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Introduction

I In his paper
L-functoriality for Dual Pairs, Asterisque 171-172,
1989,85-129,
J. Adams loosely formulates a conjecture regarding
representations in local Arthur packets. He predicts that their
theta lifts on the groups of bigger rank are going to be, in
certain situations, also members of Arthur packets of similar
form.



I This prediction was made more precise for irreducible
admissible representations of classical p-adic groups (more
precisely, for p-adic symplectic-even orthogonal dual reductive
pairs) by Mœglin in her paper
Conjecture d’Adams pour la correspondance de Howe et
filtration de Kudla, Arithmetic geometry and automorphic
forms, 445–503, Adv. Lect. Math. (ALM), 19, Int. Press,
Somerville, MA, 2011

I There, she resolved the case of discrete series representations

I She also posed two important questions which we address later



Overview of the talk

I brief overview of local Arthur packets for symplectic and even
orthogonal p-adic groups

I brief overview on local theta correspondence for p-adic
classical groups

I the statement of the conjecture; questions posed by Mœglin

I our results in the case of discrete diagonal restriction case



Notation-groups and representations
I G= a classical group defined over a p-adic field F of

characteristic zero: symplectic, even orthogonal, unitary-those
which have Arthur endoscopic classification and Mœglin
explicit construction of the local packets (in a uniform way);
the case of metaplectic groups can also be included when the
transfer is known. (Mœglin discusses the extent of
applicability of her local construction in Multiplicite 1 dans
paquets d’Arthur aux places p-adiques, Shahidi’s volume)

I parabolic subgroups
I Vm a quadratic space/skew-symmetric/hermitian space of

dimension m; G = G (Vm) the (F -points of) corresponding
isometry group

I a subset {v1, . . . , vr , v ′1, . . . , v ′r} of Vm such that
(vi , vj) = (v ′i , v

′
j ) = 0 and (vi , v

′
j ) = δij (r– the Witt index of

Vm

I B = TU the standard F -rational Borel subgroup of G (Vm),
i.e. the subgroup of G (Vm) stabilizing the flag

0 ⊂ span{v1} ⊂ span{v1, v2} ⊂ · · · ⊂ span{v1, v2 . . . , vr}.



I t ≤ r we set Ut = span{v1, . . . , vt} and
U ′t = span{v ′1, . . . , v ′t};  the decomposition

Vm = Ut ⊕ Vm−2t ⊕ U ′t

I The subgroup Qt of G which stabilizes Ut is a maximal
parabolic subgroup of G; a Levi decomposition Qt = MtNt ,
where Mt = GL(Ut)× G (Vm−2t) is the Levi component
(stabilizes U ′t)

I t varies  the set {Qt : t ∈ {1, . . . , r}} of standard maximal
parabolic subgroups.

I Further partitioning t  the rest of the standard parabolic
subgroups

I the Levi factor of a standard parabolic subgroup is of the form

GLt1(F )× · · · × GLtk (F )× G (Vm−2t) (t = t1 + · · ·+ tk)

(for the symplectic groups analogously; unitary groups -with E
(a quadratic extension of F ) in place of F )



I IndGP (τ1 ⊗ · · · ⊗ τk ⊗ π0), where τi is a smooth representation
of GLti (F ), i = 1, . . . , k, and π0 is a smooth representation of
G (Vn−2t) (with t = t1 + · · ·+ tk) is denoted by (Zelevinsky
notation)

τ1 × · · · × τk o π0.

I similarly for general linear groups

I For a segment of cuspidal representations (of
GL(n)){νaρ, . . . , νbρ} (so that a ≥ b or vice versa) we denote
by 〈νaρ, . . . , νbρ〉 the unique irreducible subrepresentation of
the representation

νaρ× · · · × νbρ,

thus, if a ≥ b this is the Steinberg representation (attached to
that segment); otherwise, this is generalized trivial
representation.



Local Arthur packets
I F p-adic field of characteristic zero

I GL(n) = GL(n,F ); the representations in ”Arthur class for
GL(n)”=local components of the discrete spectrum of
automorphic representation of GL(n) (Mœglin-Waldspurger)

I explicit description of Arthur class for GL(n): ρi -an
irreducible, smooth, cuspidal unitary representation of
GL(nρi ), i = 1, 2, . . . , k

I ai , bi ∈ Z>0, li ∈ Z>0.

