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What are automorphic representations?

They are far-reaching reinterpretations and generalizations of
modular forms.𝐹: number field1, 𝔸 = 𝔸𝐹: ring of adèles.𝐺: connected reductive 𝐹-group, such as GL(𝑛).𝐿2(𝐺(𝐹)\𝐺(𝔸)1) = 𝐿2disc ⊕ 𝐿2cont: the 𝐿2-automorphic

spectrum, mes(𝐺(𝐹)\𝐺(𝔸)1) < +∞.
Study of automorphic representations ≈ decomposition of𝐿2(𝐺(𝐹)\𝐺(𝔸)1) under right regular 𝐺(𝔸)-representation.

Arthur’s Conjecture: 𝐿2(𝐺(𝐹)\𝐺(𝔸)1) = ⨁𝜓 𝐿2𝜓,𝜓 ranges over Arthur parameters ℒ𝐹 × SL(2, ℂ) → L𝐺,ℒ𝐹 is the hypothetical Langlands group of 𝐹.

1We exclude the important and interesting case of function fields
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What is the Arthur-Selberg trace formula?

Idea: access 𝐿2(𝐺(𝐹)\𝐺(𝔸)1) through an equality of invariant
distributions on 𝐺(𝔸). 𝐼𝐺geom(𝑓) = 𝐼𝐺spec(𝑓).
It is a far-reaching generalization of Poisson summation
formula: 𝑛∈ℤ 𝑓(𝑛) = 𝑛∈ℤ ̂𝑓(𝑛)
where 𝑓 ∶ ℝ → ℂ is a function + growth conditions, and ̂𝑓 is its
Fourier transfer, suitably normalized.
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Look at 𝐼𝐺geom(𝑓) = 𝐼𝐺spec(𝑓).
Spectral side Main terms = sums of character-distributions𝑓 ↦ tr𝜋(𝑓) where 𝜋 are unitary irreducible

representations of 𝐺(𝔸), weighted by their
multiplicities 𝑚(𝜋) in 𝐿2disc.

Geometric side Main terms = sums of orbital integrals

𝑓 ↦ 𝐺𝛾(𝔸)\𝐺(𝔸) 𝑓(𝑔−1𝛾𝑔)d𝑔,
weighted by mes 𝐺𝛾(𝐹)\𝐺𝛾(𝔸)1, where 𝛾 are
elliptic regular semisimple orbits in 𝐺(𝐹) and𝐺𝛾 ∶= 𝑍𝐺(𝛾)∘.

Example: Comparison of geometric sides for different groups
⇝ cases of Langlands’ Functoriality.
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Structure of the trace formula

Non-compactness of 𝐺(𝐹)\𝐺(𝔸)1 ⟺ Existence of proper Levi
subgroups ⟺ Continuous spectrum in 𝐿2.
Arthur’s invariant trace formula: 𝐼geom = 𝐼spec𝐼𝐺 = 𝑀⊃𝑀0𝐿𝑒𝑣𝑖

|𝑊𝑀0 ||𝑊𝐺0 | 𝐼𝐺𝑀, 𝐼𝐺 ∈ {𝐼geom, 𝐼spec}
𝑀0: a fixed minimal Levi of 𝐺,𝑊𝑀0 : the Weyl group relative to 𝑀0 ⊂ 𝑀,𝐼𝐺𝑀: invariant distribution with an expansion indexed by
classes 𝛾 (resp. irreps 𝜋) in 𝑀.

Based by truncation + a plethora of other tools.
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Dramatis personae

Let 𝑀 be a Levi of 𝐺.
Terms of local nature: Let 𝑓 be a test function on 𝐺(𝔸).𝐼𝐺𝑀(𝛾, 𝑓): the INVARIANT VERSION of WEIGHTED orbital

integrals, where 𝛾: conjugacy classes in 𝑀,𝐼𝐺𝑀(𝜋, 𝑓): the INVARIANT VERSION of WEIGHTED characters,
where 𝜋: unitary representation of 𝑀.

