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Settings: Model selection in high dimensions

High-dimensional linear regression

y = X β + z
n × 1 n × p p × 1 n × 1

An important question of great practical value is model selection.

How hard is model selection?

An intuitive answer: It depends on sparsity (as long as signals are
large enough, e.g. beta-min).
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Performance criteria: FDP and TPP

Relevant variables (or signals).

S = {j : βj 6= 0}

Discoveries, or model selected at λ

Ŝ = {j : β̂j(λ) 6= 0}

FDP(λ) :=
#{j : j ∈ Ŝ , βj = 0}

#Ŝ
=

200

100 + 200

TPP(λ) :=
#{j : j ∈ Ŝ , βj 6= 0}

#{j : βj 6= 0}
=

100

300 + 100

true model

estimated model

100 200300
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Folklore theorem of signal strength

When p > n, Lasso is the popular method to do variable selection.

Belief (Some folks, nowadays)

With ‖β‖0 fixed, the stronger all signals are, the better a model
selector (e.g. Lasso) will perform.

Is it really the case?

Hua Wang (Wharton) The Price of Competition June 2, 2020 4 / 29



Folklore theorem of signal strength

When p > n, Lasso is the popular method to do variable selection.

Belief (Some folks, nowadays)

With ‖β‖0 fixed, the stronger all signals are, the better a model
selector (e.g. Lasso) will perform.

Is it really the case?

Hua Wang (Wharton) The Price of Competition June 2, 2020 4 / 29



Folklore theorem of signal strength

When p > n, Lasso is the popular method to do variable selection.

Belief (Some folks, nowadays)

With ‖β‖0 fixed, the stronger all signals are, the better a model
selector (e.g. Lasso) will perform.

Is it really the case?

Hua Wang (Wharton) The Price of Competition June 2, 2020 4 / 29



In which setting does Lasso perform best in?

n = 1000, p = 1000, s = 200, with weak noise σ = 0.01. The structure of
signals:

Setting 1: Strongest.

Setting 2: Strong.

Setting 3: Weak.

Setting 4: Weakest.
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The result...

The tpp and fdp are calculated along Lasso path with λ varies from ∞ to 0.
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Surprisingly...

The tpp and fdp are calculated along Lasso path with λ varies from ∞ to 0.
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Lasso prefers weak signals??

Everything (including sparsity) except the strength of the signals are
the same. The Lasso perform better with weaker signals!

Our explanation: Lasso favors strong signals as we expected,
but it “prefers” signals that are wildly differing with each other.

We term this diverse structure of signals as “Effect Size
Heterogeneity”.

With everything else fixed, Lasso performs the best with the most
heterogeneous signals.

Effect Size Heterogeneity matters!
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Which setting will Lasso perform best in? (Re-visit)

Setting 1: Most Homogeneous

Setting 2: Homogeneous.

Setting 3: Heterogeneous.

Setting 4: Most Heterogeneous.

Hua Wang (Wharton) The Price of Competition June 2, 2020 11 / 29



Theory of Lasso in literature

Belief (Literature1, nowadays (informal))

Given the information of k = ‖β‖0, and the structure of X (n, p, RIP
conditions, etc.), we can understand Lasso (as a model selector) well,
especially if signals are sufficiently large (beta-min condition).

Theorem (W., Yang and Su, 2020 (informal))

The information of (‖β‖0,X ) is not enough, we need to know more about
the inner structure of β.

1e.g. E. Candes, T. Tao 2007; PJ. Bickel, Y. Ritov, AB. Tsybakov 2009;
MJ. Wainwright 2009...
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Main results

Assume

X has iid N (0, 1/n) entries,

σ = 0, i.e. noise zi = 0,

regression coefficients βi are iid from prior Π with EΠ2 <∞ and
P(Π 6= 0) = ε ∈ (0, 1),

n/p → δ ∈ (0,∞).

Then

Theorem (W., Yang and Su, 2020+)

With probability tending to one,

q4(TPP(λ))− 0.001 ≤ FDP(λ) ≤ q5(TPP(λ)) + 0.001

uniformly for all λ, where q4(·) = q4(·; δ, ε) > 0 and
q5(·) = q5(·; δ, ε) < 1 are two deterministic function.
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The Lasso Crescent
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Left is with δ = 0.5, ε = 0.15; Right is with δ = 0.3, ε = 0.15
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The sharpest of the Lasso Crescent

Definition (most favorable prior)

For M > 0 and an integer m > 0, we call the following the (ε,m,M)-prior:

Π4 =



0 w.p. 1− ε
M w.p. ε

m

M2 w.p. ε
m

· · · · · ·
Mm w.p. ε

m
.

Definition (least favorable prior)

For M > 0, we call the following the (ε,M)-prior:

Π∇ =

{
0 w.p. 1− ε
M w.p. ε.

Theorem (Effect Size Heterogeneity Matters!)

The Π5 achieves q5, and Π4 achieves q4, as M,m→∞.
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The Lasso Crescent (Re-visit)
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Remarks on the results

Theorem (W., Yang and Su, 2020+)

With probability tending to one,

q4(TPP(λ))− 0.001 ≤ FDP(λ) ≤ q5(TPP(λ)) + 0.001

for all λ > 0.01, where q4(·) and q5(·) are two deterministic function.
And the Π5 (absolutely homogeneous) gives q5, and Π4 (absolutely
heterogeneous) gives q4.

0.001 can be any small number.

Lower curve q4(·) is first discovered in (W. Su, M. Bogdan,
E. Candès 2017), yet here we first prove it is tight and uniformly
achieveable by some prior.

