Full stable trace formula for Sp(2*n*)

Wen-Wei Li

Peking University

May 15th, 2021

May 24th, 2021 CJRM

This is a work in progress.

..... since my PhD thesis (2011)

An incomplete list of works mentioned in this talk.

- J. Arthur, A stable trace formula I—III. (2002, 2001, 2003).
- J. Arthur, *The endoscopic classification of representations*, AMS Coll. Volume 61 (2013).
- W. T. Gan, A. Ichino, *The Shimura–Waldspurger correspondence for* Mp_{2n} (2018).
- L., Transfert d'intégrales orbitales pour le groupe métaplectique (2011)
- L., La formule des traces stable pour le groupe métaplectique: les termes elliptiques (2015)
- C. Luo, Endoscopic character identities for metaplectic groups (2020)
- C. Mœglin, J.-L. Waldspurger, *Stabilisation de la formule des traces tordue, Volume I, II*. Progress in Mathematics, 316—317 (2016).

What are automorphic representations?

They are far-reaching reinterpretations and generalizations of *modular forms*.

- F: number field¹, $\mathbb{A} = \mathbb{A}_F$: ring of adèles.
- G: connected reductive *F*-group, such as GL(n).
- $L^2(G(F)\backslash G(\mathbb{A})^1) = L^2_{\text{disc}} \oplus L^2_{\text{cont}}$: the L^2 -automorphic spectrum, $\text{mes}(G(F)\backslash G(\mathbb{A})^1) < +\infty$.

Study of automorphic representations \approx decomposition of $L^2(G(F)\backslash G(\mathbb{A})^1)$ under right regular $G(\mathbb{A})$ -representation.

Arthur's Conjecture: $L^2(G(F)\backslash G(\mathbb{A})^1) = \bigoplus_{\psi} L^2_{\psi}$,

- ψ ranges over Arthur parameters $\mathscr{L}_F \times \mathrm{SL}(2, \mathbb{C}) \to {}^{\mathrm{L}}G$,
- Solution \mathscr{L}_F is the hypothetical Langlands group of *F*.

¹We exclude the important and interesting case of function fields

What is the Arthur-Selberg trace formula?

Idea: access $L^2(G(F)\setminus G(\mathbb{A})^1)$ through an equality of invariant distributions on $G(\mathbb{A})$.

$$I^G_{\rm geom}(f)=I^G_{\rm spec}(f).$$

It is a far-reaching generalization of *Poisson summation formula*:

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$$

where $f : \mathbb{R} \to \mathbb{C}$ is a function + growth conditions, and \hat{f} is its Fourier transfer, suitably normalized.

Look at

$$I_{\text{geom}}^G(f) = I_{\text{spec}}^G(f).$$

Spectral side Main terms = sums of character-distributions $f \mapsto \operatorname{tr} \pi(f)$ where π are unitary irreducible representations of $G(\mathbb{A})$, weighted by their multiplicities $m(\pi)$ in $L^2_{\operatorname{disc}}$.

Geometric side Main terms = sums of orbital integrals

$$f\mapsto \int_{G_{\gamma}(\mathbb{A})\backslash G(\mathbb{A})} f(g^{-1}\gamma g)\,\mathrm{d}g,$$

weighted by $\operatorname{mes} (G_{\gamma}(F)\backslash G_{\gamma}(\mathbb{A})^{1})$, where γ are elliptic regular semisimple orbits in G(F) and $G_{\gamma} := Z_{G}(\gamma)^{\circ}$.

Example: Comparison of geometric sides for different groups ~ cases of Langlands' Functoriality.

Structure of the trace formula

Non-compactness of $G(F)\setminus G(\mathbb{A})^1 \iff$ Existence of proper Levi subgroups \iff Continuous spectrum in L^2 .

Arthur's invariant trace formula: $I_{\text{geom}} = I_{\text{spec}}$

$$I^{G} = \sum_{\substack{M \supset M_{0} \\ Levi}} \frac{|W_{0}^{M}|}{|W_{0}^{G}|} I_{M}^{G}, \quad I^{G} \in \{I_{\text{geom}}, I_{\text{spec}}\}$$

• M_0 : a fixed minimal Levi of G,

• W_0^M : the Weyl group relative to $M_0 \subset M$,

I_M^G: invariant distribution with an expansion indexed by classes γ (resp. irreps π) in M.

