
Optimal and maximin procedures for multiple
testing problems

Saharon Rosset
Tel Aviv University

With: Ruth Heller, Amichai Painsky, Ehud Aharoni.

arxiv.org/abs/1804.10256
arxiv.org/abs/1902.00892

Saharon RossetTel Aviv University Optimal multiple testing



Two normal means, FWER control

Bonferroni-Holm Closed testing using Stouffer 49
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Optimal multiple test (OMT) for two false nulls:
θ0 = −0.5 θ0 = −1 θ0 = −2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

u2

u 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

u2

u 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

u2

u 1

Saharon RossetTel Aviv University Optimal multiple testing



Hypothesis testing basics

Given some data X we want to test:

H0 : X ∼ F0

HA : X ∼ FA

Assume F0 and FA have density f0, fa respectively, then
Neyman-Pearson (NP) Lemma says that a most powerful (MP) test
rejects H0 at x iff fa(x)/f0(x) ≥ c .

Different formulation in terms of p-value: We transform using the
distribution of the likelihood ratio to get:

H0 : U = H(X ) ∼ U(0, 1)

HA : U ∼ G

and G has density g(u) that is a decreasing function. Now NP says
MP test at level α rejects H0 iff U ≤ α.

Saharon RossetTel Aviv University Optimal multiple testing



Hypothesis testing basics

Given some data X we want to test:

H0 : X ∼ F0

HA : X ∼ FA

Assume F0 and FA have density f0, fa respectively, then
Neyman-Pearson (NP) Lemma says that a most powerful (MP) test
rejects H0 at x iff fa(x)/f0(x) ≥ c .

Different formulation in terms of p-value: We transform using the
distribution of the likelihood ratio to get:

H0 : U = H(X ) ∼ U(0, 1)

HA : U ∼ G

and G has density g(u) that is a decreasing function. Now NP says
MP test at level α rejects H0 iff U ≤ α.

Saharon RossetTel Aviv University Optimal multiple testing



Most powerful tests as an optimization problem

We can think of the MP problem as an optimization problem on an
infinite set of variables:

max
D:[0,1]→{0,1}

∫ 1

0
D(u)g(u)du

s.t.
∫ 1

0
D(u)du ≤ α

This (integer, infinite) problem happens to have the simple solution
structure implied by the NP Lemma (basically a continuous
knapsack problem), because it has just one constraint.
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Moving to multiple testing setup

In a multiple testing problem, we are given K pairs of hypotheses:

H0k : Uk ∼ U(0, 1)

HAk : Uk ∼ G

(assume for now all alternatives are the same).

In the paper we deal with (exchangeable) dependence, here we also
assume Uj ,Uk are independent for j 6= k .

We seek to design good tests that give high power while
controlling type-I error (level).
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Some notation

h ∈ {0, 1}K is the true state of all hypotheses:
hk = 1 ⇔ HAk holds.

D : [0, 1]K → {0, 1}K is the decision function:
Rejects H0k at u ∈ [0, 1]K ⇔ Dk(u) = 1.

R(D)(u) =
∑K

k=1 D(u) is the number of rejected nulls at u
according to D.
V (D)(u) =

∑K
k=1,hk=0 D(u) is the number of type-I errors at u

according to D.

We only consider symmetric D functions: σ(D(u)) = D(σ(u)) for
any permutation σ.
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Generalizations of power and level

The best known notions of type-I error for multiple testing:

FWER = P(V > 0) = P
(
(1− h)tD(U) > 0

)
,

FDR = E
V

R
= E

(1− h)tD(U)

1tD(U)
.

Popular generalized notions of power we consider:

Average power for L false nulls:

ΠL(D) =
1
L

∫
[0,1]K

(
L∑

l=1

Dl(u)

)
L∏

l=1

g(ul)du

Minimal power for K false nulls:

Πany (D) =

∫
[0,1]K

I

{
K∑
l=1

Dl(u) > 0

}
K∏
l=1

g(ul)du
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Resulting optimization problem for strong control

max
D:[0,1]K→{0,1}K

Π(D)

S.t. ErrL(D) ≤ α, 0 ≤ L < K ,

where Π is the chosen power measure, Err is the chosen type-I error
measure, and we have K and not 2K − 1 constraints because of the
symmetry

“Minor” problems:
D defines a continuum of variables
The problem is integer
The problem is not linear in D
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Monotonicity and linearity

Lemma
The optimal solution is always weakly monotone:

ui ≤ uj ⇒ D∗i (u) ≥ D∗j (u).

