Deyona Endoscopy

Yiannis Sakellaridis, Johns Hopkins University

"Relative Aspects of the Langlands Program, L-Functions and Beyond Endoscopy," CIRM, May 24, 2021.

Langlands' idea

Quasisplit connected reductive groups G_1 , G_2 over a global field k. $\rho: {}^LG_1 \rightarrow {}^LG_2$

Should correspond (roughly) to a map

 ρ_* : {Stable *L*-packets for G_1 } \rightsquigarrow {Stable *L*-packets for G_2 }, locally and globally.

Think of *L*-packets in terms of stable characters:

For a representation π of G = G(F) (local field) or $G(\mathbb{A}_k)$, $\Theta_{\pi} = \operatorname{tr} \pi(\bullet) : S(G) \to \mathbb{C}.$

For a local *L*-packet Π , $\Theta_{\Pi} = \sum_{\pi \in \Pi} \langle \eta(\pi), 1 \rangle \Theta_{\pi}$.

For a global *L*-packet Π , $\Theta_{\Pi} = \prod_{v} \Theta_{\Pi_{v}}$, and we have the stable trace formula (STF) which, very roughly, is a stably invariant distribution $S(G(\mathbb{A}_{k}))_{G} \to \mathbb{C}$ that decomposes as

$$\int_{\psi:\text{global Arthur parameters}} \Theta_{\psi} d\psi. \tag{1}$$

$$\rho: {}^LG_1 \to {}^LG_2$$

Langlands (2000) suggested that there should be a way to compare STF_{G_1} with STF_{G_2} ; what does "compare" mean, since they are functionals on different spaces $S(G_1)_{G_1}$, $S(G_2)_{G_2}$?

There should be a local "transfer operator"
 *T*_ρ : *S*(*G*₂)_{*G*₂} → *S*(*G*₁)_{*G*₁} realizing the local transfer of stable characters:

$$\mathcal{T}^*_{\rho}\Theta_{\Pi_1}=\Theta_{\rho_*\Pi_1}.$$

One should be able to extract (through poles of *L*-functions) the part of STF_{G₂} related to the functorial image of G₁
 → get a new distribution STF^ρ_{G₂} : S(G₂(𝔅)) → C such that

$$\mathcal{T}_{\rho}^* \mathrm{STF}_{G_1} = \mathrm{STF}_{G_2}^{\rho}.$$

(Caution: oversimplifying!)

An example

$$E/k$$
 quadratic, $T = U_1$, $G = \mathbb{G}_m \times \mathrm{SL}_2$,
 ${}^{L}T \xrightarrow{\rho} {}^{L}G = \mathbb{G}_m \times \mathrm{PGL}_2 = \mathrm{GL}_2 / \mu_2 \xrightarrow{r=\mathrm{Sym}^2} \mathrm{GL}_3$.

Here, *r* appears because a general vector under the Sym² representation is fixed by the image O_2/μ_2 of ^{*L*}*T*. Hence, automorphic representations π in the image of ρ_* will have:

- a pole for $L(\pi, r, s)$ at s = 1;
- restriction $\eta_{E/k}$ to the \mathbb{G}_m -factor.

We expect to be able to compare the trace formula (Poisson sum) for T with the "r-trace formula" of G (s. Arthur, "Problems beyond endoscopy", and recent papers of Tian An Wong), where (1) is modified by the L-factors

$$\int_{\psi: ext{global Arthur parameters}} L(r \circ \psi, s) \Theta_{\psi} d\psi$$

by inserting appropriate non-standard test functions, and one studies the residue (& lower Laurent coefficients) at s = 1. 4/30

Local transfer

The problem of non-tempered representations: One basic issue that has received a lot of attention is that this transfer is not supposed to behave well for nontempered (non-Ramanujan type) representations.