I St(ρi , ai )=Steinberg representation=the unique irreducible
subrepresentation of

ρiν
ai−1

2 × ρiν
ai−1

2
−1 × · · · × ρiν−

ai−1

2

I Sp(St(ρi , ai ), bi )=Speh representation=is the unique
irreducible subrepresentation of

St(ρi , ai )ν
− bi−1

2 × St(ρi , ai )ν
− bi−1

2
+1 × · · · × St(ρi , ai )ν

bi−1

2 .



I The Arthur class for GL(n) consist of all the irreducible
representations of the form

×k
i=1Sp(St(ρi , ai ), bi )

li ,

where Sp(St(ρi , ai ), bi )
li denotes the product

Sp(St(ρi , ai ), bi )× Sp(St(ρi , ai ), bi )× · · · × Sp(St(ρi , ai ), bi )
(li times) for all such triples ai , bi , li such that∑k

i=1 aibinρi li = n holds.

I LLC for GL(n)

{(eq.classes) irreducible unitary supercuspidal reps. of GL(n)}

↔

{n − dimensional irreduc. unitary reps. of the Weil group WF}

this leads to



Parameters for the Arthur class for GL(n)

I equivalence classes of parameters

ψ : WF × SL(2,C)× SL(2,C)→ GL(n,C)

I such that ψ|WF
is unitary (and some other requirements...)

I ψ|SL(2,C)×SL(2,C) is algebraic

I For each a ∈ Z>0, the unique irreducible algebraic
representation of SL(2,C) of dimension a is denoted by νa.
(corresponds to ai or bi in the Speh representation above)

I Historically, the first SL(2,C) comes from the monodromy
operator, and the second SL(2,C) from non-temperedness of
the representations in Arthur class

I GL(n) representation (as above) corresponding to this
parameter ψ denoted by πψ



Arthur parameters for symplectic/full orthogonal groups
I we specify the general construction to the case at hand;
I (Ĝ -equivalence class of) continuous, unitary, algebraic

homomorphisms

ψ : WF × SL(2,C)× SL(2,C)→ O(l ,C)

I if l is odd with values in SO(l ,C)

I if l is even, the restriction of ψ to WF composed with the
determinant of O(l ,C) gives a character of WF which
corresponds to ηV via the class field theory (where
G = O(VηV )).

I Here, the L-group for the symplectic group can be identified
with the corresponding dual group; and for the (special) even
orthogonal group with the corresponding discriminant which is
not a square in F ∗, we can identify
SO(2n,C) o Gal(E/F ) ∼= O(2n,C)).

I The set of all equivalence classes of A-parameters for G is
denoted by Ψ(G ).



I We can decompose ψ as above

ψ = ⊕k
i=1li (ρi ⊗ νai ⊗ νbi )

I  

Jord(ψ) = {(ρi , νai , νbi ) with multiplicity li , i = 1, 2, . . . , k}

(a multiset)

I selfdual ρ = nρ-dimensional irreducible unitary continuous rep
of WF (↔ selfdual irreducible smooth cuspidal representation
of GL(nρ,F )) is orthogonal if it factors through O(nρ,C), i.e.
if L(s, ρ,Sym2) has a pole at s = 0.

I other possibility for such ρ is that it is of symplectic type (i.e.
L(s, ρ,Λ2) has a pole at s = 0.)



I (ρi , νai , νbi ) is of orthogonal type if ρi ⊗ νai ⊗ νbi factors
through an orthogonal group ↔ ai + bi is even if ρi is of
orthogonal type or ai + bi is odd if ρi is of symplectic type

I analogously we say that (ρi , νai , νbi ) is of symplectic type

I let ψp the sum of all the summands in ψ which are of the
same parity as Ĝ ; in our case, this means of orthogonal parity;
the other summands are gathered (”half” of them!-with ρi
non-selfdual or ρi selfdual but (ρi , νai , νbi ) of symplectic type)
in ψnp so that

ψ = ψnp ⊕ ψp ⊕ ψ∨np
I ψp is part “of good parity”



I to define Arthur packet attached to this parameter, we need
to introduce various centralizers of ψ in the corresponding
L-group and its quotients; without precision, we denote the
relevant centralizer by Sψ. Now the characters of Sψ
parametrize representations π(ψ, ε) (ε ∈ Ŝψ)) of G ,

I π(ψ, ε) is semisimple, admissible, of finite length, (maybe
zero) such that the following holds

Theorem (Arthur)

The character ∑
ε∈Ŝψ

ε

(
ψ(1, 1,

(
−1 0
0 −1

))
trπ(ψ, ε)

is a stable distribution; moreover, it is the transfer of the (twisted
invariant) character of the representation πψ.



