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Background

• Model selection (averaging) procedures that correspond to eliciting a
shrinkage prior distribution to model parameters (Ridge Regression;
LASSO; Spike and Slab; ABSLOPE )

• Empirical Bayes (Robbins, 1956; James and Stein, 1961; Brown, 1966;
Efron et al., 2001; Sun and Cai, 2007; Brown and Greenshtein, 2009;
Efron, 2011)

• Compound decision approach (Robbins, 1951; Zhang, 2003; Weinstein
et al., 2018): marginal Bayes rules with respect to the empirical
distribution of the parameter vector are optimal frequentist procedures
(i.e. minimize the frequentist compound risk for any fixed
~θ = (θ1, · · · , θn))

• Our hierarchical Bayesian model uses a finite Polya tree on a dyadic
partition to define a random distribution on [a0, aI] (Ferguson, 1974)
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The empirical Oracle Distribution

Setup and notations

• Parameter vector ~θ = (θ1 · · · θm), we initially assume ~θ ∼ π(~θ)
• Observation ~Y = (Y1 · · · Yn), with likelihood ~Y ∼ f (~y|~θ)
• Let O(~θ) = (θ(1) ≤ · · · ≤ θ(m)) denote the order statistic of ~θ

• Let Permm denote the set of permutations on {1, 2, · · · ,m}
• Thus π(~θ) specifies a distribution on parameter order statistics

π̃(O(~θ)) =
∑

σ∈Permm

π(σ(O(~θ))).

• For all σ ∈ Permm and θ̃ = O(~θ)) we further define

π̃(σ(θ̃)|θ̃) = π(σ(θ̃))

π̃(θ̃)
(1)
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The empirical Oracle Distribution

Bayes Rules

Goal: find δ(·) that minimizes the average risk E~θ∼πE~Y∼f (~y|~θ)L(δ(·), ~θ)

• Observing ~Y the average risk is minimized by Bayes rule

δBayes(~y) = argmin E~θ∼π(~θ|~Y=~y)L(δ(~y),
~θ)

• Observing ~Y and O(~θ) = θ̃ we may define the Bayes rule

δBayes(θ̃,~y) = argmin E~θ∼π(~θ|O(~θ)=θ̃,~Y=~y)L(δ(θ̃,~y),
~θ)

that per definition yields a smaller average risk than δBayes(~y).
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The empirical Oracle Distribution

The posterior distribution for symmetric priors

Assuming a symmetric prior

∀σ ∈ Permm, π(~θ) = π(σ(~θ)) ⇒ π̃(σ(θ̃)|θ̃) = 1
m!

we may express

π(~θ| O(~θ) = θ̃, ~Y = ~y) =
f (~θ, θ̃,~y)∑

σ∈Perm f (σ(θ̃), θ̃,~y)

=
π̃(~θ|θ̃) · π̃(θ̃) · f (~y|~θ)∑

σ∈Perm π̃(σ(θ̃)|θ̃) · π̃(θ̃) · f (~y|σ(~θ))

=
π̃(~θ|θ̃) · f (~y|~θ)∑

σ∈Perm π̃(σ(θ̃)|θ̃)) · f (~y|σ(~θ))
=

f (~y|~θ)∑
σ∈Permm

f (~y|σ(~θ))
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The empirical Oracle Distribution

The Empirical Oracle Distribution

• The Empirical Oracle posterior Distribution

πEOD(~θ| O(~θ),~y) =
f (~y|~θ)∑

σ∈Permm
f (~y|σ(θ̃))

• e.g. EOD Bayes rule for L(δ(~Y), ~θ) = ‖δ(~Y)− ~θ‖2 is

δEOD(θ̃,~y) =

∑
σ∈Permm

σ(θ̃) · f (~y|σ(θ̃))∑
σ∈Permm

f (~y|σ(θ̃))
,

• EOD Bayes rules yield minimal average risk of all Bayes rules for
symmetric priors (in shrinkage priors θi are iid, MLE is MAP
for flat prior)
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The empirical Oracle Distribution

The frequentist perspective

~θ fixed unknown and the goal is to find δ(~y) that minimizes

Risk(~θ; δ(·)) = E~Y∼f (~y|~θ)L(δ(~Y),
~θ)

• Whereas we have δEOD(θ̃,~y) that by construction minimizes∑
σ∈Permm

Risk(σ(θ̃); δ(·))/m!

