Map(G)| 2
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THEOREM (B.)
Let G be a group.

(1) ThenB(G) C H(GwrZ).

@ @ }Qp structures

Sg is the poset of proper subgroups of G, ordered by inclusion.

(2) If G = Zn, then B(G) = H(ZowrZ).
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» Uses the work of Caprace, Cornulier, Monod and Tessera:
Strictly confining automorphisms for H = A x (t); where Z = (t)
> Given Q C Asuch t (or t1) strictly confines Ainto Q

Regular quasi- parabolic structure [{Q, t*'}] on H

> GwrZ = <€B G> x (t). Given H < G, define
Z

Qu=.oHeoHeoHe GG Go ...

and
Q,=.0GoGoGoHoHoHS ...

Qy (resp. Q}) is strictly confining under t (resp F‘).
> Regularity = Common lineal structure
» When G = Zjp, the inclusion is a surjection (Not true in general)
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» The lamplighter groups Z,wr Z, n > 2 have a finite number
of quasi-parabolic structures.

> ]P(N) — S]Foo — SIFg — qu(Fg Wr Z)

» Let K = (ZowrZ) x Z.
Then |Hgo(K)| = 2, and [H(K)| = c.
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Open Questions
Is there a group G such that |Hqp(G)| is odd ?
Is there a group G such that [Hgp(G)| =17

Can we construct groups K, such that [#q(Kn)| = n, for
everyne N?

What conditions are needed on the group G to ensure that
B(G) =H(GwrZ)?

Work in Progress (ABR)

Classifying structures on Z" x, Z, where ¢ € SLy(Z) for
n>3

Studying structures on iterated HNN-extensions

Extending the theory to polycyclic groups
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