Based by truncation + a plethora of other tools.

Dramatis personae

Let M be a Levi of G.

Terms of local nature: Let f be a test function on $G(\mathbb{A})$.

- $I_M^G(\gamma, f)$: the INVARIANT VERSION of WEIGHTED orbital integrals, where γ : conjugacy classes in M,
- $I_M^G(\pi, f)$: the INVARIANT VERSION of WEIGHTED characters, where π : unitary representation of M.

When G = M, we recover the usual orbital integrals and characters.

Terms of global nature: the coefficients

- expressing $I_{M,\text{geom}}^G(f)$ in terms of $I_M^G(\gamma, f)$,
- expressing $I_{M,\text{spec}}^G(f)$ in terms of $I_M^G(\pi, f)$.

Ultimately, we want to understand the distributions

$$I^G_{\rm spec}, \quad I^G_{\rm disc}, \quad I^G_{\rm disc, \nu}, \quad I^G_{\rm disc, \nu, c^V}$$

on $G(\mathbb{A})$, where we specified

- ν: infinitesimal character,
- c^V : Satake parameter off V, where V is a large finite set of places.

$$I_{\text{disc}}^{G} = \operatorname{tr} \left(L_{\text{disc}}^{2} \right)$$
 +"shadows" from Levi.
= $\Sigma_{\pi} m(\pi) \operatorname{tr}(\pi)$

The "shadows" are closely related to some key ingredients in Arthur's conjectures — local and global intertwining relations, or the structure of parabolically induced packets.

Known applications

They usually require a stable trace formula and its twisted analogue (Arthur, Mœglin–Waldspurger, ...), based on (twisted) *Endoscopy* by Langlands–Shelstad–Kottwitz.

$$I^{G}(f) = \sum_{\substack{\mathbf{G}' \\ \text{ell. endo. data}}} \iota(G, \mathbf{G}') S^{G'}(f'),$$

- \blacksquare I^G : the invariant distribution to be stabilized;
- S^{G'}: stable counterparts on the endoscopic group G' (quasisplit), defined recursively;
- $\iota(G, \mathbf{G'}) \in \mathbb{Q}_{>0}$: explicit coefficients;
- $f \mapsto f'$: transfer of test functions from *G* to *G'* (of a local nature).

We now move to the metaplectic case.

The metaplectic cover

Let $\operatorname{Sp}(2n) \subset \operatorname{GL}(2n)$ be the symplectic group. Let $\mu_m = \{z \in \mathbb{C}^{\times} : z^m = 1\}$. The global metaplectic covering is a central extension of locally compact groups

$$1 \to \mu_8 \to \widetilde{\operatorname{Sp}}(2n,\mathbb{A}) \to \operatorname{Sp}(2n,\mathbb{A}) \to 1.$$

- There is a canonical splitting over Sp(2n, F).
- It depends on a symplectic space (W, ⟨·|·⟩) and an additive character ψ : F\A → C[×].
- It is the restricted product of local coverings $1 \rightarrow \mu_8 \rightarrow \widetilde{\mathrm{Sp}}(2n)_v \rightarrow \mathrm{Sp}(2n, F_v) \rightarrow 1$, modulo $\{(z_v)_v \in \bigoplus_v \mu_8 : \prod_v z_v = 1\}.$
- Can be reduced to a central extension by μ₂, but I opt for the *eightfold way*.

- We are interested in studying genuine representations and automorphic forms of Sp(2n), i.e. on which μ₈ acts by z → z · id.
- 2 The genuine representation theory of $\widetilde{\mathrm{Sp}}(2n)$ (both local and global) are largely elucidated by Gan–Savin, Gan–Ichino, using Θ .
- 3 A model for *Langlands' program for covering group* (Weissman, Gan, Gao, ...)
- 4 Other Brylinski–Deligne coverings occurring naturally:
 - coverings of GL(*n*) (Kazhdan–Patterson),
 - higher coverings of symplectic groups (Friedberg, Ginzburg et al.),

Key feature of $\widetilde{\mathrm{Sp}}(2n)$: two elements δ, δ' commute in $\widetilde{\mathrm{Sp}}(2n)_v$ iff their images $\delta, \delta' \in \mathrm{Sp}(2n, F_v)$ commute.