When 𝐺 = 𝑀, we recover the usual orbital integrals and
characters.
Terms of global nature: the coefficients

expressing 𝐼𝐺𝑀,geom(𝑓) in terms of 𝐼𝐺𝑀(𝛾, 𝑓),
expressing 𝐼𝐺𝑀,spec(𝑓) in terms of 𝐼𝐺𝑀(𝜋, 𝑓).
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Ultimately, we want to understand the distributions

𝐼𝐺spec, 𝐼𝐺disc, 𝐼𝐺disc,𝜈, 𝐼𝐺disc,𝜈,𝑐𝑉
on 𝐺(𝔸), where we specified𝜈: infinitesimal character,𝑐𝑉 : Satake parameter off 𝑉, where 𝑉 is a large finite set of

places.

𝐼𝐺disc = tr 𝐿2disc=∑𝜋𝑚(𝜋) tr(𝜋)
+“shadows” from Levi.

The “shadows” are closely related to some key ingredients in
Arthur’s conjectures — local and global intertwining relations, or
the structure of parabolically induced packets.
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Known applications

They usually require a stable trace formula and its twisted
analogue (Arthur, Moeglin–Waldspurger, ...), based on (twisted)
Endoscopy by Langlands–Shelstad–Kottwitz.𝐼𝐺(𝑓) = 

G′
ell. endo. data

𝜄(𝐺,G′)𝑆𝐺′(𝑓′),
𝐼𝐺: the invariant distribution to be stabilized;𝑆𝐺′ : stable counterparts on the endoscopic group 𝐺′
(quasisplit), defined recursively;𝜄(𝐺,G′) ∈ ℚ>0: explicit coefficients;𝑓 ↦ 𝑓′: transfer of test functions from 𝐺 to 𝐺′ (of a local
nature).
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We now move to the metaplectic case.
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The metaplectic cover

Let Sp(2𝑛) ⊂ GL(2𝑛) be the symplectic group. Let𝜇𝑚 = {𝑧 ∈ ℂ× ∶ 𝑧𝑚 = 1}. The global metaplectic covering is a
central extension of locally compact groups1 → 𝜇8 →Sp(2𝑛,𝔸) → Sp(2𝑛,𝔸) → 1.

There is a canonical splitting over Sp(2𝑛, 𝐹).
It depends on a symplectic space (𝑊, ⟨⋅|⋅⟩) and an additive
character 𝜓 ∶ 𝐹\𝔸 → ℂ×.
It is the restricted product of local coverings1 → 𝜇8 →Sp(2𝑛)𝑣 → Sp(2𝑛, 𝐹𝑣) → 1, modulo{(𝑧𝑣)𝑣 ∈⨁𝑣 𝜇8 ∶ ∏𝑣 𝑧𝑣 = 1}.
Can be reduced to a central extension by 𝜇2, but I opt for
the eightfold way.
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1 We are interested in studying genuine representations and
automorphic forms of Sp(2𝑛), i.e. on which 𝜇8 acts by𝑧 ↦ 𝑧 ⋅ id.

2 The genuine representation theory of Sp(2𝑛) (both local
and global) are largely elucidated by Gan–Savin,
Gan–Ichino, using Θ.

3 A model for Langlands’ program for covering group
(Weissman, Gan, Gao, ...)

4 Other Brylinski–Deligne coverings occurring naturally:
coverings of GL(𝑛) (Kazhdan–Patterson),
higher coverings of symplectic groups (Friedberg, Ginzburg
et al.),
......

Key feature of Sp(2𝑛): two elements ̃𝛿, ̃𝛿′ commute in Sp(2𝑛)𝑣 iff
their images 𝛿, 𝛿′ ∈ Sp(2𝑛, 𝐹𝑣) commute.

12 / 35



Invariant trace formula for coverings

Most results in harmonic analysis extend to coverings. The
invariant trace formula à la Arthur Cf. linear version

𝐼�̃� =𝑀 |𝑊𝑀0 ||𝑊𝐺0 | 𝐼�̃̃�𝑀
is known under the following technical assumptions.