I Precise (inductive) definition of representations π(ψ, ε) is
given by Mœglin, and Mœglin-Waldspurger

I Internal parametrization of representations inside A-packet
differs between Arthur and Mœglin; the exact correspondence
between parameterizations is given by Xu.

I Let Πψ be the (multi)set of all irreducible subrepresentations

of all π(ψ, ε), ε ∈ Ŝψ ( “Arthur packet”)

I We have the following

Theorem (Moeglin)

The set Πψ is multiplicity free.



A-parameters for G with discrete diagonal restriction

I Assume ψ = ⊕k
i=1li (ρi ⊗ νai ⊗ νbi ) ∈ Ψ(G )

I ψ  ψd := ψ ◦∆, where ∆ : SL(2,C)→ SL(2,C)× SL(2,C)
is the diagonal embedding

I Set Bi := |ai−bi |
2 , Ai = ai+bi

2 − 1, ζi = sign(ai − bi ) if ai 6= bi
and equal to 1 if ai = bi . Then

I
ψd = ⊕k

i=1li
(
⊕ji∈[Bi ,Ai ]ρi ⊗ ν2ji+1

)
I ψ is of discrete diagonal restriction if ψ = ψp and ψd is

multiplicity free (i.e, ∀i , li = 1 and, if, for i 6= j we have
ρi ∼= ρj , then [Bi ,Ai ] and [Bj ,Aj ] are disjoint).



Elementary A-packets

I Assume ψ = ψp = ⊕k
i=1ρi ⊗ νai ⊗ νbi is of discrete diagonal

restriction (DDR); then ψ is elementary if, for all
i = 1, 2, . . . , k min{ai , bi} = 1

Theorem (Mœglin)

Assume ψ is elementary A-parameter. Then, for every ε ∈ Ŝψ,
π(ψ, ε) is non-zero and irreducible.

I Here, Sψ is very easy to describe...

I Mœglin has two different constructions of π(ψ, ε) for ψ
elementary: one “mimicking” the gradual construction (by
induction over rank) of the discrete series representations
(with some adjustments and sensitive parts); thus boiling
down to the case of cuspidal representations. The other one
starts from the discrete series A-packets and uses partial
Aubert involution.



Theorem (Mœglin)

Suppose that ψ ∈ Ψ(G ) is DDR. Then, for each ε ∈ Ŝψ,
π(ψ, ε) 6= 0 and

π(ψ, ε) = ⊕(t,η):ε=εt,ηπ(ψ, t, η),

where π(ψ, t, η) is an irreducible representation which can be
inductively described and (t, η) are functions on Jord(ψ) described
in the following way:

t : Jord(ψ)→ Z≥0 such that t(ρ, ai , bi ) ≤
min{ai , bi}

2
, ∀(ρ, ai , bi )

and
η : Jord(ψ)→ {1,−1}.



We require that η(ρ, ai , bi ) = 1 if t(ρ, ai , bi ) = min(ai ,bi )
2 . To such a

pair, one attaches a function εt,η : Jord(ψ)→ {1,−1} in the
following way

εt,η(ρ, ai , bi ) = η(ρ, ai , bi )
min(ai ,bi )(−1)b

min(ai ,bi )

2
c+t(ρ,ai ,bi )

I the representations {π(ψ, t, η) : εt,η ∈ Ŝψ}, thus, form the
DDR A-packets, and we shall test Adams conjecture on them

I They include elementary A-packets, and their construction is
inductive, starting point being elementary packets
(corresponding to the situation of t ≡ 0)

I General A-packets of good parity are given through taking
Jacquet modules of certain DDR A-packets which “dominate”
them; the chosen order on the summands is very important
here

I To prove Adams conjecture, although for DDR packets, we
encounter non-DDR A-packets