Locally, there is an easy resolution: require that $\mathcal{T}_{\rho}^* \Theta_{\Pi_1} = \Theta_{\Pi_2}$ only for tempered *L*-packets. Work in this direction:

Langlands, "Singularités et transfert." Studies the lift from *T* = *U*₁ to *G* = SL₂ as in the previous slide. Recovers, from character formulas of Harish-Chandra, Sally & Shalika, the formula of Gelfand–Graev–PS for the stable transfer of characters from *T* to *G*, and shows that it is adjoint to a transfer operator *T*_ρ : *S*(SL₂)_{SL₂} → *S*(*T*)^{ℤ/2}. Here, ℤ/2 acts by inversion, and the elements in the target can be written as measures on the quotient *T* // ℤ/2 = A¹. Similarly, elements of *S*(SL₂)_{SL₂} are measures in the target variable, and the formula reads

$$\mathcal{T}_{\rho}f(t) = \frac{2}{\operatorname{Vol}(T)\sqrt{|t^2 - 4|}} \left(\frac{\eta}{|\bullet|} \star_+ f\right)(t) \text{ (additive convolution)}_{5/30}$$

Local transfer

- Daniel Johnstone, generalizes the GGPS formula to GL_n, based on character formulas of Adler–DeBacker–Spice.

Basic problem: Understand local transfer operators for any $\rho : {}^{L}G_{1} \rightarrow {}^{L}G_{2}$.

Caution: "for any" is very broad, even in the case $G_1 = 1$, where ρ a single Galois/Weil representation.

Global analysis

Globally, we need to isolate the representations not of Ramanujan type from the STF.

Geometric side of the stable trace formula:

 $\sum_{\xi \in \frac{G}{G}(k)} J_{\xi}(f)$

(at least, the elliptic part), where $\Xi := \frac{G}{G}$ is the Chevalley quotient Spec $k[G]^G$ (the "Steinberg–Hitchin base"). If *G* is simply connected, this is an affine space, and one can imagine a Poisson summation on this space. (Why, though?)

Frenkel–Langlands–Ngô: The terms J_ξ(f) = Vol([G_ξ])O_ξ(f) (for regular elliptic classes) can be written as limits of Euler products, J_ξ(f) = lim_{s→1+} ∏_v θ_v(f_v, ξ_v, s) → try to make sense of 0-th Fourier coefficient in ξ-variable, Ĵ₀(f) & identify it with tr π(f) for π = the trivial representation.

7/30

• Altuğ: Poisson summation formula on $\Xi = \frac{G}{G}$ for $G = GL_2$, r = Std (let's think of PGL₂, for simplicity, so $\Xi = \mathbb{A}^1$), using the approximate functional equation to handle the *L*-factors $Vol([G_{\xi}])$, and a detailed study of the various terms of the trace formula.

An interesting feature: after Fourier transform, Kloosterman sums appear.

 Question of Arthur: For G = GL_n, we have a decomposition of the discrete automorphic spectrum into Arthur parameters (Mœglin–Waldspurger decomposition):

$$\hat{G}_{\rm disc}^{\rm Aut} = \prod_{m|n} G_{mn}^{\rm Aut},$$

corresponding to irreducible Arthur parameters $\mathcal{L}_k \times SL_2^A \to GL_n$ of the form $\varphi \otimes Sym^d$, with $d = \frac{n}{m} - 1$. Is there a decomposition $\Xi^* = \sqcup_{m|n} \Xi_m$ of the dual of the Hitchin base (mod center), so that after Fourier transform the spectral and geometric terms of the decompositions above match? Early on, Sarnak pointed out that the *Kuznetsov formula* already comes with the Ramanujan-type representations isolated, hence might be more suitable for Beyond Endoscopy.

- Realized in the thesis of Akshay Venkatesh for $r = \text{Sym}^1$ and $r = \text{Sym}^2$ ($G = \text{GL}_2$). (Will return.)
- Several papers of Eddie Herman: studied the *r*-Kuznetsov formula for r = Std of GL_2 , \otimes of $\text{GL}_2 \times \text{GL}_2$ (Rankin–Selberg), tensor square (Asai) for $\text{GL}_2(E)$, (E : k) = 2, and proved several results, including:
 - relatively self-contained, trace-formula-theoretic proofs of the functional equations of L(π, Std, s) and L(π, Asai, s);
 - a calculation of the residue of the *r*-trace formula for $r = \otimes$, in terms of representations of the form $\pi \otimes \tilde{\pi}$.
- As I will explain, all previous efforts based on the Selberg trace formula are actually related to the Kuznetsov formula (joint work w. Chen Wan).