Satake isomorphism at the unramified places (OK for
BD-coverings),
Trace Paley–Wiener theorem for 𝐾-finite functions at
Archimedean places (OK for Sp(2𝑛) and its Levi).

What remains is a stabilization à la Arthur. This requires a
theory of endoscopy for coverings.
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Endoscopy for Sp(2𝑛)
Let �̃� = Sp(2𝑛), 𝐺 = Sp(2𝑛). In both local and global cases:

Dual group: �̃�∨ = Sp(2𝑛, ℂ) with trivial Galois action.
Elliptic endoscopic data G! ↔ pairs (𝑛′, 𝑛″) ∈ ℤ2≥0 such that𝑛′ + 𝑛″ = 𝑛. NO SYMMETRY HERE!
Endoscopic group associated with G!:𝐺! = SO(2𝑛′ + 1) × SO(2𝑛″ + 1), split.
Can define

a correspondence of stable semisimple conjugacy classes,
the factors 𝜄(�̃�,G!) as before,
transfer factors Δ.

Note. Over every Levi ∏𝑖 GL(𝑛𝑖) × Sp(2𝑚) of 𝐺, the 8-fold
covering splits canonically into ∏𝑖 GL(𝑛𝑖, 𝐹) × Sp(2𝑚).
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The notion of transfer

To study genuine representations, we consider anti-genuine
test functions2 on �̃� (local).
For each G! we have the transfer of test functions𝐶∞𝑐,anti−gen.(�̃�) 𝐶∞𝑐 (𝐺!)𝑓 𝑓!
whose orbital integrals are matching in the sense that

𝑆𝐺!(𝛿, 𝑓!)
stable orbital integral

= 𝛾↔𝛿Δ(𝛿, �̃�) 𝐼�̃�(�̃�, 𝑓)
orbital integral

, 𝛿 ∶ st. conj. class in 𝐺!(𝐹)𝛾 ∶ conj. class in 𝐺(𝐹)
where �̃� ↦ 𝛾 is arbitrary. Thus Δ plays the role of “kernel”.

2i.e. 𝑓(𝑧�̃�) = 𝑧−1𝑓(�̃�) for all 𝑧 ∈ 𝜇8.
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Known results

1 Existence of transfer is known (descent + results of Ngo et
al. on Lie algebras).

2 Dual of transfer: stable character ↦ virtual character.
3 In the unramified local case, we have:

Fundamental Lemma for units.
Fundamental Lemma for spherical Hecke algebras (Caihua
Luo) ⇝ transfer of Satake parameters.
Weighted Fundamental Lemma.

4 Stabilization of the elliptic semisimple terms in 𝐼�̃�geom has
been established.

These results concern only the 𝑀 = 𝐺 part in the trace formula!
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The hoped-for stable trace formula

Hoped-for Theorem
Consider the global covering �̃� ↠ 𝐺(𝔸). For every𝑓 = ∏𝑣 𝑓𝑣 ∈ 𝐶∞𝑐,anti−gen.(�̃�), we expect an identity

𝐼�̃�(𝑓) = 
G!∶ell. endo. data

𝜄(�̃�,G!)𝑆𝐺!(𝑓!),
where𝑓! = ∏𝑣 𝑓!𝑣 is a transfer of 𝑓 to 𝐺!(𝔸),𝑆𝐺! is the stable distribution obtained in Arthur’s

stabilization.
Cf. linear version

The spectral expansion of 𝑆𝐺! is given by the stable multiplicity
formula of Arthur for split odd SO.

17 / 35



Potential applications

We expect 𝐼�̃�disc(𝑓) = 
G! 𝜄(�̃�,G!)𝑆𝐺!disc(𝑓!).

This should yield information about the automorphic spectrum
of �̃�, as well as local information: LLC for local Sp(2𝑛) +
endoscopic character relations.

