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Forecast and observation classes
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Scoring functions apply to deterministic forecasts

The forecast x is evaluated against the observation y using scoring
functions such as

negative Squared Error (SE) S(x, y) = −(x− y)2

negative Absolute Error (AE) S(x, y) = −|x− y|
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Bayes predictors should be used for probilistic
forecasts

For a probabilistic forecast P, decision theory tells us that if the
scoring function S is given, we should issue the Bayes predictor,

x̂ = arg minx EP [S(x, Y )]

as the point forecast, where the expectation is with respect to P.

Squared Error (SE) S(x, y) = −(x− y)2 x̂ = mean(P)

Absolute Error (AE) S(x, y) = −|x− y| x̂ = median(P)
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The basic idea

Assume we have a prediction p ∈ P and an observation o ∈ O
where we wish to measure the skill of the prediction by applying a
function

s : P ×O −→ R

with a higher function value indicating a better skill.

What are good theoretical properties for s?
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General framework without any formulas...

Assume Q is Nature’s distribution of some event y and denote
our forecast for y by P.

For forecast evaluation, we should use performance metrics
that follow the principle

in the long run, we will obtain the optimal performance for P = Q
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Probabilistic forecasts should generally be
evaluated using proper scoring rules

A consistent scoring function is a special case of a proper scoring
rule for probabilistic forecasts

Definition (Murphy and Winkler, 1968)
If F denotes a class of probabilistic forecasts on R, a proper
scoring rule is any function

S : F × R→ R

such that

S(Q,Q) := EQ S(Q, Y ) ≥ EQ S(P, Y ) =: S(P,Q)

for all P,Q ∈ F .
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The class of proper scoring rules is large

S(P, y) = −(mean(P)− y)2

S(P, y) = −|median(P)− y|

Gneiting, T. and Raftery, A.E. (2007): Strictly proper scoring
rules, prediction and estimation. Journal of the American
Statistical Association, 102, 359-178.
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Optimally, forecasts should be probabilistic

All those whose duty it is to issue regular daily forecasts know that
there are times when they feel very confident and other times when
they are doubtful as to coming weather. It seems to me that the
condition of confidence or otherwise forms a very important part of
the prediction.

Cooke (Monthly Weather Review, 1906)

(d) Forecast
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The class of proper scoring rules is large

The perhaps the two most common proper scoring rule is the
continuous ranked probability score (CRPS)

S(P, y) = −EP|X − y|+
1

2
EPEP|X −X ′|

and the log score

S(P, y) = − log(f(y)),

Gneiting, T. and Raftery, A.E. (2007): Strictly proper scoring
rules, prediction and estimation. Journal of the American
Statistical Association, 102, 359-178.
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The different scores behave somewhat differently
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Average scores facilitate comparison across
methods

Assume we have two forecasting methods m = 1, 2.

They issue point forecasts Pmi with observed values yi, at a finite
set of times, locations or instances i = 1, . . . , n

The methods are assessed and ranked by the mean score (our
contribution starts here)

S̄mn =
1

n

n∑
i=1

S(Pmi, yi) for m = 1, 2.
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Average scores facilitate comparison across
methods
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Two observations, two models
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Two observations, two models, result

Model 1 Model 2
CRPS CRPS

Y1 0.0023 0.02346
Y2 4.0486 3.920
mean 2.0255 1.9719
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Other example

Consider a situation with two observations
Yi ∼ Qθi = N(0, σ2i ), i = 1, 2, with σ1 = 0.1 and σ2 = 1.
Assume that we want to evaluate a model which has predictive
distributions Pi = N(0, σ̂2i ) for Yi, using the average of a
proper scoring rule for the two observations.
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Other example

CRPS log(LS)
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Varying scale in practice?
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Example spatial statistics

We will now go through how model evaluation using a scoring rule
is typically done is spatial statistics. We start with the basic setup

Let si, i = 1, . . . , n be a set of, typically irregular, locations.
We have a set of observations {yi}ni=1 at the locations {si}ni=1.
The score of the model, P, is given by s̄ = 1

n

∑n
i=1 S(Pi, yi).
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Realization
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variation of the standard deviation
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Mathematical framework

Definition
If S is a proper scoring rule. If Qσ,Pσ are probability measure
with scaling σ then

S̃(Pσ̂,Qσ, π) =

∫
S
(
Pσ̂(σ),Qσ

)
π(dσ),

is a proper scoring rule

The difference between this scoring rule and regular scoring
rule is that there is no S̄(Pσ̂, y) function. It is a theortical
construction.
However if σi ∼ π and Yi ∼ Qσi then

1

n

n∑
i=1

S (Pσ̂i , Yi)→ S̃(Pσ̂,Qσ, π)
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Defining s̄ mathematically

What affects the shape of π be?