But first, we need to introduce a more general kind of comparison. 9/30

The relative trace formula of Jacquet

Given a (quasiaffine) spherical *G*-variety *X*, the relative trace formula for $X \times X/G$ (diagonal action of *G*): a global analog of the local Plancherel formula:

The *local* Plancherel formula is a spectral decomposition for the pairing

$$\mathcal{S}(X(F)) \otimes \mathcal{S}(X(F)) \ni \Phi_1 \otimes \Phi_2 \mapsto \langle \Phi_1, \Phi_2 \rangle_X = \int_X \Phi_1(x) \Phi_2(x) dx.$$

(Here: $X = X(\mathbb{Q}_p), p \leq \infty$.)

The global RTF is a spectral decomposition for the pairing

$$\begin{aligned} \mathcal{S}(X(\mathbb{A}_k)) \otimes \mathcal{S}(X(\mathbb{A}_k)) &\ni \Phi_1 \otimes \Phi_2 \mapsto \mathrm{RTF}(\Phi_1 \otimes \Phi_2) := \\ &\int_{[G]} \sum \Phi_1(g) \cdot \sum \Phi_2(g), \end{aligned}$$

where $\sum \Phi_i(g) = \sum_{\gamma \in X_i(\mathbb{Q})} \Phi_i(\gamma g)$, the theta series of Φ_i , is an automorphic function.

The relative trace formula of Jacquet

Another way to think of the RTF is as a distribution of the points of a quotient stack $\mathfrak{X} = X \times X/G$:

$$\mathsf{RTF} = \sum_{\xi \in \mathfrak{X}} \mathrm{ev}_{\xi} \,.$$

In particular, if defined correctly,

- does not depend on the presentation of the stack (e.g, if $X = H \setminus G$, can write $\mathfrak{X} = H \setminus G/H$);
- involves "pure inner forms" of *X* (as in the Gan–Gross–Prasad conjectures).

Arthur–Selberg trace formula: the RTF for X = H, $G = H \times H$. (Indeed, trace of an operator = Hilbert–Schmidt inner product of two operators.)

Kuznetsov formula KTF: the RTF for $X = (N, \psi) \setminus G$ = the Whittaker model.

(Will be working with stable versions throughout.)

Relative functoriality

One can associate an *L*-group ${}^{L}G_{X}$ with a map to ${}^{L}G$. (Gaitsgory–Nadler, S.–Venkatesh, Knop–Schalke.)

Given spherical pairs (G, X) and (G', Y), and a morphism

$$\rho: {}^LG_X \to {}^LG'_Y,$$

we should have a functorial lift

 ρ_* : {packets of *X*-distinguished representations of *G*} \rightarrow { packets of *Y*-distinguished representations of *G'*}, realized by

- locally, a transfer operator *T_ρ* : *S*(*Y* × *Y*)_{*G'*} → *S*(*X* × *X*)_{*G*}, pulling back relative characters *T_ρ*^{*}Θ^X_Π = Θ^Y_{ρ*Π};
- globally, a way to extract a piece $\operatorname{RTF}_Y^{\rho}$ of RTF_Y , such that $\mathcal{T}_{\rho}^* \circ \operatorname{RTF}_X = \operatorname{RTF}_Y^{\rho}$.

"Beyond endoscopy" for the RTF

Easiest (but quite nontrivial!) case: when ${}^{L}G_{X} = {}^{L}G'_{Y}$; then, $\text{RTF}^{\rho}_{Y} = \text{RTF}_{Y}$, and we should have

Example–problem: For any quasisplit G, one should be able to compare STF_G with KTF_G .

Important caveat: The spectral side of a general RTF is weighted by *L*-functions, e.g., for KTF:

$$\int_{\substack{\psi: \text{global Langlands parameters}\\(\text{Ramanujan type})}} \frac{1L_X(\psi)}{L(\psi, \text{Ad}, 1)} \Theta_{\psi} d\psi.$$

We need to introduce *L*-functions by using nonstandard test functions, e.g., to compare with STF, introduce $L_X(\psi) = L(\psi, \text{Ad}, 1)$. ^{13/30}

Comparisons with the Kuznetsov formula

The base case seems to be the Kuznetsov formula, where there are no *L*-functions in the numerator.