Approximate message passing (Donoho et al, 2009).
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The first false variable

Let T denotes the number of true variables before the first false variable
(including itself). i.e.

T :=
∥∥∥β̂(λ∗ − 0)

∥∥∥
0

=
∥∥∥β̂(λ∗)

∥∥∥
0

+ 1,

where λ∗ is the first time along the Lasso path when a false variable is
about to be selected:

λ∗ = sup{λ : there exists 1 ≤ i ≤ p such that β̂i (λ) 6= 0, βi = 0}.

Intuitively, the larger T is, the better the performance as a model
selector.
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The most favorable and least favorable prior (Re-visit)

Recall the most favorable and least favorable prior we defined.

Definition (most favorable prior)

For M > 0 and an integer m > 0, we call the following the (ε,m,M)-prior:

Π4 =



0 w.p. 1− ε
M w.p. ε

m

M2 w.p. ε
m

· · · · · ·
Mm w.p. ε

m
.

Definition (least favorable prior)

For M > 0, we call the following the (ε,M)-prior:

Π∇ =

{
0 w.p. 1− ε
M w.p. ε.
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The most favorable and least favorable prior (Re-visit)

Recall the most favorable and least favorable prior we defined. Any
critique? One might argue that the actually signal should be fixed!

Definition (most favorable prior)
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The best T via heterogeneous signal

The following considered a typical realization of most favorable prior.

Proposition (The (fixed) most heterogeneous signal)

Consider fixed signal structure βj = Mk+1−j for 1 ≤ j ≤ k, and βj = 0 for
j > k. When M is sufficiently large, the rank T satisfies:

T ≥ (1 + op(1))
n

2 log p
a.s.

Theorem (The most favorable is the most favorable)

For arbitrary regression coefficients β with sparsity satisfying k ≤ εp, the
rank T of the first false variable selected by the Lasso satisfies

T ≤ (1 + oP(1))
n

2 log p
a.s.
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The homogeneous signal gives early false discovery

Proposition (W. Su 2018)

Consider the fixed signal structure as βj = M for 1 ≤ j ≤ k, and βj = 0
for j > k. The rank T satisfies

logT = (1 + oP(1))

√
2δ log p

ε
.

It is much earlier than that of heterogeneous signal:

e
(1+oP(1))

√
2δ log p

ε � (1 + oP(1))
n

2 log p
,
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Simulation: Rank of the first false discovery by Lasso
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Left: n = 1000, p = 1000, σ = 1, Right: n = 800, p = 1200, σ = 1.
All averaged over 500 replicates.
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Explanation: the price of competition

Well-matched (unselected) signals are the cause for bad performance.

Consider β̂(λ), with support Ŝ ⊂ S . The next variable j 6∈ S will be
falsely selected if it has the largest XT

j (y − X β̂) in absolute value.

XT
j (y − X β̂)

≈ XT
j (y − XβŜ) = XT

j XS\ŜβS\Ŝ ∼ N (0, ‖βS\Ŝ‖
2/n).

When homogeneous, standard deviation is

1/
√
n‖βS\Ŝ‖ ≈

√
k/n sup

j∈S\Ŝ
βj .

When heterogeneous, standard deviation is

1/
√
n‖βS\Ŝ‖ ≈ 1/

√
n sup
j∈S\Ŝ

βj
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βj .

When heterogeneous, standard deviation is

1/
√
n‖βS\Ŝ‖ ≈ 1/
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Reflections on the assumptions

Assume

X has iid N (0, 1/n) entries,

σ = 0, i.e. noise zi = 0,

regression coefficients βi are iid from prior Π with EΠ2 <∞ and
P(Π 6= 0) = ε ∈ (0, 1),

n/p → δ ∈ (0,∞).

Then

Theorem (W., Yang and Su, 2020+)

With probability tending to one,

q4(TPP(λ))− 0.001 ≤ FDP(λ) ≤ q5(TPP(λ)) + 0.001

for all λ > 0.01, where q4(·) = q4(·; δ, ε) > 0 and q5(·) = q5(·; δ, ε) < 1
are two deterministic function.
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The 4 settings (Re-visit)

Setting 1: Most Homogeneous

Setting 2: Homogeneous.

Setting 3: Heterogeneous.

Setting 4: Most Heterogeneous.
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Non-Gaussian design matrix: The same phenomenon
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n = 1000, p = 1000, k = 200, σ = 0. Consider 4 different structure of signals.
Left: Autoregressive design matrix with ρ = 0.5 ;
Right: Bernoulli design matrix with success prob = 0.5
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Real data as design matrix: Still the same phenomenon
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Use the HIV real data.n = 634, p = 463,σ = 0, with 4 different signal structures.
Left: Original HIV data as X design matrix;
Right: perturbed X design matrix with unit Gaussian noise then re-normalize.
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From noiseless to noisy: Still similar phenomenon!

Setting 1: No noise.
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Setting 2: Small noise.
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Setting 3: Moderate Noise.
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Setting 4: Large Noise.
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Take-home messages

Our results: Always

Effect Size Heterogeneity Matters

Perspectives

The TPP-FDP tradeoff curve

The rank of the first false selection

Occurs when

Non-vanishing sparsity ratio

Local orthogonal Gaussian design

Cause

The price of competition of Lasso

Inherent shrinkage of `1-methods

Possible future work:

Quantify its effect.

Some Methodologies?

General design?

The same phenomenon
in other methods?

Thanks! :)
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