• Symmetric likelihood and loss: Risk(σ(θ̃); δEOD) ≡ Risk(θ̃; δEOD)
⇒ δEOD yields minimal frequentist risk of all symmetric δ(~y)

• In particular, for sequence model and compound loss→ Robbins (1951)
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Implementation by hBeta model

The L level hierarchical Beta model

Ferguson (1974): Generative model for distributions with step functions
PDF’s at endpoints ~a = (a0, · · · , a2L) corresponding to dyadic partition of
[a0, a2L ] for nonparametric density estimation

• Independent Beta random variables φl,j ∼ Beta(αl,j, βl,j) that specify the
conditional subinterval probabilities for the dyadic partitions

• π1,1 · · ·πL,2L are the probabilities of the subintervals in the dyadic
partitions that are products of the Beta random variables

• Step function PDF for θ ∈ [a0, a2L ]

f (θ;~a, ~π) = πL,1 ·
I[a0,a1](θ)

a1 − a0
+ · · ·+ πL,2L ·

I[a2L−1,a2L ](θ)

a2L − a2L−1
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Implementation by hBeta model

The 3 level hierarchical Beta model
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Implementation by hBeta model

Hierarchical Bayes modeling for Large-Scale Inference

a. Parameter ~θ = (θ1 · · · θm), data ~Y = (Y1 · · · Yn), likelihood ~Y ∼ f (~y|~θ)

b. We imbed likelihood in (made up) hierarchical model for the data:

1. Generate f (θ;~a, ~π) from hBeta model with φl,j ∼ Beta(1, 1)

2. For i = 1 · · ·m generate iid θi ∼ f (θ;~a, ~π)

3. Generate ~Y ∼ p(~y; ~θ)

c. We use a Gibbs sampler to derive the posterior distribution of the hBeta
model given ~Y = ~y, in which the Gibbs samples of f (θ;~a, ~π) are
deconvolution estimates for the empirical marginal distribution of ~θ and Gibbs
samples of ~θ approximate posterior samples of πEOD(~θ| O(~θ),~y)

d. Our inferences are Bayes rules for on Gibbs sampling distribution of ~θ.
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High dimensional logistic regression example

Candes and Sur (2019): High dim. logistic regression

Simulation study

• X4000×800 with iid N(0, 1/n) entries

• Yj = Bernoulli(pj), for j = 1 · · · 4000 where

• pj = exp(µj)/(1 + exp(µj)) with ~µ4000×1 = X~β800×1:

a. ~β = (−10, · · · ,−10, 10, · · · , 10, 0, · · · , 0)
b. βi ∼ N(3, 42) , i = 1 · · · 800
c. βi = 0 or βi ∼ N(3, 42) with probability 0.5
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High dimensional logistic regression example

Implementing hBeta approach

• For the hBeta approach we assume generative model for ~Y is

1. Generate f (β;~a, ~π) from hierarchical Beta model with L = 6,
φl,j ∼ Beta(1, 1), and ~a is a regular 65 point grid on [−20, 20].

2. For i = 1 · · · 800 generate βi ∼ f (θ;~a, ~π), and compute ~µ = X~β
3. For j = 1 · · · 4000, compute pj = exp(µj)/(1 + exp(µj)) and then

generate Yj ∼ Bernoulli(pj)

• We compare five estimates: MLE; “corrected" MLE of Candes and Sur
(2019); LASSO and Ridge penalized likelihood estimates (R GLMNET);
hBeta posterior means.
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High dimensional logistic regression example

Simulated example a results
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High dimensional logistic regression example

Simulated example a results

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

0 200 400 600 800

−
30

−
20

−
10

0
10

20

Coefficients estimation plot

Index

B
et

a

●

Oracle
MLE
LASSO with CV
hBeta post. mean

Yekutieli & Weinstein 15 / 20



High dimensional logistic regression example

Simulated example a results
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High dimensional logistic regression example

Simulated example a results
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High dimensional logistic regression example

Summary of results

adj.MLE LASSO Ridge hBeta
~β 0.33 0.19 0.19 0.10

Example a ~µ 0.31 0.21 0.20 0.11
~p 0.75 0.49 0.61 0.34
~β 0.34 0.38 0.26 0.17

Example b ~µ 0.32 0.38 0.27 0.17
~p 0.75 0.80 0.64 0.32
~β 0.36 0.27 0.25 0.18

Example c ~µ 0.34 0.26 0.26 0.19
~p 0.76 0.67 0.63 0.48

Table: MSE for single realization displayed as fractions of the MSE for the MLE.
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Discussion

• Given a hierarchical model for the data, the risks and average risks for
the different estimators can be readily computed

• We propose using the EOD average loss as a benchmark for specifying
difficulty of inferential problem and comparing estimation methods

• Exchangeable priors make sense when there is no previous information
on problem
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Fin
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