Conjecture: For every *X*, there is a comparison between RTF_X and $\overline{KTF_{G_X}}$.

Realized in the following cases:

- Rudnick's 1990 thesis: KTF ↔ STF for holomorphic discrete series of GL₂ (i.e., Petersson's "simple KTF"). Altuğ's work, as I will explain, amounts to the same for the entire Selberg trace formula.
- S.– all (homogeneous, affine) spherical varieties with ${}^{L}G = SL_2$ or PGL₂.
- S.–Chen Wan (in progress): KTF \leftrightarrow STF for GL_n.

Only case where the global comparison has been completed with ${}^{L}G_{X} \neq {}^{L}G'_{Y}$:

• Venkatesh's thesis, $\text{KTF}_T \iff \text{KTF}_{\text{SL}_2}$.

Formulas for the transfer operators: is there any structure?

Rank one:

Theorem (S.) Let X be of rank one: $GL_n \setminus PGL_{n+1}, SO_{2n} \setminus SO_{2n+1}, Sp_{2n-2} \times Sp_2 \setminus Sp_{2n}, Spin_9 \setminus F_4, SL_3 \setminus G_2,$ or $SO_{2n-1} \setminus SO_{2n}, Spin_7 \setminus Spin_8, G_2 \setminus Spin_7,$ and $\mathfrak{Y} = (N, \psi) \setminus G^* / (N, \psi)$, the Kuznetsov quotient, where $G^* = PGL_2$ for the first group, SL₂ for the second.

The transfer operator $\mathcal{T} : \mathcal{S}^-_{L_X}(\mathfrak{Y}) \xrightarrow{\sim} \mathcal{S}(\mathfrak{X})$ is given by an explicit composition of Fourier transforms.

For example, for $X = SO_3 \setminus SO_4 = SL_2$, where $X \times X // G = \frac{SL_2}{SL_2} \simeq \mathbb{A}^1$ is parametrized by the trace *t*, and $(N, \psi) \setminus SL_2 / (N, \psi)$ is represented by elements $\begin{pmatrix} -\zeta^{-1} \\ \zeta \end{pmatrix}$ the operator is given by

$$\mathcal{T}f(\zeta) = |\zeta|f(\frac{1}{\bullet})(\zeta).$$
15/30

Remarks

- The space $S^-_{L_X}(\mathfrak{Y})$ is enlarged by the test functions that will produce the desired *L*-function on the spectral side of the RTF.
- What does it mean that "the transfer operator is given" by this formula?
 - The general theorem is a theorem on *matching*.
 - There are cases where we know a fundamental lemma for the Hecke algebra and statements on transfer of characters: S. $(X = T \setminus PGL_2, SL_2)$, Wee Teck Gan–Xiaolei Wan $(X = SO_n \setminus SO_{n+1},$ variants of the method work more generally).
 - Johnstone–Krishna (had been) working on the fundamental lemma.

The formula for rank one

 $X = H \setminus G$ with dual group ${}^{L}G_{X} = SL_{2}$ or PGL₂.

There an *L*-value (= graded representation ${}^{L}G_{X} \rightarrow GL(V_{X})$) associated to *X*.

If ${}^{L}G_{X} = SL_{2}$, then $V_{X} = Std \oplus Std$, with gradings depending on *X*. If ${}^{L}G_{X} = PGL_{2}$, then $V_{X} = Ad$, again with grading depending on *X*. Its RTF is weighted by $L_{X}(\psi)$ (relative to the Kuznetsov formula).

The miracle of the formula for the transfer operator is that it is determined completely by L_X ; for example, if ${}^LG_X = PGL_2$, $X \times X /\!\!/ G \simeq \mathbb{A}^1$, $(N, \psi) \setminus SL_2 / (N, \psi)$ is represented by elements $\begin{pmatrix} -\zeta^{-1} \\ \zeta \end{pmatrix}$, and the operator is given by

$$\mathcal{T}f(\zeta) = |\zeta|| \bullet |^{1-s}f(\frac{1}{\bullet})(\zeta), \text{ while } L_X = L(\mathrm{Ad}, s).$$

(generalizing the case $X = SL_2$, where s = 1).