If Y is a Gaussian processes σi (and hence π) is bascially
determined by the distance of the locations, s.
if assume that the observations comes from some point
processes, we can derive the true leave-one-out standard
devations.
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Defining s̄ mathematically

s ∼ PPois(λ)
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Point distribution and π
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Recall the issue

CRPS log(LS)
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locale scale

Definition

Let S be a proper scoring rule and let Qθ = Q[µ,σ] be a probability
measure with location µ and scale σ. Assume that there exist a
constant p ∈ R and a function s(Qθ, r) : F × R2 → R+, such that
for each r ∈ R× R

S(Qθ,Qθ)− S(Qθ+tσr,Qθ) = s(Qθ, r)t
p + o(tp).

Then s is the scale function of S, which is locally scale invariant if
s(Qθ, r) ≡ s(Q, r).
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locale scale function

The scale function of the log score,S(P, y) = log(f(y)), is
locally scale invariant.

The scale function of the CRPS is

s(Qσ, r) = σS(Q1, r),

i.e. the scale function is not locally scale invariant.
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Known issue

The issue of unbalanced predictive distribution is not unknown.
A lot of work has been put of standardizing observations

S(P, y) =
|med(P)− y|√

VP[Y ]

not a proper score.

Previous solutions is to use a reference prediction, using a so
called skill score

Sskill(P, y) =
S(P, y)

S(Pref , y)

here Pref is the reference predictor. However the results will
be determined by the reference measure
An other alternative is to use a weighted CRPS

S(P, y) =

∫
(P(X ≤ x)− I(y ≤ x))2 ω(x)dx

see for Gneiting and Ranjan, 2011.

30 / 36



Known issue

The issue of unbalanced predictive distribution is not unknown.
A lot of work has been put of standardizing observations

S(P, y) =
|med(P)− y|√

VP[Y ]

not a proper score.
Previous solutions is to use a reference prediction, using a so
called skill score

Sskill(P, y) =
S(P, y)

S(Pref , y)

here Pref is the reference predictor. However the results will
be determined by the reference measure

An other alternative is to use a weighted CRPS

S(P, y) =

∫
(P(X ≤ x)− I(y ≤ x))2 ω(x)dx

see for Gneiting and Ranjan, 2011.

30 / 36



Known issue

The issue of unbalanced predictive distribution is not unknown.
A lot of work has been put of standardizing observations

S(P, y) =
|med(P)− y|√

VP[Y ]

not a proper score.
Previous solutions is to use a reference prediction, using a so
called skill score

Sskill(P, y) =
S(P, y)

S(Pref , y)

here Pref is the reference predictor. However the results will
be determined by the reference measure
An other alternative is to use a weighted CRPS

S(P, y) =

∫
(P(X ≤ x)− I(y ≤ x))2 ω(x)dx

see for Gneiting and Ranjan, 2011.
30 / 36



Our idea

Recall the continuous ranked probability score (CRPS) is
given by

S(P, y) = −EP|X − y|+
1

2
EPEP|X −X ′|

We introduce a different scoring rule, which we denote
standardized continuous ranked probability score
(SCRPS):

S(P, y) = − EP|X − y|
EPEP|X −X ′|

− 1

2
log
(
EPEP|X −X ′|

)
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Kernel scores

Theorem (Gneiting and Raftery (2007))
Let P be a Borel probability measure on a Hausdorff space Ω.
Assume that g is a non-negative, continuous negative definite kernel
on Ω× Ω and let P denote the class of Borel probability measures
on Ω such that EP,P [g(X,Y )] <∞. Then the scoring rule

Sg(P, y) :=
1

2
EPEP

[
g(X,X ′)

]
− EP [g(X, y)]

is proper on P.

CRPS is obtained by noting that g(x, y) = |x− y| is a
negative definite kernel.
In fact g(x, y) = |x− y|α, α ∈ (0, 2] is a negative definite
kernel.
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h-function Kernel scores

Theorem

Let g be a non-negative, continuous negative definite kernel on
Ω× Ω, and let P be Borel probability measure on Ω. Let h be a
monotonically increasing concave differentiable function on R+.
Further let P denote the class of Borel probability measures on Ω
s.t EPEP [g(X,X ′)] <∞. Then the scoring rule

Shg (P, y) :=− h
(
EPEP

[
g(X,X ′)

])
− 2h′

(
EPEP

[
g(X,X ′)

]) (
EP [g(X, y)]− EPEP

[
g(X,X ′)

])
is proper on P.

sCRPS is obtained by noting that g(x, y) = |x− y| is a
negative definite kernel, and h(x) = 1

2 log(x) is a
monotonically increasing concave differentiable function.
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Scale function

The scale function of the log score, S(P, y) = − log(f(y)), is
locally scale invariant.
The scale function of the CRPS is

s(Qσ, r) = σS(Q1, r),

i.e. the scale function is not locally scale invariant.
The scale function SCRPS is locally scale invariant!
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Two observations, two models, result

Model 1 Model 2
CRPS log-score sCRPS CRPS log-score sCRPS

Y1 0.0023 -3.6862 -1.5351 0.0234 -1.3836 -0.3838
Y2 4.0486 16.516 4.9338 3.9204 14.154 4.5666
mean 2.0255 6.4149 1.6994 1.9719 6.3853 2.0914
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Other example

CRPS log(LS) SCRPS
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