Given weak monotonicity, it turns out FDRL, FWERL, ΠL, Πany

can all be written as linear functionals of D, for example:

Πany (D) = K !

∫
Q
D1(u)

K∏
l=1

g(ul)du

FWERL(D) = L!(K − L)!

∫
Q

∑
k

Dk(u)
∑

i∈(KL),īmin=k

∏
l∈i

g(ul)du,

where Q =
{
u ∈ [0, 1]K : u1 ≤ u2 ≤ . . . ≤ uK

}
is the ordered

“corner”, and i enumerates over possible combinations of L false
nulls.
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Relaxing to linear program

We found out everything is linear, next we relax the integer
requirement, and end up with an infinite linear program:

maxD:Q→[0,1]K

∫
Q

(
K∑
i=1

ai (u)Di (u)

)
du (1)

s.t.
∫
Q

(
K∑
i=1

bL,i (u)Di (u)

)
du ≤ α , 0 ≤ L < K .

0 ≤ DK (u) ≤ . . . ≤ D1(u) ≤ 1 , ∀u ∈ Q,

where ai , i = 1, . . . ,K and bL,i , i = 1, . . . ,K , L = 0, . . . ,K − 1
are fixed non-negative integrable functions over Q.

Remaining problems:
How do we solve this infinite linear program?
We still need an integer solution!
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Optimality conditions for the infinite linear program

Using the theory of Euler-Lagrange, we can derive the following
“KKT-like” necessary conditions for optimal solution to our
problem, in addition to the (primal feasibility) original constraints:

ai (u)−
K−1∑
L=0

µLbL,i (u)− λi (u) + λi+1(u) = 0, i = 1, . . . ,K . (2)

µL

{∫
Q

(
K∑
i=1

bL,i (u)Di (u)

)
du − α

}
= 0, L = 0, . . . ,K − 1 (3)

λK+1(u)DK (u) = 0 ∀u ∈ Q (4)
λj(u)(Dj−1(u)− Dj(u)) = 0 , ∀u ∈ Q, j = 2, . . . ,K (5)
λ1(u)(D1(u)− 1) = 0 , ∀u ∈ Q., (6)

µL and λj(u) are non-negative Lagrange multipliers
condition (2) is the stationarity condition
conditions (3–6) are complementary slackness conditions.
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Solving the infinite linear program

Lemma

Under non-redundancy assumptions, a solution that complies with
the conditions (2)–(6) is integer almost everywhere on [0, 1]K .

Lemma

A solution that complies with these necessary conditions is in fact
optimal.

The proof is based on convex duality arguments, which hold for
infinite dimensional problems.
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Main theoretical result

Putting all of our lemmas together we conclude:

Theorem
Under mild regularity conditions, for any choice of power function
from Πany ,ΠL and error measure FWER or FDR, the optimal
procedure can be explicitly found by finding an integer solution
which is feasible for Problem (1) and complies with the optimality
conditions.

This in fact leads to an algorithm for finding the optimal solution,
as follows.
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Main ideas of the resulting algorithm

Investigating the optimality conditions we find that if we know the
value of K Lagrange multipliers µ = (µ0, ...µK−1) we can infer the
solution Dµ. If Dµ is feasible, then it is optimal.

Specifically an algorithm requires:
1 An approach for searching the space (R+ ∪ {0})K of possible
µ vectors for a solution µ∗.

2 An approach for efficiently calculating the coefficients bLi in
our integrals.

3 An approach for integration (exact or numerical), to calculate∫
Q

(
K∑
i=1

bL,i (u)Dµ
i (u)

)
du

for any given µ vector and asses the error relative to the
optimality conditions.

This is very computationally demanding, but possible for low K .
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Example: Controlling FWER for K = 3 independent normal
means

Given Xk ∼ N(θ, 1) , k = 1, 2, 3, testing:

H0k : θ = 0
HAk : θ = θA < 0

while (strongly) controlling FWER and seeking to maximize either
Π3 or Πany

Standard solution: Bonferroni-Holm

u1 = 0.000016 u1 = 0.0166
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FWER OMT solutions for Π3

u1 = 0.000016 u1 = 0.0166 u1 = 0.044 u1 = 0.054
θA = −0.5:
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Example: Controlling FDR for K = 3 independent normal
means

Given Xk ∼ N(θ, 1) , k = 1, 2, 3, testing:

H0k : θ = 0
HAk : θ = θA < 0

while (strongly) controlling FDR and seeking to maximize Π3

Standard solution: (MA)BH (Solari & Goeman 17)

u1 = 0.000016 u1 = 0.0173 u1 = 0.0438
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FDR OMT solutions for Π3

u1 = 0.000016 u1 = 0.0166 u1 = 0.0438 u1 = 0.106
θA = −0.35:
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FWER, FDR OMT power gains for Πθ,3

FWER
θA Bonferroni-Holm OMT policy
-0.5 0.0547 0.111
-1.33 0.241 0.363
-2 0.530 0.633

FDR
θA Benjamini-Hochberg MABH OMT policy

-0.35 0.042 0.045 0.150
-0.5 0.059 0.064 0.196
-2 0.574 0.633 0.799
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Summary so far

We can in principle find optimal procedures for strong FDR or
FWER control with simple, fixed alternative for any K , but
computations are hard
In practice we demonstrate K = 3

Next steps:
Deal with complex alternatives — find maximin solutions
Design approximations for large K
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Beyond simple hypotheses: a maximin formulation

Maximize minimal power among all alternatives of interest
θ ∈ ΘB ⊆ (0,−∞), requiring validity for all one-sided alternatives:

max
D:[0,1]K→{0,1}K

min
θ∈ΘB

Πθ(D) (7)

s.t. Errh,θ(D) ≤ α , ∀h ∈ {0, 1}K , θ ∈ (0,−∞)K .
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Maximin solution

Theorem

Assume that we can find two values θO ∈ ΘB , θA ≤ 0 such that:
1 D∗(θO , θA) is the optimal solution of a single objective

problem at θO .
2 The power of this solution at other values is higher:

ΠθKO
(D∗(θO , θA)) ≤ Πθ (D∗(θO , θA)) ∀θ ∈ ΘK

B .

Then D∗(θO , θA) is the solution to the maximin problem (7).

This is a sufficient condition — we don’t know when it holds, but
when it does we can confirm optimality.
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Two normal means, FWER control, ΘB = {θ ≤ θ0}

θ0 = −0.5 θ0 = −1 θ0 = −2
Simple optimal:
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Power comparison

Strong FWER control Strong FDR control
θ0 Bonf.-Holm OMT maximin MABH OMT maximin
-0.5 0.076 0.118 0.099 0.086 0.174 0.129
-1 0.184 0.251 0.237 0.214 0.326 0.296
-2 0.581 0.637 0.636 0.660 0.734 0.733
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Application to systematic reviews in the Cochrane library

For subgroup analyses with K = 3 subgroups, here is a summary of
discoveries made by each rejection policy, for the 1321 outcomes
from the Cochrane database that met our selection criteria1.

maximin Holm closed-Stouffer
Avg. no. discoveries 1.097 1.089 1.040

% at least one discovery 0.620 0.594 0.548

1We considered all the updated reviews up to 2017 in all domains. For subgroup analysis, we
considered outcomes that satisfied the following criteria: the outcome was a comparison of means; the
number of participants in each comparison group was more than ten; there were at least three subgroups.
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Adding weak monotonicity constraint

A major point of concern (or interest?) is the surprising shape of
the rejection regions and especially maximin

In our view, this is a property of the problem and error measure,
not the solution

Still, we also solve the problem with a weak monotonicity
requirement, that decreasing p-values u increases the rejection
vector D(u)

Turns out, this can be solved with similar tools, a bit more complex
— essentially adding a solution of an isotonic regression problem
within the Lagrange multipliers search
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Comparing results without and with weak monotonicity

Optimal Weakly monotone
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Figure: Top row: maximin for FWER control with ΘB = (−∞,−1].
Bottom row: OMT for FDR control with θ = −1. The power loss is
minimal: from 0.237 to 0.231 in the first row, and from 0.326 to 0.325 in
the second.
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Discussion: Computation and Approximations

We currently solve problems up to K = 3

We believe with improved computation we can solve K = 10 or
possibly K = 100

But for K in thousands as in modern domains like genetics need a
different approach

In Ruth Heller’s talk we discuss the two-group model, where we can
apply our thinking to solve such large problems
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Conclusions

Attaining high power while controlling type-I error is the
primary criterion for designing good tests. This issue becomes
more critical as the number of tests increases

This leads to optimal multiple testing problems that are
inherently (hard) optimization problems

We demonstrate that they can be solved, leading to novel and
more powerful procedures than existing methods

We encounter computational and theoretical challenges

The maximin approach and the two-group model demonstrate
two distinctly different directions that we can take to
overcome challenges and produce practically useful tools
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Thanks!

saharon@tauex.tau.ac.il

arxiv.org/abs/1804.10256
arxiv.org/abs/1902.00892
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