The construction of representations π(ψ, t, η)

I let ψ = ⊕k
i=1ρi ⊗ νai ⊗ νbi ∈ Ψ(G ) be DDR parameter

I The construction is through a recursive procedure on
l(ψ) =

∑k
i=0(min(ai , bi )− 1)

I Assume first that l(ψ) = 0. Then we have elementary
parameter (then, necessarily, by the definition
t(ρ, ai , bi ) = 0, ∀i = 1, 2, . . . , k and π(ψ, t, η) = π(ψ, εt,η)

I Assume that there exists i0 ∈ {1, 2, . . . , k} such that
min(ai0 , bi0) > 1 (note that it is irrelevant which i0 we choose
if there are more of them)

I If t(ρi0 ⊗ νai0 ⊗ νbi0 ) = 0 then we construct another parameter
ψ′ in the following way



The construction of representations π(ψ, t, η)-continued
instead of ρi0 ⊗ νai0 ⊗ νbi0 , in ψ′ we put the sum

ρi⊗νai0−bi0+1⊗ν1⊕ρi⊗νai0−bi0+3⊗ν1⊕· · ·⊕ρi⊗νai0+bi0−1⊗ν1, if ζi0 = 1,

or

ρi⊗ν1⊗νai0−bi0+1⊕ρi⊗ν1⊗νai0−bi0+3⊕· · ·⊕ρi⊗ν1⊗νai0+bi0−1, if ζi = −1.

The rest of the summands remain the same, with t ′, η′ defined on
Jord(ψ′) in the following way:

t ′|Jord(ψ)\(ρi0 ,νai0 ,νbi0 )
= t|Jord(ψ)\(ρi0 ,νai0 ,νbi0 )

,

η′|Jord(ψ)\(ρi ,νai0⊗νbi0 )
= η|Jord(ψ)\(ρi0 ,νai0 ,νbi0 )

.

t ′(ρi0 , c, 1) = 0,∀c ∈ [ai0 − bi0 + 1, ai0 + bi0 − 1], if ζi0 = 1,

and

t ′(ρi0 , 1, c) = 0, ∀c ∈ [ai0 − bi0 + 1, ai0 + bi0 − 1], if ζi0 = −1.



The construction of representations π(ψ, t, η)-continued II
and

η′(ρi0 , c , 1) = η(ρi0 , ai0 , bi0)(−1)
c−|ai0−bi0

|−1

2 , if ζi0 = 1,

η′(ρi0 , 1, c) = η(ρi0 , ai0 , bi0)(−1)
c−|ai0−bi0

|−1

2 , if ζi0 = −1.

Then, π(ψ, t, η) = π(ψ′, t ′, η′) and

I if t(ρi0 ⊗ νai0 ⊗ νbi0 ) > 0, then we construct another
parameter ψ′ in the following way: we replace (ρi0 , νai0 , νbi0 )
with (ρi0 , νai0 , νbi0−2) if ζ = 1 and (ρi , νai0−2, νbi0 ) if ζ = −1.
We define t ′(ρi0 , νai0 , νbi0−2) (or t ′(ρi0 , νai0−2, νbi0 )) to be
equal to t(ρi0 , νai0 , νbi0 )− 1. Then, π(ψ, t, η) is the unique
irreducible subrepresentation of

〈ν
ai0
−bi0
2 ρi0 , . . . , ν

−ζi0 (
ai0

+bi0
2
−1)ρi0〉o π(ψ′, t ′, η′).

I The mapping (t, η) 7→ π(ψ, t, η) is injective



The order on Jord(ψ)
I Let ψ ∈ Ψ(G ) be a parameter of good parity

I To be able to define non-DDR packets one needs to introduce
certain order on Jord(ψ)

I This is order has to satisfy certain conditions (we do not
express them); but these condition do not specify the order
uniquely

I We use the following order: note (ρ, a, b) (ρ,A,B, ζ) we
defined above. Assume that (ρ,A,B, ζ) 6= (ρ,A′,B ′, ζ ′).
Then, if (ρ,A,B, ζ) > (ρ,A′,B ′, ζ ′) we have that B > B ′ or
B = B ′ and A > A′ or B = B ′ and A = A′ and ζ = 1.