Theorem (S.) For ${}^{L}T \hookrightarrow {}^{L}G = PGL_2$, $\eta \leftrightarrow T$ quadratic character, there is a transfer operator

$$\mathcal{T}: \mathcal{S}^{-}_{L(\operatorname{Sym}^{2},1)}(N,\psi\backslash G/N,\psi) \to \mathcal{S}(T)^{\mathbb{Z}/2}$$

given by the formula

$$\mathcal{T}f(a) = \int f(\frac{t(a)}{u})\eta(\frac{t(a)}{u})\psi(u)du,$$

where again we represent Kuznetsov orbital integrals as functions in the variable $\begin{pmatrix} -\zeta^{-1} \\ \zeta \end{pmatrix}$, and t(a) is the image of $a \in T$ in $T \not|/(\mathbb{Z}/2) = \mathbb{A}^1$.

The transfer operator satisfies the fundamental lemma for the Hecke algebra, and the condition on pullback of characters.

Joint work with Chen Wan

Let *G* be any reductive group, and $X = H \setminus G$ a *strongly tempered variety*, i.e.: for any tempered representation π of G(F), the integral

$$J_{\pi}: g \mapsto \int_{H(F)} \Theta_{\pi}(hg) dh$$

converges as a generalized function of *g*. (After smoothing, this is the Ichino–Ikeda integral of matrix coefficients.)

Then, J_{π} represents a relative character on $H \setminus G/H$. Replace Θ_{π} by its stable character Θ_{Π} . One hopes that this is dual to a map

$$\mathcal{T}: \mathcal{S}(H\backslash G/H) \to \mathcal{S}(rac{G}{G}),$$

which is the transfer map $\text{RTF}_X \leftrightarrow \text{STF}_G$. (Notice: under the strongly tempered assumption, ${}^LG_X = {}^LG$.)

We apply this to $X = (N, \psi) \setminus G$, i.e., the Kuznetsov formula, where we can *prove* the existence of \mathcal{T} .

Formulas for KTF ↔ STF

 $G = GL_n$. Represent Kuznetsov orbital integrals as measures in the variable $\begin{pmatrix} \zeta_n \\ \vdots \\ \zeta_1 \end{pmatrix}$, orbital integrals for the adjoint quotient as measures in the coefficients of the characteristic polynomial $x^n - t_1 x^{n-1} + t_2 x^{n-2} - \cdots + (-1)^n t_n$,

or alternatively in the variables

$$u_1 = t_1 = \operatorname{tr} g, u_2 = \frac{t_2}{t_1} = \frac{\operatorname{tr} \wedge^2 g}{\operatorname{tr} g}, \dots, u_i = \frac{t_i}{t_{i-1}} = \frac{\operatorname{tr} \wedge^i g}{\operatorname{tr} \wedge^{i-1} g}, \dots$$

Then, we have the following formulas for

$$\mathcal{T}: \mathcal{S}(N,\psi \backslash G/N,\psi) \to \mathcal{S}(\frac{G}{G}):$$

$$n = 2: \ \mathcal{T}f(u_1, u_2) = \int_F f\left(\begin{array}{c} & -u_2\kappa \\ u_1\kappa^{-1} & \end{array}\right) \psi(\kappa) d\kappa.$$

(Specializing to SL_2 , this is the transfer operator that we saw before.) 20/30

$$n = 2:$$

$$\mathcal{T}f(u_1, u_2) = \int_F f\left(\begin{array}{c} -u_2\kappa \\ u_1\kappa^{-1} \end{array}\right) \psi(\kappa)d\kappa.$$