The LLC is known via Θ (Gan–Savin); its compatibility with
endoscopic character relations is verified by Caihua Luo.
Using Θ, Gan and Ichino already obtained a multiplicity
formula for the tempered automorphic spectrum, fitting into
Arthur’s conjecture.3

If successful, the stable trace formula should be able to
tackle the whole 𝐿2disc,genuine(𝐺(𝐹)\�̃�).

3They also obtain the non-tempered case for Sp(4).
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Road map

Bootstrapping from the known case 𝑀 = 𝐺.
Term-by-term stabilization:𝐼 = 𝐼ℰ
for each invariant distribution 𝐼 = 𝐼𝐺𝑀 appearing in the trace
formula or its local avatars, where 𝐼ℰ denotes its
ENDOSCOPIC COUNTERPART.
By induction, we assume that𝐼𝑆𝐿 = 𝐼𝑆,ℰ𝐿
when 𝑀 ⊂ 𝐿 ⊂ 𝑆 ⊂ 𝐺 are Levi, 𝑀 ≠ 𝐿 or 𝑆 ≠ 𝐺.
Both the local distributions and the global coefficients in the
trace formula are to be stabilized. The diagram
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1 Properties of 𝐼 itself are often proved in the same way as
the uncovered case — they are of an analytic nature.

2 The stable counterpart 𝑆 = 𝑆𝐺! lives on endoscopic groups𝐺! — already available. We even have Arthur’s endoscopic
classification for 𝐺!.

3 The endoscopic counterpart 𝐼ℰ is made from various 𝑆𝐺!
via transfer. An example

This part requires new combinatorial/cohomological
arguments.

Ideally, the first step would be the stabilization of 𝐼geom, or: the
local distributions + global coefficients therein.
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The global geometric statement

Consider the metaplectic covering 1 → 𝜇8 → �̃� → 𝐺(𝔸𝐹) → 1.𝒪 : semisimple stable class in 𝐺(𝐹), which determines a
finite set of places 𝑆(𝒪 ) ⊃ {𝑣 ∶ 𝑣 ∣ ∞}.𝐴�̃�(𝑆, 𝒪 )ell is a formal linear combination of orbits in �̃�𝑆. It
is the building block in the expansion of 𝐼�̃̃�𝐺,geom indexed by𝒪 , and 𝑆 ⊃ 𝑆(𝒪 ).𝐴�̃�,ℰ (𝑆, 𝒪 )ell: the endoscopic analogue.

Global Geometric Theorem
For each elliptic semisimple stable class 𝒪 in 𝐺(𝐹),𝐴�̃�(𝑆, 𝒪 )ell = 𝐴�̃�,ℰ (𝑆, 𝒪 )ell.
This stabilizes the global COEFFICIENTS in 𝐼geom.
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The local geometric statement
Consider the local 1 → 𝜇8 → �̃� → 𝐺(𝐹) → 1.
Local Geometric Theorem
Let 𝑀 ⊂ 𝐺 be a Levi, �̃� an 𝑀(𝐹)-conjugacy class in �̃� (more
generally, a “geometric” invariant distribution), then𝐼�̃̃�𝑀(�̃�, 𝑓) = 𝐼�̃�,ℰ�̃� (�̃�, 𝑓)
for all anti-genuine 𝑓.

Here, 𝐼�̃�,ℰ�̃� (�̃�, ⋅) is the endoscopic avatar of the geometric
distribution 𝐼�̃̃�𝑀(�̃�, ⋅) in the invariant trace formula for �̃�.

Weighted Fundamental Lemma (proven)
The unramified version of the above:𝑟�̃�(�̃�, 𝐾) = 𝑟ℰ̃𝑀(�̃�).
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Specifically,

𝐼�̃�,ℰ�̃� (M!, 𝛿, 𝑓) = 𝑠 𝑖𝑀!(�̃�, 𝐺![𝑠])𝑆𝐺![𝑠]𝑀! 𝛿[𝑠], 𝐵, 𝑓𝐺![𝑠] ,
where 𝑠 indexes diagrams

𝐺![𝑠] �̃�
𝑀! �̃�

ell.
endo.

ell.
endo.

