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The two group model1

The observed test statistics Z1, . . . ,ZK are assumed to be generated
independently from the mixture model

Z ∼ (1− π)g(· | h = 0) + πg(· | h = 1)

where:

h ∼ Bernoulli(π);
π = Probability that the test statistic’s null hypothesis is false.

g(· | h = 1) = The non-null density of Z (if h = 1).

g(· | h = 0) = The null density of Z (if h = 0).

Goal: Based on the observed Z1, . . . ,ZK , to discover as many non-null
hypotheses (hk = 1) as possible, while controlling for false discoveries.

1
Efron, Tibshirani, Storey and Tusher (2001), Empirical Bayes analysis of a microarray experiment.
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The general two group model2

~h = (h1, . . . , hK ) vector of hypotheses states with iid Bernoulli(π)
coordinates.

~Z = (Z1, . . . ,Zk) are sampled from the joint distribution given ~h:

~Z | ~h ∼ g(~z | ~h)

For example, a reasonable model for the test statistics in GWAS
studies is the mutlivariate mixture normal model:

~Z | ~h ∼ N
(
β~h,Σ + τ2 × diag(~h)

)
.

Goal: Based on the observed Z1, . . . ,ZK , to discover as many non-null
hypotheses (hk = 1) as possible, while controlling for false discoveries.

2
Xie, Cai, Mariz, Li (2011), Optimal false discovery rate control for dependent data.
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Notation

We define the decision vector ~D(~z) = (D1(~z), . . . ,DK (~z)), where :

Dk(~z) =

{
1 if reject null hypothesis k ,

0 otherwise .

The number of rejected and falsely rejected null hypotheses are:

R( ~D(~z)) =
K∑

k=1

Dk(~z), V ( ~D(~z)) =
K∑

k=1

Dk(~z)(1− hk).

Popular error rates for the two-group model areStorey, J. (2003), The positive false

discovery rate: A Bayesian interpretation and the q-value.:

pFDR( ~D) : E
(
V

R
| R > 0

)
; mFDR( ~D) :

EV
ER

.

FDR( ~D) : E
(

V

max(R, 1)

)
= pFDR( ~D)Pr(R > 0).
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Goal: optimal policy with false discovery control

We seek to find the ~D that maximizes the expected number of true
discoveries,

max
~D:RK→{0,1}K

E(R − V ) = E(~ht ~D),

subject to
Err( ~D) ≤ α,

where Err( ~D) ∈ {pFDR( ~D),FDR( ~D),mFDR( ~D)}.

The optimal multiple testing (OMT) policy with Err control, OMT-Err, is
denoted by ~D∗.
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Definition of the central statistic for the optimal policies

The locFDR for the ith hypothesis is1

Ti (~z) = Pr(hi = 0 | ~z) =
(1− π)g(~z | hi = 0)

(1− π)g(~z | hi = 0) + πg(~z | hi = 1)
,

where g(~z | hi ) is the joint density of ~z given hypothesis state hi only,
rather than the entire vector ~h.

The marginal locFDR for the ith hypothesis is 2

Tmarg (zi ) = Pr(hi = 0 | zi ).

For the standard (i.i.d) two-group model,

Ti (~z) = Pr(hi = 0 | ~z) = Pr(hi = 0 | zi ) = Tmarg (zi ).

1
Xie, Cai, Mariz, Li (2011), Optimal false discovery rate control for dependent data.

2
Efron, Tibshirani, Storey and Tusher (2001), Empirical Bayes analysis of a microarray experiment.
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The optimal policy with mFDR control

OMT-mFDR is a single step procedure:

threshold the locFDR with a fixed threshold1,

D∗i (~z) = I{Ti (~z) ≤ CmFDR},

where CmFDR is the largest value among all rejection policies of the form
T ≤ t, which guarantees mFDR = α.

1
Xie, Cai, Mariz, Li (2011), Optimal false discovery rate control for dependent data.; Sun, W. and Cai, T. (2007), Oracle

and adaptive compound decision rules for false discovery rate control.
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Main results

For OMT-FDR and OMT-pFDR, the policy is also to reject the
hypotheses with smallest locFDR values.