$$n = 3:$$

$$\mathcal{T}f(u_1, u_2, u_3) = \int_{F^3} f\left(\left(\begin{array}{c} \kappa_2\lambda u_3 \\ \kappa_1^{-1}\lambda^{-1}u_1 \end{array}\right)\right) \cdot \left(\begin{array}{c} \kappa_2\lambda u_3 \\ \kappa_1^{-1}\lambda^{-1}u_1 \end{array}\right)\right) \cdot \left(\begin{array}{c} \psi\left(\kappa_1 + \kappa_2 + \lambda + \frac{u_3}{u_2}\frac{\kappa_2^2}{\kappa_1} + \frac{u_2}{u_1}\frac{\kappa_1^2}{\kappa_2}\right) \cdot \left(\begin{array}{c} \lambda^{-1} \\ u_1^{-1}u_2 \end{array}\right)\right)$$

$$n = 4:$$

$$\mathcal{T}f(u_1, u_2, u_3, u_4) = \int_{F^6} f\left(\begin{pmatrix} -u_4 \mu \lambda_2 \kappa_3 \\ u_3 \cdot \frac{\lambda_1 \kappa_2}{\kappa_3} \\ -u_2 \cdot \frac{\kappa_1}{\lambda_2 \kappa_2} \end{pmatrix} \right)$$

$$\psi(\mu + \lambda_1 + \lambda_2 + \kappa_1 + \kappa_2 + \kappa_3 + \frac{u_3 \lambda_1 \kappa_2^2}{u_2 \kappa_1 \kappa_3} + \frac{u_2 \kappa_1^2}{u_1 \kappa_2} + \frac{u_2 \kappa_1^2 \lambda_1}{u_1 \lambda_2 \kappa_2} + \frac{u_3 \kappa_2^2}{u_2 \kappa_1} + \frac{u_3 u_4 \kappa_2^3}{u_2^2 \kappa_1^2}$$

$$- \frac{u_4 \lambda_2 \kappa_3^2}{u_3 \lambda_1 \kappa_2} + \frac{u_4 \kappa_3^2}{u_3 \kappa_2} + 2 \frac{u_4}{u_2} \frac{\kappa_2 \kappa_3}{\kappa_1} \right) \left| \frac{\lambda_1^{-1} \lambda_2^{-1} \mu^{-2}}{u_1^3 u_2^2 u_3} \right| d\kappa_1 d\kappa_2 d\kappa_3 d\lambda_1 d\lambda_2 d\mu.$$

Patterns for the transfer operator

What do we notice?

- 1. The transfer $\mathcal{T} : \mathcal{S}(N, \psi \setminus G/N, \psi) \to \mathcal{S}(\frac{G}{G})$ is given by an integral operator in $\frac{n(n-1)}{2} = |\Phi_G^+|$ variables. This is not Fourier transform on $\frac{G}{G}$ viewed as a vector space something else is going on!
- 2. If we ignore some factors in the integrand, we get a *multiplicative Fourier convolution along all positive coroots*:

$$n = 3:$$

$$\mathcal{T}f(u_1, u_2, u_3) = \int_{F^3} f\left(\begin{pmatrix} & -\lambda \mu u_3 \\ \kappa_1 \lambda^{-1} u_2 \end{pmatrix} \right) \right) \cdot \\ \cdot \psi\left(\kappa_1 + \lambda + \mu + \frac{u_3 \lambda^2}{u_2 \kappa_1} + \frac{u_2 \kappa_1^2}{u_1 \lambda} \right) \cdot \left| \frac{\lambda^{-1}}{u_1^2 u_2} \right| d\kappa d\lambda d\mu.$$

$$n = 4:$$

$$f(u_1, u_2, u_3, u_4) = \begin{pmatrix} & \mu_4 \mu \lambda_2 \kappa_2 \end{pmatrix} \right)$$

2. (cont.) Hence, the operator is a deformation of a *multiplicative Fourier convolution along coroots* for the right action of the diagonal torus on the antidiagonal one:

$$\prod_{\alpha\in\Phi_G^+}\mathcal{F}_{\check{\alpha}}$$

where, for every cocharacter $\check{\lambda}$, $\mathcal{F}_{\check{\lambda}}f(x) := \int f(x\check{\lambda}(\kappa^{-1}))\psi(\kappa)d\kappa$. Why should these convolutions be relevant? We can deform *G* to $G_{\emptyset} = T^{\text{diag}}(N^{-} \times N) \setminus G^{2}$, e.g., for n = 2, this is the space of 2×2 -matrices of rank 1.