Levi Levi

𝛿 is a stable geometric distribution 𝑀!(𝐹),𝑖𝑀!(�̃�, 𝐺![𝑠]) are explicit constants defined by dual groups,𝑆𝐺![𝑠]𝑀! (⋯) are the stable distributions from Arthur,𝛿 ↦ 𝛿[𝑠] is a twist by some central element 𝑧[𝑠] ∈ 𝑀!(𝐹). A
metaplectic feature!
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𝐵-functions

The 𝐵 above prescribes an adjustment of root-lengths in 𝑀!𝛿
and 𝐺[𝑠]!𝛿[𝑠]. Here: type B𝑚 ↔ C𝑚.

It affects the definition of weighted orbital integrals
(Moeglin–Waldspurger).
It fades away when we pass to the global setting.

One shows that 𝐼�̃�,ℰ�̃� (M!, 𝛿, 𝑓) depends only on the transfer of 𝛿
to �̃�. This defines 𝐼�̃�,ℰ�̃� (�̃�, 𝑓). When 𝐺 = 𝑀 and 𝛾 is regular, we
recover the transfer of orbital integrals.
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Strategy

1 The Global Geometric Theorem has a RELATIVELY SHORT
proof. Ingredients:

Descent: use known results concerning various 𝐴𝐺𝛾unip(⋯)
(Arthur, Moeglin–Waldspurger).
Play with Δ.
Manipulation of non-abelian Galois cohomologies.

2 The Local Geometric Theorem requires more efforts.
Local trace formula and its stabilization (inductive
assumption).
Stabilization of the spectral side of the global trace formula
(special cases).
Local–global argument. Preview
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Reduction of the local geometric theorem to 𝐺-regular
case

Idea: Yoga of germs.𝐹 non-Archimedean: descent + Shalika germs + known
results from Arthur and Moeglin–Waldspurger (nonstandard
endoscopy).𝐹 Archimedean: more difficult — a subtle analysis of the
maps 𝜌𝐽, 𝜎𝐽 (“germs”) defined à la Moeglin–Waldspurger4.

In our case, coverings of the form

1 → 𝜇8 →Sp(2𝑎) 𝜇8× Sp(2𝑏) → Sp(2𝑎, 𝐹) × Sp(2𝑏, 𝐹) → 1
will intervene.

4𝐽 ≈ subsets of roots restricted to 𝐴𝑀
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Cancellation of singularities

Encapsulate the obstruction to the 𝐺-regular local geometric
theorem into an orbital integral.

Theorem
There exists 𝜖�̃�(⋅), mapping 𝑓 to a cuspidal anti-genuine test
function on �̃�, whose usual orbital integral satisfies𝐼�̃�(�̃�, 𝜖�̃�(𝑓)) = 𝐼�̃�,ℰ�̃� (�̃�, 𝑓) − 𝐼�̃̃�𝑀(�̃�, 𝑓).

This requires new “compactly-supported” distributions𝑐𝐼�̃�(�̃�, ⋅) and their stabilization.
Also have to stabilize certain maps

𝑐𝜃�̃� ∶ test fcn on �̃� → test fcn on �̃�
relating 𝐼�̃� and 𝑐𝐼�̃�.
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Concerning the construction of 𝜖�̃�(⋅):
For Archimedean 𝐹, we have to normalize the intertwining
operators canonically, and stabilize some factors𝑟�̃�(𝜋), 𝜋 ∶ unitary genuine irrep of �̃�
arising from a (𝐺,𝑀)-family associated with normalizing
factors.
We also need to stabilize the differential equations and
jump conditions satisfied weighted orbital integrals.