The threshold is a function of the entire set of test statistics.

We have an efficient algorithm for finding this threshold.
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Outline for the remaining of the talk

1 Solving the optimization problem for Err( ~D) ∈ {pFDR( ~D),FDR( ~D)}
The mathematical solution
An efficient step-down algorithm

2 Numerical comparisons with thousands of hypotheses
Simulations that show: the power increase of the OMT procedures
over their marginal counterparts can be very large; when power is
low, OMT-pFDR has a more attractive policy than OMT-FDR and
makes more discoveries than OMT-mFDR.
Gene expression data analysis

3 Summary and future work

Ruth Heller (TAU) Optimal control of false discovery criteria in the general two-group modelJune, 2020 9 / 26



The objective and constraint for the optimization problem

The joint density of ~z is

P(~z) =
∑
~h

g(~z | ~h)π
~1t~h(1− π)K−

~1t~h.

The objective is linear in ~D:

E(~ht ~D) =

∫
RK

K∑
i=1

Di (~z)(1− Ti (~z))P(~z)d~z ,

The constraint appears nonlinear in ~D :

FDR( ~D) =

∫
RK

K∑
i=1

Di (~z)

~1t ~D(~z)
Ti (~z)P(~z)d~z ≤ α,

pFDR( ~D) =
FDR( ~D)∫

RK I{~1t ~D(~z) > 0}P(~z)d~z
≤ α,
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Challenges in finding OMT-FDR and OMT-pFDR

The OMT solution is the decision function,

~D : RK → {0, 1}K ,

that maximizes the objective while controlling for the constraint.

The challenges seem great:

The constraint appears to be not linear in ~D.

The optimization is over an infinite number of variables.

This is a discrete optimization problem, which can be hard to solve
even in finite dimensional cases.

Ruth Heller (TAU) Optimal control of false discovery criteria in the general two-group modelJune, 2020 11 / 26



Challenges in finding OMT-FDR and OMT-pFDR

The OMT solution is the decision function,

~D : RK → {0, 1}K ,

that maximizes the objective while controlling for the constraint.

The challenges seem great:

The constraint appears to be not linear in ~D.

The optimization is over an infinite number of variables.

This is a discrete optimization problem, which can be hard to solve
even in finite dimensional cases.

Ruth Heller (TAU) Optimal control of false discovery criteria in the general two-group modelJune, 2020 11 / 26



Towards an exact solution: monotonicity and linearity

Theorem: The optimal solution is weakly monotone in the locFDR
values:

Ti (~z) ≥ Tj(~z)⇔ D∗i (~z) ≤ D∗j (~z).

Given weak monotonicity , it turns out the constraints we consider are
linear in ~D.

We shall formalize the OMT problem for finding D̃(~z), where

D̃k(~z) = Dik (~z), k = 1, . . . ,K ,

for the sorting permutation i1, . . . , iK so Ti1(~z) ≤ . . . ≤ TiK (~z).
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The objective and constraint for OMT-FDR and
OMT-pFDR

Let T(1)(~z) ≤ T(2)(~z) ≤ . . . ≤ T(K)(~z) and T̄k−1(~z) =
∑k−1

l=1 T(l)(~z)

k−1 .

The objective is ∫
RK

P(~z)
K∑
i=1

D̃i (~z)(1− T(i)(~z))d~z

The FDR constraint is∫
RK

P(~z)

[
D̃1(~z)T(1)(~z) +

K∑
k=2

D̃i (~z)
1

k

(
T(k)(~z)− T̄k−1(~z)

)]
d~z ≤ α

The pFDR constraint is∫
RK

P(~z)

[
D̃1(~z)(T(1)(~z)− α) +

K∑
k=2

D̃i (~z)
1

k

(
T(k)(~z)− T̄k−1(~z)

)]
d~z ≤ 0
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The linear program

We can put all our OMT problems in generic form:

max
~D:RK→{0,1}K

∫
RK

P(~z)
K∑
i=1

D̃i (~z)ai (~z)d~z

s.t.