I If ψ is DDR, then there is an obvious order on Jord(ψ) (since
[B ′,A′] and [B,A] are disjoint) which (obviously) satisfies
these conditions

I From now on, for a DDR parameter, we write its summands in
this (increasing) order (for some fixed ρi ; the order between
different ρ′s is not important), and, if the parameter is not
DDR, we choose the order above



Brief overview of theta correspondence

I Fix a non-trivial additive character of F , ψF : F → C, the
corresponding Weil representation ωW ,ψF

of the metaplectic
group Mp(W ), where W is a p-adic symplectic space

I symplectic/even-orthogonal reductive pair (or vice versa;
symmetric approach) G (Wn)× H(Vm) in Sp(Wn ⊗ Vm) (m, n
dimensions of the corresponding spaces; denote ε0 = 1 if Wn

is symplectic, ε0 = −1 if Wn is orthogonal)

I need to fix a splitting G (Wn)× H(Vm)→ Mp(Wn ⊗ Vm); 
fix a pair of characters (χV , χW ) of F ∗ attached to the spaces
Wn, Vm. (these characters can be chosen to be constant
within a fixed Witt tower, which justifies the omitting m and
n and using χW , χV to denote them). These characters,
along with the non-trivial additive character ψF : F → C,
determine a splitting G (Wn)× H(Vm)→ Mp(Wn ⊗ Vm)

I can restrict ωW ,ψF
to G (Wn)× H(Vm)  ωWn,Vm,ψF



I For any π ∈ Irr(G (Wn)), the maximal π-isotypic quotient of
ωm,n is of the form

π ⊗Θ(π,Vm),

I Θ(π,Vm) “big theta lift”; has a unique irreducible quotient
θ(π,Vm) (irreducible smooth representation of Vm) “small
theta lift” (conjectured by Howe; proved by Waldspurger,
Gan, Takeda)  theta correspondence

I If π ∈ Irr(G (Wn)), denote l = n + ε0−m; (the relative index)
then θl(π) := θ(π,Vm); useful notation when examining
occurrences of the theta lift on the same tower



I we examine the lifts of π on the pair of towers simultaneously
(e.g., when π is a representation of a symplectic group, we
examine its lifts on the a pair of quadratic towers with the
same discriminant and different Hasse invariants)

I the first occurrence index in a tower-the persistence principle;
the conservation conjecture (Sun-Zhu) with respect to the
pair of towers as above

I if l ′ is the first (relative) occurrence index in one tower, and l ′′

in the other (for given π ∈ Irr(G (Wn))),then l ′ + l ′′ = −2
(the conservation conjecture)

I We denote by l(π) the first occurrence index on the “going
down” tower (thus, l(π) ≥ −1)). If π is a representation of an
orthogonal group, instead of towers (there is only one
symplectic tower!) one examines the lifts of π and π ⊗ det
simultaneously; note that in the case of symplectic-even
orthogonal pair, l(π) is odd



Normalization; choices

I for theta correspondence, we have choices ψF for the Weil
representations χV , χW for the splittings groups in the dual
reductive pair of interest

I in formation of local A-packets-Whittaker normalization of
transfer maps (following Arthur, i.e. Xu who makes a
comparison)

I in her paper devoted to Adams conjecture Mœglin points out
that the parametrization inside one DDR A-packet is fully
determined by the parametrization of cuspidal representations
(i.e. in π(ψ, t, η) η could be different)

I the parametrization of cuspidals Mœglin uses is different from
ours (we use Arthur parametrization through Atobe and Gan
results on theta lifts of tempered representation); this does
not effect the stability statements



Adams’ conjecture

I Originally, the Adams conjecture is posed for the reductive
dual pairs for the real groups

I He observed that the “tail” which comes ”high” in the target
tower of the theta correspondence can be interpreted as a
representation of the second SL(2,C)-factor in the Arthur
parameter of the original group

I Originally, it was (wrongly) conjectured that this kind of
behaviour can be observed for the Langlands parameter, and
would be form of functoriality, but it is soon observed that
theta correspondence does not respect L-packets (even for
discrete series representations)

I He expected that the newly constructed objects (by Barbasch
and Vogan) which could be interpreted as Arthur packets for
real groups could be the right setting for the conjecture



The statement for the DDR case

Assume that ψ ∈ Ψ(G ) is DDR. Let π(ψ, t, η) ∈ Πψ be a
representation of G (Wn). Examine the lifts of π(ψ, t, η) on a fixed
tower (so, if G (Wn) the lifts are in an orthogonal tower, and if
G (Wn) is orthogonal, the lifts are in symplectic tower). Then,
there exists r0 ∈ Z≥0 such that, for all r ≥ r0 the representation
θ−(2r+1)(π(ψ, t, η)) belongs to A-packet Πψr , where

ψr = χ−1V χWψ ⊕ χ−1V χW ⊗ ν1 ⊗ ν2r+1.