Invariant trace formula for coverings

Most results in harmonic analysis extend to coverings. The invariant trace formula à la Arthur • Cf. linear version

$$I^{\tilde{G}} = \sum_{M} \frac{|W_0^M|}{|W_0^G|} I_{\tilde{M}}^{\tilde{G}}$$

is known under the following technical assumptions.

- Satake isomorphism at the unramified places (OK for BD-coverings),
- *Trace Paley–Wiener theorem* for *K*-finite functions at Archimedean places (OK for Sp(2*n*) and its Levi).

What remains is a stabilization à la Arthur. This requires a theory of endoscopy for coverings.

Endoscopy for $\widetilde{\mathrm{Sp}}(2n)$

Let $\tilde{G} = \widetilde{Sp}(2n)$, G = Sp(2n). In both local and global cases:

- Dual group: $\tilde{G}^{\vee} = \operatorname{Sp}(2n, \mathbb{C})$ with trivial Galois action.
- Elliptic endoscopic data $\mathbf{G}^! \leftrightarrow \text{pairs}(n', n'') \in \mathbb{Z}_{\geq 0}^2$ such that n' + n'' = n. No symmetry here!
- Endoscopic group associated with $G^!$: $G^! = SO(2n' + 1) \times SO(2n'' + 1)$, split.
- Can define
 - a correspondence of stable semisimple conjugacy classes,
 - the factors $\iota(\tilde{G}, \mathbf{G}^!)$ as before,
 - transfer factors Δ .

Note. Over every Levi $\prod_i \operatorname{GL}(n_i) \times \operatorname{Sp}(2m)$ of *G*, the 8-fold covering splits canonically into $\prod_i \operatorname{GL}(n_i, F) \times \widetilde{\operatorname{Sp}}(2m)$.

The notion of transfer

To study genuine representations, we consider anti-genuine test functions² on \tilde{G} (local).

For each $\mathbf{G}^!$ we have the transfer of test functions

$$C^{\infty}_{c,\text{anti-gen.}}(\tilde{G}) \dashrightarrow C^{\infty}_{c}(G^{!})$$
$$f \longmapsto f^{!}$$

whose orbital integrals are matching in the sense that

$$S_{G^{!}}(\delta, f^{!}) = \sum_{\gamma \leftrightarrow \delta} \Delta(\delta, \tilde{\gamma}) \underbrace{I_{\tilde{G}}(\tilde{\gamma}, f)}_{\text{orbital integral}}, \quad \begin{array}{l} \delta : \text{ st. conj. class in } G^{!}(F) \\ \gamma : \text{ conj. class in } G(F) \end{array}$$

where $\tilde{\gamma} \mapsto \gamma$ is arbitrary. Thus Δ plays the role of "kernel".

²i.e. $f(z\tilde{x}) = z^{-1}f(\tilde{x})$ for all $z \in \mu_8$.

Known results

- Existence of transfer is known (descent + results of Ngo et al. on Lie algebras).
- 2 Dual of transfer: stable character \mapsto virtual character.
- In the unramified local case, we have:
 - Fundamental Lemma for units.
 - Fundamental Lemma for spherical Hecke algebras (Caihua Luo) ~→ transfer of Satake parameters.
 - Weighted Fundamental Lemma.
- 4 Stabilization of the elliptic semisimple terms in $I_{geom}^{\tilde{G}}$ has been established.

These results concern only the M = G part in the trace formula!

The hoped-for stable trace formula

Hoped-for Theorem

Consider the global covering $\tilde{G} \twoheadrightarrow G(\mathbb{A})$. For every $f = \prod_{v} f_{v} \in C^{\infty}_{c, \text{anti-gen.}}(\tilde{G})$, we expect an identity

$$I^{\tilde{G}}(f) = \sum_{\mathbf{G}^{!}: \text{ell. endo. data}} \iota(\tilde{G}, \mathbf{G}^{!}) S^{G^{!}}(f^{!}),$$

where

•
$$f^! = \prod_v f_v^!$$
 is a transfer of f to $G^!(\mathbb{A})$,

S^{G!} is the stable distribution obtained in Arthur's stabilization.

► Cf. linear version

The spectral expansion of $S^{G^{!}}$ is given by the *stable multiplicity formula* of Arthur for split odd SO.

Potential applications

We expect

$$I^{\tilde{G}}_{\rm disc}(f) = \sum_{\mathbf{G}^!} \iota(\tilde{G}, \mathbf{G}^!) S^{G^!}_{\rm disc}(f^!).$$

This should yield information about the automorphic spectrum of \tilde{G} , as well as local information: LLC for local $\widetilde{\mathrm{Sp}}(2n)$ + endoscopic character relations.

