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DEFINITION (COMPARING GENERATING SETS; ABO)

Let X , Y be two generating sets of a group G. We say that X is
dominated by Y , written X � Y , if

sup
y∈Y
|y |X <∞.

� is a preorder on the set of generating sets of G and therefore
it induces an equivalence relation by:

X ∼ Y ⇔ X � Y and Y � X .

We denote the equivalence class of X by [X ].
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I If X ⊂ Y , then Y � X (Inclusion reversing)

I [X ] � [Y ] ⇐⇒ X � Y

I If G has a finite generating set X , then [X ] is the largest
structure

I If [X ] = [Y ], then Γ(G,X ) is quasi-isometric to Γ(G,Y )
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THE POSET OF HYPERBOLIC STRUCTRES

DEFINITION (ABO)

A hyperbolic structure on G is an equivalence class [X ] such
that Γ(G,X ) is hyperbolic.

We denote the set of hyperbolic structures by H(G) and endow
it with the order induced from above.

Elements of H(G)

l

Equivalence classes of cobounded actions of G on hyperbolic
spaces (up to a natural equivalence)
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SOME THEOREMS AND MOTIVATION

THEOREM (ABO)
For any group G,

H(G) = He(G) tH`(G) tHqp(G) tHgt (G)

I Let Λ(G) denote the limit points of G on ∂X
I He(G) contains elliptic structures. i.e. |Λ(G)| = 0

He(G) = {[G]} always and is the smallest structure

I H`(G) contains lineal structures. i.e. |Λ(G)| = 2
I Hqp(G) contains quasi-parabolic structures. i.e. |Λ(G)| =∞ and G fixes a point

of ∂X
I Hgt (G) contains general type structures. i.e. |Λ(G)| =∞ and G has no fixed

points on ∂X .
I Parabolic actions are never cobounded
I H(G) is a way to study all possible cobounded actions of a group on hyperbolic

spaces, upto q.i.
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THEOREM (ABO)
If [A] ∈ Hqp(G), then there exists [B] ∈ H`(G) such that
[B] � [A].

I Consequence of the Buseman pseudocharacter (Manning)

THEOREM (ABO)
Hqp(ZwrZ) contains an antichain of cardinality continuum.

I Obtained by factoring through Zn wr Z acting on the Bass-Serre tree.
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1. Does there exist a group such that |Hqp(G)| is non-empty
and finite ?

2. Does there exist a group such that Hqp(G) contains a
chain of cardinality continuum ?

3. Does there exist a group such that Hqp(G) contains a
chain and antichain of cardinality continuum ?

4. If |Hqp(G)| 6= 0, is |H`(G)| ≤ |Hqp(G)| ?
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THEOREM (B.)
Let G be a group.

(1) Then B(G) ⊂ H(G wrZ).

SG SG

}
Qp structures

y `

y ∗

SG is the poset of proper subgroups of G, ordered by inclusion.

(2) If G = Zn, then B(G) = H(Zn wrZ).
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OUTLINE OF THE PROOF

I Uses the work of Caprace, Cornulier, Monod and Tessera:

Strictly confining automorphisms for H = A o 〈t〉; where Z = 〈t〉
I Given Q ⊂ A such t (or t−1) strictly confines A into Q

↓
Regular quasi- parabolic structure [{Q, t±1}] on H

I G wr Z =

(⊕
Z

G

)
o 〈t〉. Given H < G, define

QH = ...⊕ H ⊕ H ⊕ H ⊕ G ⊕ G ⊕ G ⊕ ...

and
Q′H = ...⊕ G ⊕ G ⊕ G ⊕ H ⊕ H ⊕ H ⊕ ...

QH (resp. Q′H ) is strictly confining under t (resp t−1).
I Regularity⇒ Common lineal structure
I When G = Zn, the inclusion is a surjection (Not true in general)
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I Let K = (Z2 wrZ)× Z.
Then |Hqp(K )| = 2, and |H`(K )| = c.
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Open Questions

I Is there a group G such that |Hqp(G)| is odd ?

I Is there a group G such that |Hqp(G)| = 1 ?

I Can we construct groups Kn such that |Hqp(Kn)| = n, for
every n ∈ N ?

I What conditions are needed on the group G to ensure that
B(G) = H(G wrZ) ?

Work in Progress (ABR)
I Classifying structures on Zn oφ Z, where φ ∈ SLn(Z) for

n ≥ 3

I Studying structures on iterated HNN-extensions
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