Remarks

1. The statement is the same for non-DDR packets (for
non-DDR ψ, π(ψ, t, η) can be zero; it is non-trivial to decide
if it is non-zero)

2. It is pretty obvious that such r0 exists



Mœglin’s questions (in Conjecture d’Adams...)

1. For given π(ψ, t, η), find the smallest r0 with the property
prescribed above

2. Is there any 0 ≤ r ′ < r0 such that θ−(2r+1)(π(ψ, t, η)) ∈ Πψr ?

Remarks

I In this paper, Mœglin uses ad-hoc parameterization of
cuspidal representations inside an A-packet in which lifts will
have “more similar” (t, η) parameters to one of original
representations. We use Arthur parametrization.

I Also she does not use necessarily the order on summands we
introduced above; the same reasons

I Although we deviate from her choices, in the end, those
choices “cancel”, and we get elegant results



The results

might want to consider them slightly conjectural just now...

I Let π(ψ, t, η) ∈ Πψ, such that ψ is DDR parameter of G (Wn)

I we can write it as
ψ = ψ′ ⊕ ψχV

,

where ψχV
contains all the summands of the form

χV ⊗ ν∗ ⊗ ν∗
I If the theta lift θ−(2r+1)(π) is in the A-packet ψr , only the

parameters (t, η) on ψχV
are going to change; the parameters

(t, η) on ψ′–part stay the same.

I Assume (we respect the order!)

ψχV
=

t1,η1
χV ⊗ νa1 ⊗ νb1⊕

t2,η2
χV ⊗ νa2 ⊗ νb2⊕· · ·⊕

tk ,ηk
χV ⊗ νak ⊗ νbk ,

where ti = t(χV ⊗ νai ⊗ νbi ), ηi = η(χV ⊗ νai ⊗ νbi ).



I Denote by k0 the largest index such that the sum

t1,η1
χV ⊗ νa1 ⊗ νb1 ⊕

t2,η2
χV ⊗ νa2 ⊗ νb2 ⊕ · · · ⊕

tk0 ,ηk0
χV ⊗ νak0 ⊗ νbk0

is ”cuspidal”; i.e. t1 = t2 = · · · = tk0 = 0, the corresponding
segments [B1,A1], . . . , [Bk0 ,Ak0 ] are juxtaposed (so no gaps
between each two of them), starting from B1 = 0, and the

characters on them (recall the formation of
ti=0,ηi

χV ⊗ νai ⊗ νbi )
alternate.

I Denote with l0 the largest index, which is larger than k0, if k0
as above exists, otherwise just take the largest l0 such that for

tl0 ,ηl0
χV ⊗ νal0 ⊗ νbl0 we have ζl0 = −1, tl0 = 0. Then we have

Theorem
l(π(ψ, t, η)) = al0 + bl0 − 1, if l0 described above exists. If it does
not exist, then l(π(ψ, t, η)) = ak0 + bk0 − 1. If both l0 and k0 do
not exist, then l(π(ψ, t, η)) = −1.



The results-continuation

We keep the notation as above (π(ψ, t, η) is a representation of
G (Wn); we lift on both target towers simultaneously)

Theorem
I For 2r + 1 > ak + bk − 1, θ−(2r+1)(π(ψ, t, η)) 6= 0 (previous

theorem), belongs to Πψr and we have
θ−(2r+1)(π(ψ, t, η)) . . .

χ−1V χWψ
′⊕

t1,−η1
χ−1V χW ⊗ νa1 ⊗ νb1 ⊕

t2,−η2
χ−1V χW ⊗ νa2 ⊗ νb2 ⊕ · · ·⊕

tk ,−ηk
χ−1V χW ⊗ νak ⊗ νbk ⊕

ε

χ−1V χW ⊗ ν1 ⊗ ν2r+1

where ε depends on the Hasse invariant of the tower.