- The LLC is known via Θ (Gan–Savin); its compatibility with endoscopic character relations is verified by Caihua Luo.
- Using Θ, Gan and Ichino already obtained a multiplicity formula for the *tempered automorphic spectrum*, fitting into Arthur's conjecture.³
- If successful, the stable trace formula should be able to tackle the whole L²_{disc,genuine}(G(F)∖G̃).

³They also obtain the non-tempered case for $\widetilde{\mathrm{Sp}}(4)$.

Road map

Bootstrapping from the known case M = G.

Term-by-term stabilization:

$$I=I^{\mathcal{E}}$$

for each invariant distribution $I = I_M^G$ appearing in the trace formula or its local avatars, where $I^{\mathscr{C}}$ denotes its ENDOSCOPIC COUNTERPART.

By induction, we assume that

$$I_L^S = I_L^{S,\mathcal{E}}$$

when $M \subset L \subset S \subset G$ are Levi, $M \neq L$ or $S \neq G$.

Both the local distributions and the global coefficients in the trace formula are to be stabilized. The diagram

- Properties of *I* itself are often proved in the same way as the uncovered case they are *of an analytic nature*.
- **2** The stable counterpart $S = S^{G^{!}}$ lives on endoscopic groups $G^{!}$ already available. We even have Arthur's endoscopic classification for $G^{!}$.
- The endoscopic counterpart I^E is made from various S^{G[!]}
 via *transfer*. An example
 This part requires new combinatorial/cohomological

arguments.

Ideally, the first step would be the stabilization of $I_{\rm geom},$ or: the local distributions + global coefficients therein.

The global geometric statement

Consider the metaplectic covering $1 \to \mu_8 \to \tilde{G} \to G(\mathbb{A}_F) \to 1$.

- \mathscr{O} : semisimple stable class in *G*(*F*), which determines a finite set of places *S*(\mathscr{O}) \supset { $v : v \mid \infty$ }.
- $A^{\tilde{G}}(S, \mathscr{O})_{\text{ell}}$ is a formal linear combination of orbits in \tilde{G}_S . It is the building block in the expansion of $I^{\tilde{G}}_{\tilde{G},\text{geom}}$ indexed by \mathscr{O} , and $S \supset S(\mathscr{O})$.
- $A^{\tilde{G},\mathcal{E}}(S,\mathcal{O})_{\text{ell}}$: the endoscopic analogue.

Global Geometric Theorem

For each elliptic semisimple stable class \mathcal{O} in G(F),

$$A^{\tilde{G}}(S,\mathcal{O})_{\mathrm{ell}} = A^{\tilde{G},\mathcal{E}}(S,\mathcal{O})_{\mathrm{ell}}.$$

This stabilizes the global COEFFICIENTS in I_{geom} .

The local geometric statement

Consider the local $1 \rightarrow \mu_8 \rightarrow \tilde{G} \rightarrow G(F) \rightarrow 1$.

Local Geometric Theorem

Let $M \subset G$ be a Levi, $\tilde{\gamma}$ an M(F)-conjugacy class in \tilde{M} (more generally, a "geometric" invariant distribution), then

$$I_{\tilde{M}}^{\tilde{G}}(\tilde{\gamma},f)=I_{\tilde{M}}^{\tilde{G},\mathcal{E}}(\tilde{\gamma},f)$$

for all anti-genuine f.

Here, $I_{\tilde{M}}^{\tilde{G},\mathscr{E}}(\tilde{\gamma},\cdot)$ is the endoscopic avatar of the geometric distribution $I_{\tilde{M}}^{\tilde{G}}(\tilde{\gamma},\cdot)$ in the invariant trace formula for \tilde{G} .

Weighted Fundamental Lemma (proven)

The unramified version of the above:

$$r_{\tilde{M}}(\tilde{\gamma},K)=r_{\tilde{M}}^{\mathcal{E}}(\tilde{\gamma}).$$

Specifically,

$$I_{\widetilde{M}}^{\widetilde{G}, \mathcal{E}}(\mathbf{M}^!, \delta, f) = \sum_{s} i_{M^!}(\widetilde{G}, G^![s]) S_{M^!}^{G^![s]}\left(\delta[s], B, f^{G^![s]}\right),$$

where s indexes diagrams

- δ is a stable geometric distribution $M^!(F)$,
- $i_{M^!}(\tilde{G}, G^![s])$ are explicit constants defined by dual groups,
- $S_{M^!}^{G^![s]}(\cdots)$ are the stable distributions from Arthur,
- δ → δ[s] is a twist by some central element z[s] ∈ M[!](F). A metaplectic feature!

