
Change: Detection,

Estimation, Segmentation

Abstract

The maximum score statistic is used to detect and estimate changes in

the level, slope, or other local feature of a sequence of observations,

and to segment the sequence when there appear to be multiple

changes. Control of false positive errors when observations are

auto-correlated is achieved by using a first order autoregressive model.

True changes in level or slope can lead to badly biased estimates of the

autoregressive parameter and variance, which can result in a loss of

power. Modifications of the natural estimators to deal with this difficulty

are partially successful. Applications to temperature time series,

atmospheric CO2 levels, COVID-19 incidence, excess deaths, copy

number variations, and weather extremes illustrate the general theory.

This is joint research with Xiao Fang.
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A general formulation

Suppose that dYs = (µ(s) +
∑

ξjf(s− tj))ds+ ρYsds+ σdWs, where dW is

Gaussian white noise. Examples of the function f(u) are (i) the indicator that

u > 0, (ii) the positive part function u+, (iii) the indicator of the interval (0, 1]

with unknown scale τ , or (iv) a symmetric probability density function centered

at 0, also with unknown scale τ . The process is observed for s ∈ T , which may

be an interval of the real line or in some applications may be multi-dimensional.

Initially we assume that σ = 1. Estimation of σ and ρ involve special problems

that are discussed later.

The parameters of primary interest are t, ξ, which define the local signal. Let θ

denote the nuisance parameters µ, ρ. (Typically µ(s) is a parametric regression

function.) Given t, the efficient score for testing ξ = 0 is

∂ℓ

∂ξ
(0, θ̂), (1)

where θ̂ are maximum likelihood estimators of θ under the assumption that

ξ = 0.
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Significance Thresholds

By standard likelihood theory (1 is asymptotically distributed as

∂ℓ

∂ξ
− Iξ,θI

−1

θ,θ

∂ℓ

∂θ
, (2)

where I is the Fisher information matrix, partitioned according to the coordinates ξ, θ,

and all expressions are evaluated at t, ξ = 0 and true values of θ. Hence (2) is of the

form

ℓξ(t)−Ψ′(t)Aℓθ. (3)

Here ℓξ(t) = ∂ℓ/∂ξ is a Gaussian process with covariance function denoted by G(s, t),

while Ψ(t)′ = Iξ,θ, ℓθ = ∂ℓ/∂θ is normally distributed with mean 0 and covariance

matrix Iθ,θ , and A = I−1

θ,θ .

Let Σ(s, t) = G(s, t)−Ψ′(s)AΨ(t) denote the covariance function of (3) under the

hypothesis ξ = 0, and put

Zt = [Σ(t, t)]−1/2[ℓξ(t)−Ψ′(t)Aℓθ]. (4)

This representaton provides an approximation for P0{maxZt ≥ b}, which is

independent of ρ.
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Broken Line Regression

Σ(s, t) = E0[ℓξ(s)ℓξ(t)−Ψ(s)′AΨ(t)] is smooth and does not

depend on nuisance parameters α, β, ρ, so by Rice’s formula

P{ max
T0<t<T1

Zt ≥ b} ∼ (ϕ(b)/(2π)1/2)

∫ T1

T0

[E(Ż2
t )]

1/2dt. (5)

For a numerical example, suppose T = 116, b = 4.01 (Annual

average temperature of the Netherlands, 1901-2016). Then the

approximation (5) with T0 = 1 gives the value 0.0009.
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Netherlands Temperature:

1901-2016

0 20 40 60 80 100

0
5

1
0

1
5

Z
[2

:(
m

 -
 1

)]
^
2

– p. 5/19



Multidimensional Example

Consider the excess deaths in Germany, France, and Spain

during the first 15 weeks of 2020. Assuming independence

between weeks, analysis of each country separately indicates a

slope increase after 8 weeks, but the numbers are small and the

results somewhat unclear. Spain is not significant at the 0.05

level, France is, but not at the 0.01 level, and the p-value for

Germany is 0.002. If we also assume independence between

countries and use the norm of a three dimensional process, the

p-value indicating a slope change after 8 weeks is 0.0001.

– p. 6/19



Segmentation

Recall that Z(t, T ) = {ℓξ(t, T )−Ψ′(t, T )AT ℓθ(T )}/σ(t, T ). Let

Q = P{maxm0≤t<T≤m Z(t, T ) > b}.

Let β(t, T ) = {E[ℓξ∂ℓξ/∂T)− .5∂σ2(t,T)/∂T}/σ2(t,T) and

λt = E[(Żt,T)
2]. Then

Q ≈ (2/π)1/2bϕ(b)

m1∑
m0

∫
m0≤t<T−1

[λtβ(t, T )ν[b(2β(t, T )]
1/2]1/2dt.

We can use this approximation for pseudo-sequential segmentation OR for

sequential detection of a slope change.