Theorem (continuation)

I Now we go down with respect to r . As long as 2r + 1 > l0, k0
(i.e. ζk = 1, ζk−1 = 1 ,etc., or ζk = −1 with tk > 0 etc.) we
can jump ”between, inside and around” each such summand
in the following way: assume first that k > l0. Then,
θ−(2r+1)(π(ψ, t, η)) ∈ Πψr for all r such that
|ak − bk |+ 1 ≤ 2r + 1 ≤ ak + bk − 1 where we have the
following θ−(2r+1)(π(ψ, t, η)) . . .

χ−1V χWψ
′⊕

t1,−η1
χ−1V χW ⊗ νa1 ⊗ νb1 ⊕

t2,−η2
χ−1V χW ⊗ νa2 ⊗ νb2 ⊕ · · ·⊕

tk ,−ηk
χ−1V χW ⊗ νak ⊗ νbk ⊕

ε

χ−1V χW ⊗ ν1 ⊗ ν2r+1

if |ak − bk |+ 1 < 2r + 1 ≤ ak + bk − 1 (note that ψr is not
DDR any more)



Theorem (continuation II)

For 2r + 1 = |ak − bk |+ 1 the rest of the parameter of
θ−(2r+1)(π(ψ, t, η)) remains the same, but instead of

tk ,−ηk
χ−1V χW ⊗ νak ⊗ νbk ⊕

ε

χ−1V χW ⊗ ν1 ⊗ ν|ak−bk |+3

we have

I

−ε(−1)bk−1

χ−1V χW ⊗ ν1 ⊗ νak−bk+1 ⊕
tk ,ηk

χ−1V χW ⊗ νak ⊗ νbk , if ζk = 1,

0 ≤ tk ≤ b
bk − 1

2
c

I

ε

χ−1V χW ⊗ ν1 ⊗ νak−bk+1⊕
tk ,−ηk

χ−1V χW ⊗ νak ⊗ νbk , if ζk = 1, tk =
bk
2



Theorem
I

−ε(−1)ak−1=−ηk
χ−1V χW ⊗ ν1 ⊗ νak−bk+1 ⊕

tk+1,ηk

χ−1V χW ⊗ νak ⊗ νbk , if ζk = −1,

ε = −ηk(−1)ak−1, 0 < tk < b
ak − 1

2
c

I

−ε(−1)ak−1=−ηk
χ−1V χW ⊗ ν1 ⊗ νak−bk+1 ⊕

tk=
ak−1

2
,−ηk

χ−1V χW ⊗ νak ⊗ νbk , if ζk = −1,

ε = −ηk(−1)ak−1, tk =
ak − 1

2



I

ε(−1)ak−1=ηk

χ−1V χW ⊗ ν1 ⊗ νak−bk+1 ⊕
tk−1,ηk

χ−1V χW ⊗ νak ⊗ νbk , if ζk = −1,

ε = ηk(−1)ak−1, 0 < tk ≤ b
ak − 1

2
c

I

−ε
χ−1V χW ⊗ ν1 ⊗ νak−bk+1 ⊕

tk−1=
ai
2
−1,−ε

χ−1V χW ⊗ νak ⊗ νbk , if ζk = −1,

tk =
ak
2

; then ηk = 1



I Now we go down in the same way; we have that
θ−(2r+1)(π(ψ, t, η)) is in Πψr for all r such that
ak−1 + bk−1 + 1 ≤ 2r + 1 ≤ |ak − bk | − 1 with the parameter
which has the analogous form like the parameter of
θ−(|ak−bk |+1)(π(ψ, t, η)), just with χ−1V χW ⊗ ν1 ⊗ ν2r+1

instead of χ−1V χW ⊗ ν1 ⊗ νak−bk+1 (the same values of t, η)

I we repeat the same procedure until we get to the summand
with index l0 (or k0 if l0 does not exist).
Let

θ−(al0+bl0+1)(π(ψ, t, η)) =

· · · ⊕
tl0=0,−ηl0

χ−1V χW ⊗ νal0 ⊗ νbl0 ⊕
ε′

χ−1V χW ⊗ ν1 ⊗ νal0+bl0+1 ⊕ · · ·

Then, if ε′ 6= −ηl0(−1)al0−1, we stop as, for
2r + 1 < al0 + bl0 + 1 we have θ−(2r+1)(π(ψ, t, η)) = 0.