B-functions

The *B* above prescribes an adjustment of root-lengths in $M_{\delta}^!$ and $G[s]_{\delta[s]}^!$. Here: type $B_m \leftrightarrow C_m$.

- It affects the definition of weighted orbital integrals (Mœglin–Waldspurger).
- It fades away when we pass to the global setting.

One shows that $I_{\widetilde{M}}^{\widetilde{G},\mathscr{E}}(\mathbf{M}^{!}, \delta, f)$ depends only on the transfer of δ to \widetilde{M} . This defines $I_{\widetilde{M}}^{\widetilde{G},\mathscr{E}}(\widetilde{\gamma}, f)$. When G = M and γ is regular, we recover the *transfer of orbital integrals*.

Strategy

- **1** The Global Geometric Theorem has a RELATIVELY SHORT proof. Ingredients:
 - Descent: use known results concerning various A^{G_γ}_{unip}(···) (Arthur, Moeglin–Waldspurger).
 - Play with Δ .
 - Manipulation of non-abelian Galois cohomologies.
- 2 The Local Geometric Theorem requires more efforts.
 - Local trace formula and its stabilization (inductive assumption).
 - Stabilization of the spectral side of the global trace formula (special cases).
 - Local–global argument. Preview

Reduction of the local geometric theorem to *G*-regular case

Idea: Yoga of germs.

- F non-Archimedean: descent + Shalika germs + known results from Arthur and Mœglin–Waldspurger (nonstandard endoscopy).
- F Archimedean: more difficult a subtle analysis of the maps ρ_J, σ_J ("germs") defined à la Mœglin–Waldspurger⁴.
 In our case, coverings of the form

$$1 \to \mu_8 \to \widetilde{\operatorname{Sp}}(2a) \overset{\mu_8}{\times} \widetilde{\operatorname{Sp}}(2b) \to \operatorname{Sp}(2a,F) \times \operatorname{Sp}(2b,F) \to 1$$

will intervene.

 $^{{}^{4}}J \approx$ subsets of roots restricted to A_{M}

Cancellation of singularities

Encapsulate the obstruction to the *G*-regular local geometric theorem into an orbital integral.

Theorem

There exists $\epsilon_{\tilde{M}}(\cdot)$, mapping f to a cuspidal anti-genuine test function on \tilde{M} , whose usual orbital integral satisfies

$$I^{\tilde{M}}(\tilde{\gamma},\epsilon_{\tilde{M}}(f))=I^{\tilde{G},\mathcal{E}}_{\tilde{M}}(\tilde{\gamma},f)-I^{\tilde{G}}_{\tilde{M}}(\tilde{\gamma},f).$$

- This requires new "compactly-supported" distributions ${}^{c}I_{\widetilde{M}}(\widetilde{\gamma},\cdot)$ and their stabilization.
- Also have to stabilize certain maps

```
{}^c\theta_{\tilde{M}} : test fcn on \tilde{G} \rightarrow test fcn on \tilde{M}
```

```
relating I_{\tilde{M}} and {}^{c}I_{\tilde{M}}.
```

Concerning the construction of $\epsilon_{\tilde{M}}(\cdot)$:

■ For Archimedean *F*, we have to normalize the intertwining operators canonically, and stabilize some factors

 $r_{\tilde{M}}(\pi)$, π : unitary genuine irrep of \tilde{M}

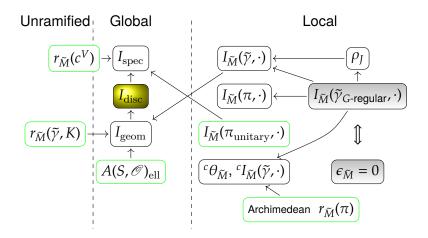
arising from a (G, M)-family associated with normalizing factors.

We also need to stabilize the *differential equations* and *jump conditions* satisfied weighted orbital integrals.