Similarly, deform the character of the Whittaker model to the trivial one. Then, the simplified operators *become transfer operators for a comparison*

$$N \setminus G/N \leftrightarrow (G_{\emptyset} \times G_{\emptyset})/G^{2,\operatorname{diag}},$$

with appropriate *L*-values inserted. The $\alpha \in \Phi_G^+$ appearing here are related to *L*(Ad, 1) inserted into the Kuznetsov formula!

3. Even without the simplification, the operators "in principle" satisfy Poisson summation (at least up to n = 4), e.g., for n = 4, up to multiplication by absolute values, the transformation can be written as

 $\mathcal{F}_{\check{\alpha}_{1}}\mathcal{F}_{\check{\alpha}_{2}}\psi(\alpha_{1}-\alpha_{2}+\alpha_{2}\beta_{2})\mathcal{F}_{\check{\alpha}_{3}}\psi(\alpha_{3})\mathcal{F}_{\check{\beta}_{1}}\psi(\alpha_{2}+2\beta_{2})\mathcal{F}_{\check{\beta}_{2}}\psi(-\alpha_{1}-\alpha_{3})\mathcal{F}_{\check{\gamma}}$

(up to the appropriate absolute values/Jacobians etc.).

Conclusions from the local results:

- 1. In a variety of settings, there are transfer operators $\mathcal{T}: \mathcal{S}(\mathfrak{Y}) \to \mathcal{S}(\mathfrak{X})$ corresponding to a map ${}^{L}G'_{Y} \to {}^{L}G_{X}$ between *L*-groups. (Mostly ${}^{L}G'_{Y} \xrightarrow{\sim} {}^{L}G_{X}$, for now.)
- 2. There are formulas in terms of abelian Fourier convolutions.
- 3. Although the formulas are not well-understood, they are deformations of well-understood formulas when we let the spaces degenerate.

Is there a better explanation for the formulas? **Quantization!** (Next summer...)

Let $G = GL_n$. We follow the method of Jacquet–Zagier, to write the non-invariant Arthur–Selberg trace formula as a residue of a relative trace formula:

$$\mathrm{TF}(f) = \mathrm{Res}_{s=1} \int K_{f'}(x, x) E_{\Phi}(x, s) dx,$$

 E_{Φ} an Eisenstein series constructed from a test function Φ on the *Rankin–Selberg* variety $X = k^n \times^{\operatorname{GL}_n^{\operatorname{diag}}} \tilde{G}$, where $\tilde{G} = \operatorname{GL}_n \times \operatorname{GL}_n$.

Here, *f* is the restriction of $f' \star \hat{\Phi}$ to the zero section of $X (\simeq GL_n)$, and the non-invariant part of the trace formula is defined in a slightly different way than usual.

 $(\exists$ relevant, but non-overlapping work of Liyang Yang.)

Theorem (S.–Chen Wan; in preparation) *There is a decomposition* $TF(f) = \bigoplus_{j=1}^{n} TF_{j}(f)$ *, with the following properties:*

- the summand TF_j decomposes spectrally in terms of Arthur parameters of tempered length j, that is, the centralizer of the image of Arthur's SL₂ has rank j;
- the most tempered summand TF_n is equal to

 $\operatorname{Res}_{s=0}\operatorname{KTF}(\mathcal{T}_s^{-1}(f)),$

where \mathcal{T}_s is a deformation of the transfer operator $\mathcal{T}: \mathcal{S}^-_{L(\mathrm{Ad},1)}((N,\psi) \setminus G/(N,\psi)(\mathbb{A})) \xrightarrow{\sim} \mathcal{S}(\frac{G}{G}(\mathbb{A}))$ described before.

Remarks: 1) The operator \mathcal{T}_s really depends on the data Φ on the Rankin–Selberg variety, but its specialization at s = 0 is equal to \mathcal{T} . 2) Although we prove it indirectly, "descending" the Rankin–Selberg unfolding to GL_n^{diag} -orbital integrals, the formula looks like a Poisson summation formula for the transfer operator \mathcal{T} , with "boundary terms" TF_i picking up the nontempered parts of the spectrum.