A similar result can be obtained for maxT0<t<T1
Z(T0, t, T1), which

facilitates searching for change-points over all possible background

intervals (or a random selection of background intervals), (T0, T1).
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NH Anomalies:1850-2019

The Northern Hemisphere average annual temperature

anomalies from the Berkeley Earth web site are a relatively

simple and interesting example, since a plot of the data suggests

there may be multiple slope changes in the 20th century. For

m = 170, b = 3.77, m0 = 5, and ρ set equal to 0.3, the

pseudo-sequential method detects slope changes in the 64th,

94th, and 126th years At the conventional level of 0.05, the

method using all possible backgrounds detects essentially the

same three change-points. A multiple regression model with

these three changes assumed to be true produces R2 = 0.92

and ρ = 0.33
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NH Anomalies: 1880-2019
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A Top Down Procedure to

Detect Slope Changes in Pairs

Consider the statistic maxs<t−h Us,t, where

Us,t = (Vs, Vt)Σ
−1

s,t (Vs, Vt)
′. (6)

and h is a parameter that represents a minimum distance between

changes (usually taken to be 5 or 10). An appropriate threshold may

be determined from the approximation

P{ max
s<t−h

Us,t > b} ∼ [2bϕ(b)/(2π)]

∫
s<t−h

det[E(U̇U̇′)]1/2dsdt. (7)

This search can be iterated. If we assume that in early iterations, only

true positives are detected, then the iterative process does not create a

multiple comparisons issue, since the probability is roughly linear in the

length of the segment searched.
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Examples: Detecting Slope

Changes in Pairs

For the Berkeley Land-Ocean data, the method of detecting

changes in pairs gives essentially the same results as the other

methods. In a few examples it seems to be the method of

choice. For example, the Berkeley Earth web site gives average

annual temperture anomalies for individual European countries,

beginning in 1753. The pseudo-sequential and all possible

backgrounds method often detect one slope increase, in either

about 1880 or about one hundred years later. The method to

detect paired changes often detects two. An example is provided

by the annual anomalies of Switzerland, where positive slope

changes can be detected in the 135th and the 228th years. The

pseudo-sequential method detects only the first of these

changes, although it detects both if it is run backwards. – p. 11/19



Swiss Anomalies: 1753-2012
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COVID-19

Our broken line model can be useful in tracking the incidence of COVID-19.

We consider here Italy for T = 124 days after the first case appeared on

31.01.20 The pseudo-sequential method puts the first slope increase at 20

days, a large slope decrease at 63, and another much smaller increase at 101

days. The method using all possible backgrounds misses the first slope

change, although this is fairly inconsequential for the overall fit, since the slope

at 0 compensates. The best result comes from the method designed to detect

two changes at a time, which puts changes at 36, 58, and 101 days. It also

suggests that there may be a relatively small slope increase at 24 days.

We noted above that the pseudo-sequential method could be used as a

legitimate sequential method. If applied to the China COVID-19 data, which

reported its first cases on 31.12.19, calibrated to allow one expected false

positive in 100 years, with ρ = 0.4, it detects a change after the 27th day, which

it estimates to have occurred on the 22nd.
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COVID-19 in Italy
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Confidence Regions for

Broken Line Regression

Using the Kac-Slepian model process, or equivalently as an

application of LeCam large sample theory, we find that for a

putative change-point t,

max(Z2
u − Z2

t ) ≈ Ż2
t /E(Ż

2
t ). (8)

Hence a 0.9 confidence region for t is the set of all t such that

Z2
t ≥ maxu Z

2
u − χ2

1(.9). Note that this is exactly what “regular”

likelihood theory would suggest for a likelihood ratio statistic with

one degree of freedom.

The result (8) can be used to give an approximation for the local

power to detect a change at τ .
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Example: Central England

Temperature since 1760

Consider the annual average tempertures in central England

since 1760. (See next slide for a plot of the statistic to detect at

least one change, since the series beginning in 1659.) A change

is detected about 1980, but the plot suggests that the

temperature may have begun to increase about 100 years

earlier. A 95% confidence region extends only 10 years the the

right of 1980, but almost 100 years to the left.
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Central England Annual

Temperature Since 1659
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Estimation of σ2 and ρ

When there are signals in the form of change-points, the usual

estimators of σ2 and of ρ can be very badly biased. Using them can

lead to a serious loss of power. If there is a known segment of the data

without local signals, these parameters can be estimated from that part

of the data. If we assume the observations are independent, for some

problems a reasonable estimator of σ2 is
∑

(Yt − Yt−1)
2/(2T ). An

estimator of σ2 that also removes the effect of linear drift would be to

use second differences, although this reduces the effective sample

size. Many of our examples involve time series, where serial

correlation must be regarded a possibility.
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