Otherwise, we are on the “going down tower” and, we have, for
bl0 − al0 + 1 < 2r + 1 ≤ al0 + bl0 − 1

θ−(2r+1)(π(ψ, t, η)) =

· · · ⊕
tl0=0,−ηl0

χ−1V χW ⊗ νal0 ⊗ νbl0 ⊕
ε′=−ηl0 (−1)

al0
−1

χ−1V χW ⊗ ν1 ⊗ ν2r+1 ⊕ · · ·



and, if al0 ≥ 2

θ−(bl0−al0+1)(π(ψ, t, η)) =

· · · ⊕
−ηl0

χ−1V χW ⊗ ν1 ⊗ νbl0−al0+1 ⊕
1,ηl0

χ−1V χW ⊗ νal0 ⊗ νbl0 ⊕ · · ·

and, if al0 = 1 we have

θ−(bl0−al0+1)(π(ψ, t, η)) =

· · · ⊕
ε′=−ηl0 (−1)

al0
−1

χ−1V χW ⊗ ν1 ⊗ νbl0−al0+1 ⊕
0,−ηl0

χ−1V χW ⊗ νal0 ⊗ νbl0 ⊕ · · ·



I Now, on the “going down tower” we proceed “going down”
and “jumping over” summands in the same way as explained
above for summands before (i. e. larger) than l0

I We stop at the first (going from the right; i.e. the largest)
summand i > k0 for which ζi = −1, ti = 0 and ε′′ (which is
obtained by the previous steps) is such that

θ−(ai+bi+1)(π(ψ, t, η)) =

· · · ⊕
ti=0,−ηi

χ−1V χW ⊗ νai ⊗ νbi ⊕
ε′′=ηi (−1)ai−1

χ−1V χW ⊗ ν1 ⊗ νai+bi+1 ⊕ · · ·

i.e. ε” 6= −ηi (−1)ai−1.

I If there is no such summand, we stop at k0 if, again,
ε” 6= −ηk0(−1)ai−1 (here it is not necessary that ζk0 = −1 to
be forced to stop).



I if we do not stop at k0, i.e. if ε′′ = −ηk0(−1)ai−1, we use the
above rules to “jump over” summands (we are in the
“cuspidal part” now) by following the rules for ti = 0 and
ζi = 1 or ζi = −1, as given above. By examining the changes
of characters, we see that we will stop after jumping over the
summand which is our first encounter with ζi = −1 (from
above; i.e. from the right). In other words, in this case, the
last theta lift in A-packet will be θ−(bi−ai+1)(π(ψ, t, η)) where
i is the largest index less or equal to k0 such that ζi = −1.



I In this way we have completely answered the first question of
Mœglin: we describe where we stop with “going down” at the
theta-tower (i.e. calculating θ−(2r+1)(π(ψ, t, η))) in a way
that all the theta lifts are in appropriate Arthur packet ψr . (so
that the theta lift on just one lever lower is not in appropriate
A-packet). We have explicitly given the parameters of the lifts.

I As for the second question: this is quite (quite!) conjectural
just now, but the evidence suggests that, actually, once the
ascending in the theta tower stops, there are no lower theta
lifts which belong to appropriate A-packets of the form ψr

(the lifts themselves are non-zero if we are on the
“going-down” tower, but they do not belong to the A-packets
of the right form)



About proofs
I In our paper P.Bakić, M.H. Theta correspondence for p-adic

dual pairs of type I, Crelle, 2021. we gave the explicit form of
theta correspondence, i.e. gave the Langlands parameter of
θl(π) if π is given as a Langlands quotient

I Problem We do not know explicit Langlands parameters of
the representations in A-packets; their construction is recursive
and technical, and does not give us the explicit Langlands
parameter, as of yet (so no direct use of our previous results)

I We do use some features of our description, but also, we:

I use and refine some results of Mœglin about reducibility for
representations in DDR A-packets

I use results of Atobe and Minguez on the derivatives for
classical groups

I use some GL-reducibility results (e.g. Lapid and Minguez)



Thank you!