A similar scenario in the global setting: Stabilize $r_{\tilde{M}}^{\tilde{G}}(c^{V})$ arising from unramified normalizing factors, where

V: large finite set of places,

 c^V : quasi-automorphic Satake parameter off V.



A means A can be stabilized directly.

 $A \rightarrow B$ means the stabilization of A is NEEDED to stabilize B.

The final touch

Take an elliptic endoscopic datum $\mathbf{M}^{!}$ for \tilde{M} . Define

$$\begin{split} \epsilon_{\widetilde{M}}^{\mathbf{M}^{!}}(f)(\delta) &\coloneqq \sum_{\gamma} \Delta(\delta, \widetilde{\gamma}) \underbrace{I^{\widetilde{M}}(\widetilde{\gamma}, \epsilon_{\widetilde{M}}(f))}_{\text{usual orbital integral}} \\ &= \left(\text{transfer of } \epsilon_{\widetilde{M}}(f) \right)(\delta) \end{split}$$

for all stable regular semisimple class δ in $M^!(F)$. Here \cdots (δ) means taking stable orbital integral along δ .

Goal

Show that $\epsilon_{\widetilde{M}}^{\mathbf{M}^{!}}(f) = 0$ for all $\mathbf{M}^{!}$.

Strategy: Show it is both real and imaginary-valued.

Let $f_{\tilde{M}}^{\mathbf{M}^{!}}$ be the transfer of the parabolic descent $f_{\tilde{M}}$ of f to $M^{!}$.

Key geometric hypothesis

There is a smooth function $\epsilon(\mathbf{M}^!, \cdot)$ on $M^!_{M-\text{reg}}(F)$ such that

$$\epsilon_{\widetilde{M}}^{\mathbf{M}^{!}}(f)(\delta) = \epsilon(\mathbf{M}^{!}, \delta) f_{\widetilde{M}}^{\mathbf{M}^{!}}(\delta) \text{ for all } f, \delta.$$

This is established by a local–global argument, by stabilizing a not-so-simple global trace formula and using its SPECTRAL SIDE.

Imaginary Lemma

We have $\epsilon(\mathbf{M}^!, \delta) + \overline{\epsilon(\mathbf{M}^!, \delta)} = 0$ for all $\mathbf{M}^!$ and δ .

Its proof is based on the local trace formula:

- Use a pair of test functions $(\overline{f_1}, f_2)$ where $f_i \in C_c^{\infty}(\tilde{G})$ is anti-genuine, i = 1, 2.
- Hence $\overline{f_1}$ is anti-genuine over the *antipodal* covering \tilde{G}^+ , i.e. $\tilde{G}^+ = \tilde{G}$ but $\mu_8 \to \tilde{G}^+$ is modified by $z \mapsto z^{-1}$.
- The correct way of looking at the local trace formula is to consider the pair (G⁺, G).
- For $\tilde{G} = \widetilde{Sp}(W, \langle \cdot | \cdot \rangle)$, one can identify \tilde{G}^{\dagger} with $\tilde{G}_{-} := \widetilde{Sp}(W, -\langle \cdot | \cdot \rangle)$.

Antipodal vs. transfer

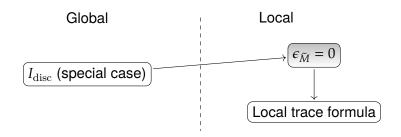
Flipping $\langle \cdot | \cdot \rangle$ does not alter endoscopic data/correspondence of classes, whilst it takes Δ to $\overline{\Delta}$.

Real Lemma

We have $\epsilon(\mathbf{M}^!, \delta) = \overline{\epsilon(\mathbf{M}^!, \delta)}$ for all $\mathbf{M}^!$ and δ .

- It boils down to showing that endoscopic transfer is "isomorphic to its complex conjugate".
- This we can achieve by the MVW-involution $\tilde{G} \xrightarrow{\sim} \tilde{G}_{-}$, realized by $\operatorname{Ad}(g)$ with $g \in \operatorname{GSp}(W)$ with similitude -1.

In the uncovered case and its twisted analogue, the *Chevalley involution* is used by Arthur and Mœglin–Waldspurger.



▶ Cf. an earlier diagram

Both "special case" and "imaginary lemma" involve a famous method (from Jacquet–Langlands?) — if there is an equality between continuous and discrete spectral expansions, then both sides = 0.

Thanks for your attention

Image taken from **Bing** Last update: May 24, 2021