∫
RK

P(~z)
K∑
i=1

D̃i (~z)bi (~z)d~z ≤ cErr ,

D̃1(~z) ≥ D̃2(~z) ≥ . . . ≥ D̃K (~z), ∀~z ∈ RK ,

We relax the integer requirement, and end up with an infinite linear
program to find the optimal D̃ : RK → [0, 1]K , which we prove has to be
integer almost everywhere.
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The step-down OMT procedure

1 For µ > 0:

Rk(~z) = ak(~z)− µbk(~z), k = 1, . . . ,K .

D̃µ
1 (~z) = I

{
∪Kl=1

(
l∑

k=1

Rk(~z) > 0

)}

D̃µ
i (~z) = D̃µ

i−1(~z)× I

{
∪Kl=i

(
l∑

k=i

Rk(~z) > 0

)}
, i = 2, . . . ,K ,

2 We seek µ∗ that satisfies∫
RK

P(~z)

(
K∑
i=1

bi (~z)D̃µ∗

i (~z)

)
d~z = cErr .

The optimal solution is D̃∗(~z) = D̃µ∗(~z).
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Numerical comparisons

We compare the performance of the following procedures:

OMT-FDR, OMT-pFDR, OMT-mFDR: the OMT procedure with
FDR, pFDR and mFDR control, respectively.

marg-FDR, marg-pFDR, marg-mFDR: the sub-optimal counterparts
based on the marginal locFDRs.

ind-FDR, ind-pFDR, ind-mFDR: the misspecified counterparts based
on the iid assumption in the two-group model.
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ind-FDR, ind-pFDR, ind-mFDR: the misspecified counterparts based
on the iid assumption in the two-group model.
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Competitors

BH and adaptive BH1, for which the threshold for significance of the
ith largest p-value is iα

K(1−π) instead of the BH threshold iα
K .

est-mFDR2, which first orders the marginal locFDRs,

Tmarg ,(1) ≤ . . . ≤ Tmarg ,(K),

and then rejects the k hypotheses with smallest marginal locFDRs,
where

k = max{i :
1

i

i∑
j=1

Tmarg ,(j) ≤ α}.

1
Benjamini, Y., Krieger, A., and Yekutieli, D. (2006), Adaptive linear step-up procedures that control the false discovery

rate.
2
Sun, W. and Cai, T. (2007), Oracle and adaptive compound decision rules for false discovery rate control
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The general two-group model

A K = 5000 dimensional multivariate mixture normal model:

h1, . . . , hK is an iid sample from Bernoulli(0.3).

Given ~h, the distribution of the test statistics is

~Z | ~h ∼ N
(
−1.5~h,Σ + 0.01× diag(~h)

)
.

where Σ is a block diagonal matrix with blocks
1 ρb ρb ρb ρb
ρb 1 ρb ρb ρb
ρb ρb 1 ρb ρb
ρb ρb ρb 1 ρb
ρb ρb ρb ρb 1


and ρb ∈ {0.1, 0.5} for block b ∈ {1, . . . , 1000}.
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The locFDRs computational complexity

~Tmarg requires O(K ) calculations.

Ti (~z) requires O(2K ) calculations with a very naive implementation

that considers all possible allocations of the vector ~h.

- e.g., g(~z | hi = 0) =
∑

~h∈{0,1}K :hi=0 π
~1t~h(1− π)K−

~1t~h−1g(~z | ~h).

In our setting, ~T (~z) requires O(K × B × 2B) calculations for
K = 5000 consisting of 1000 independent blocks of size B = 5
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Results for K = 5000 z-scores generated from the
multivariate mixture normal model.