A similar scenario in the global setting: Stabilize 𝑟�̃̃�𝑀(𝑐𝑉) arising
from unramified normalizing factors, where𝑉 ∶ large finite set of places,𝑐𝑉 ∶ quasi-automorphic Satake parameter off 𝑉.
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Local 𝜌𝐽𝐼�̃�(�̃�, ⋅) 𝐼�̃�(�̃�𝐺-regular, ⋅)𝐼�̃�(𝜋, ⋅)𝐼�̃�(𝜋unitary, ⋅)
𝑐𝜃�̃�, 𝑐𝐼�̃�(�̃�, ⋅) 𝜖�̃� = 0

Archimedean 𝑟�̃�(𝜋)

Global𝐼spec𝐼disc𝐼geom𝐴(𝑆,𝒪 )ell

Unramified

𝑟�̃�(𝑐𝑉)
𝑟�̃�(�̃�, 𝐾) ⟺

𝐴 means 𝐴 can be stabilized directly.𝐴 → 𝐵 means the stabilization of 𝐴 is NEEDED to stabilize 𝐵.
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The final touch

Take an elliptic endoscopic datum M! for �̃�. Define𝜖M!�̃� (𝑓)(𝛿) ∶= 𝛾 Δ(𝛿, �̃�) 𝐼�̃�(�̃�, 𝜖�̃�(𝑓))
usual orbital integral= transfer of 𝜖�̃�(𝑓) (𝛿)

for all stable regular semisimple class 𝛿 in 𝑀!(𝐹).
Here ⋯(𝛿) means taking stable orbital integral along 𝛿.
Goal
Show that 𝜖M!�̃� (𝑓) = 0 for all M!.
Strategy: Show it is both real and imaginary-valued.
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Let 𝑓M!�̃� be the transfer of the parabolic descent 𝑓�̃� of 𝑓 to 𝑀!.
Key geometric hypothesis
There is a smooth function 𝜖(M!, ⋅) on 𝑀!𝑀-reg(𝐹) such that

𝜖M!�̃� (𝑓)(𝛿) = 𝜖(M!, 𝛿)𝑓M!�̃� (𝛿) for all 𝑓, 𝛿.
This is established by a local–global argument, by stabilizing a
not-so-simple global trace formula and using its SPECTRAL SIDE.
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Imaginary Lemma
We have 𝜖(M!, 𝛿) + 𝜖(M!, 𝛿) = 0 for all M! and 𝛿.
Its proof is based on the local trace formula:

Use a pair of test functions (𝑓1, 𝑓2) where 𝑓𝑖 ∈ 𝐶∞𝑐 (�̃�) is
anti-genuine, 𝑖 = 1, 2.
Hence 𝑓1 is anti-genuine over the antipodal covering �̃�†,
i.e. �̃�† = �̃� but 𝜇8 → �̃�† is modified by 𝑧 ↦ 𝑧−1.
The correct way of looking at the local trace formula is to
consider the pair (�̃�†, �̃�).
For �̃� = Sp(𝑊, ⟨⋅|⋅⟩), one can identify �̃�† with�̃�− ∶= Sp(𝑊, −⟨⋅|⋅⟩).

Antipodal vs. transfer
Flipping ⟨⋅|⋅⟩ does not alter endoscopic data/correspondence of
classes, whilst it takes Δ to Δ.
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Real Lemma
We have 𝜖(M!, 𝛿) = 𝜖(M!, 𝛿) for all M! and 𝛿.

It boils down to showing that endoscopic transfer is
“isomorphic to its complex conjugate”.

This we can achieve by the MVW-involution �̃� ∼→ �̃�−,
realized by Ad(𝑔) with 𝑔 ∈ GSp(𝑊) with similitude −1.

In the uncovered case and its twisted analogue, the Chevalley
involution is used by Arthur and Moeglin–Waldspurger.
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Local𝜖�̃� = 0
Local trace formula

Global

𝐼disc (special case)

Cf. an earlier diagram

� Both “special case” and “imaginary lemma” involve a
famous method (from Jacquet–Langlands?) — if there is an
equality between continuous and discrete spectral expansions,
then both sides = 0.
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Thanks for your attention
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