26/30

- 3. For n = 2, where T is simply a one-dimensional Fourier transform this is a variant of the Poisson summation formula of Altuğ.
- 4. For $n \ge 2$, we see that the isolation of the (conjecturally) tempered spectrum requires a Fourier transform in $\frac{n(n-1)}{2}$ dimensions, according to our calculation of the transfer operator \mathcal{T} (at least, in low ranks).
- A similar Poisson summation formula was previously proven by S. (directly!) for the "beyond endoscopy" comparison

 $(N,\psi)\backslash G/(N,\psi)\leftrightarrow X\times X/G$

for $G = PGL_2$, $X = T \setminus G$, to give a new proof of Waldspurger's formula for toric periods.

In the last few slides, we will discuss problems posed by these global Poisson summation formulas.

Poisson summation formulas

 $\rho : {}^{L}G_X \to {}^{L}G'_Y, \mathfrak{Y} = Y \times Y/G', \mathfrak{X} = X \times X/G.$ It is helpful to stick to the case $\xrightarrow{\sim}$, until we can answer some questions there.

Suppose (*huge assumption*!) that we knew the local transfer operator $\mathcal{T}_{\rho} : \mathcal{S}(\mathfrak{Y}) \to \mathcal{S}(\mathfrak{X})$ in terms of Fourier transforms and other "elementary" operations (such as multiplication by the absolute value of a rational function) which, *in principle*, satisfy a Poisson summation formula. *Can we prove such a formula*?

A technique that has been used is to introduce a complex parameter *s* and *deform* the spaces and operators in a meromorphic way, trying to prove a PSF for a deformed operator

$$\mathcal{T}_{\rho,s}: \mathcal{S}(\mathfrak{Y})_s \to \mathcal{S}(\mathfrak{X})_s$$

when $\Re(s) \gg 0$. (Since we are introducing *L*-functions, this *s* should be related to the point of their evaluation.) Still, it is unclear in rank > 1 how to prove such a PSF directly. **Problem:** Understand deformations of spaces of orbital integrals and transfer operators, and use them to prove PSF.

28/30

The role of the functional equation/Hankel transforms

Similarly, we will have a spectral decomposition "for large values of *s*", but since we are introducing *L*-values outside of the domain of convergence, it will not directly apply to the desired *s*. Thus, even if we have a Poisson summation formula for $\Re(s) \gg 0$, and meromorphic continuation, we don't have a spectral decomposition! Rather than use hard analytic number theory to meromorphically continue the spectral decomposition, a technique that I have used successfully is to use the functional equation + Phragmén-Lindelöf. But then, it is essential, besides the comparison $\mathcal{T}_{\rho} : \mathcal{S}(\mathfrak{Y}) \to \mathcal{S}(\mathfrak{X})$, to have a comparison $\mathcal{S}(\mathfrak{Y})_s \leftrightarrow \mathcal{S}(\mathfrak{Y})_{-s}$ corresponding to the functional equation of the pertinent *L*-function.

- In the setting of the KTF, studied by Herman for $r = \text{Std of GL}_2$ (\exists local formulas of Jacquet for Std, S. for Sym²).
- In the setting of the STF, the operator giving rise to the functional equation has been called *Hankel transform* by B.C. Ngô, who has been studying it, expanding on ideas from the papers of Braverman and Kazhdan on *γ*-factors.

The role of the functional equation/Hankel transforms

Thus, closely related to the problem of understanding transfer operators and proving Poisson summation formulae for them, we have

Problem: For \mathfrak{Y} = the Kuznetsov or STF quotient, and $r : {}^{L}G \to \operatorname{GL}(V)$, understand the local Hankel transforms

$$\mathcal{S}^{-}_{L(r,\frac{1}{2}+s)}(\mathfrak{Y}) \xrightarrow{\sim} \mathcal{S}^{-}_{L(r,\frac{1}{2}-s)}(\mathfrak{Y}),$$

and prove a Poisson summation formula for them.

Interestingly, we are coming full cirle: Langlands functoriality was meant to prove analytic properties of *L*-functions, but, if the answer lies in Beyond Endoscopy, it seems that we will directly need to prove those properties along the way!

Thank you! PS: Hope to see you in person soon!