ρb = 0.1 ρb ∈ {0.1, 0.5}
FDR pFDR mFDR TP FDR pFDR mFDR TP

OMT-FDR .049 .159 .162 169 .050 .055 .059 263
marg-FDR .050 .176 .179 167 .051 .178 .181 169
ind-FDR .052 .177 .180 173 .056 .179 .183 185

OMT-pFDR .051 .051 .147 166 .050 .050 .058 263
marg-pFDR .050 .050 .163 158 .049 .049 .164 154
ind-pFDR .052 .052 .163 163 .053 .053 .166 168

OMT-mFDR .050 .050 .050 130 .050 .050 .050 261
marg-mFDR .050 .050 .050 121 .050 .050 .050 121
ind-mFDR .050 .050 .050 120 .050 .050 .050 121

est-mFDR .050 .050 .050 120 .050 .050 .050 120
adaptive BH .050 .050 .051 122 .050 .050 .052 122
BH .035 .035 .037 73 .035 .035 .037 72
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Conclusions from the numerical comparisons

The power advantage of the OMT procedures over their marginal
counterparts can be very large, and is increasing as the dependency
increases.

The policies that incorrectly assumes ~z comes from the two-group
model for FDR and pFDR control can have levels above nominal, but
for mFDR control the nominal level is maintained. The inflation
increases as the dependency increases.

The power gain of FDR and pFDR policies over the respective mFDR
policy is large when the overall power is low, and it is due to high
variation in V

max(R,1) which is manifest in the high mFDR levels. The

variation in V
max(R,1) is greater with FDR control than with pFDR

control policies.
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Application to gene expression studies

For K = 15270 genes, we have the meta-analysis p-values of four studies
of ulcerative colitis for up-regulation, and separately for down-regulation,
of the genes 1.

ID pval.DOWNregulated pval.UPregulated

1 A1BG 0.99545 0.36632
2 A1CF 0.00000 1.00000
3 A2M 0.99925 0.01869
· · · · · · · · · · · ·

15270 ZZZ3 0.64801 0.91332

1Shah, Guo, Wendelsdorf, Lu, Sparks, Tsang (2016), A crowdsourcing approach for
reusing and meta analyzing gene expression data
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Re-analysis methods

Assuming the p-values are generated from the two group model, we
want to compare OMT-FDR and OMT-pFDR with the competitors
est-mFDR, adaptive BH and BH.

We need to estimate the mixture components of the two group model
for this purpose, and we do this using the R package mixfdr available
from CRAN 1.

The marginal locFDRs and optimal policy are computed assuming the
observed test statistics are generated from the estimated two group
model.

OMT-FDR and OMT-pFDR coincide for both up-regulation and
down-regulation.

1
Muralidharan, O. (2010), An empirical Bayes mixture method for effect size and false discovery rate estimation
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Results

est-FDR est-mFDR adapt-BH BH

# up regulated 2409 2305 2264 2211
# up regulated among 2276 2219 2189 2145
confirmed discoveries

# down regulated 2023 1897 1837 1775
# down regulated among 1815 1731 1699 1671
confirmed discoveries
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Summary

We have a complete mathematical treatment of OMT procedures for
pFDR or FDR control in the general two-group model.

Other error measures that fit into the mathematical framework
include FDX = P(FDP > γ), FWER = P(V > 0), E(V ).

For linear objective functions (not just the expected number of true
discoveries!), we offer an efficient algorithm for computing the
optimal rejection region:

for independent test statistics.

for the multivariate mixture model when the covariance structure has a
block dependence structure.

We showed the large potential gain from incorporating dependence.

Paper available at https://arxiv.org/abs/1902.00892.
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Future work

We expect the OMT policies to be useful in genomic applications
where the dependence is known. Specifically, for GWAS, the
covariance is a known banded matrix. We plan to provide efficient
computational tools for the general two-group model with this type of
local dependence.

.

Extend the formulation to control more than one error rate, e.g., seek
the OMT policy which controls the FDR as well as E(V ), thus
potentially creating a powerful policy with meaningful control over
the false discovery proportion in expectation without allowing an
unattractive policy which tends to reject many or very few hypotheses.
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