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CTBN

Continuous time Bayesian networks

X(t) multivariate Markov jump process on state X =
∏

v∈V Xv where:
(V, E) is a directed graph with possible cycles describing
dependence structure.
Xv space of possible values at node v, assumed to be discrete.

Intensity matrix Q given by conditional intensities

Q(x, x′) =

{
Qv(xpa(v), xv, xv′) if x−v = x−v′ and xv 6= xv′ for some v;
0 if x−v 6= x−v′ for all v,

where pa(v) denotes the set of parents of node v in the graph (V, E).
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CTBN

Probability densities of CTBNs
Density can be expressed as a product of conditional densities

p(X) = ν (x(0))
∏
v∈V

p(Xv‖Xpa(v)),

with

p(Xv‖Xpa(v)) =

{ ∏
c∈Xpa(v)

∏
a∈Xv

∏
a′∈Xv

a′ 6=a

Qv(c; a, a′)nT
v (c; a,a′)

}
{ ∏

c∈Xpa(v)

∏
a∈Xv

exp
[
−Qv(c; a)tT

v (c; a)
]}

,

nT
v (c; a, a′) be a number of those jumps from a to a′ at node v,

which occurred when the parent nodes configuration was c.
tT
v (c; a) be the length of time when the state of node v was a and

the configuration of the parents was c.
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Structure learning

Based on observation we want to reconstruct the structure of graph
and further estimate conditional intensities matrices. We consider
two cases

1 Full trajectory is observed.
2 We observe trajectories only in fixed time points tobs

1 , . . . , tobs
k

with some noise.

Blazej Miasojedow (UW) 05 June 2020 8 / 24



Structure learning for CTBN’s

Structure learning

Connections with standard Bayesian networks

Bayesian networks: consist from inpdependent observations, but
graph needs to be acyclic.
CTBN: dependent observation (Markovian process), no
restrictions for graph.
Easier to formulate thev structure learning problem for CTBNs.
No restrictions are required.
Analysis of methods is more demanding for CTBNs. We need to
deal with Markov Jump Processes.
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Structure learning

Existing approaches

Search and score strategy, based on full Bayesian model
Nodelman (2007); Acerbi et al. (2014).
Mean field approximation combined with variational inference
Linzner and Koeppl (2018).
Estimating parameters for full graph in Bayesian setting and
removing edges based on marginal posterior probabilities
Linzner et al. (2019).
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Structure learning

Full observations

Full observation
Idea:

1 Start with full model.
2 Express

log(Qv(c, a, a′)) = βTZ(c),

β is vector of unknown parameter and Z(c) is a vector of dummy
variables decoding configuration of all nodes except v.

3 Estimate sparse β by Lasso

arg min
β

{−`(β) + λ‖β‖1} ,

where ` is a likelihood given by

`(β) =
∑
w∈V

∑
c∈X−w

∑
s∈Xw

∑
s′∈Xw

s′ 6=s

nw(c; s, s′)βw
s,s′Zw(c)−tw(c; s) exp(βw

s,s′
TZw(c))

(1)

Blazej Miasojedow (UW) 05 June 2020 11 / 24



Structure learning for CTBN’s

Structure learning
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Example

We consider a binary CTBN with three nodes A,B and C. For the
node A we define the function ZA as

ZA(b, c) = [1, I(b = 1), I(c = 1)]>

and β is defined as follows

β =
(
βA

0,1, β
A
1,0, β

B
0,1, β

B
1,0, β

C
0,1, β

C
1,0
)>

.

With slight abuse of notation, the vector βA
0,1 is given as

βA
0,1 =

[
βA

0,1(1), βA
0,1(B), βA

0,1(C)
]>
.
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Connection between parametrization and structure

In our setting identifying edges in the graph is equivalent to finding
non-zero elements of β

βw
0,1(u) 6= 0 or βw

1,0(u) 6= 0 ⇔ the edge u→ w exists.
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Notation and assumptions

d0 = |supp(β)|, S = supp(β), C(ξ) = {θ : |θSC |1 ≤ ξ|θS|1} for
some ξ > 1, βmin = mink |βk|

F(ξ) = inf
0 6=θ∈C(ξ,S)

∑
w∈V

∑
s′ 6=s

∑
cSw∈XSw

exp
(
βw>

s,s′ Zw(cSw , 0)
) [
θw>

s,s′ Zw(cSw , 0)
]2

|θS|1|θ|∞
(2)

We assume that F(ξ) > 0 for some ξ > 1
∆ = maxs 6=s′ Q(s, s′)
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Main result

Theorem 1 (Shpak,Rejchel,BM 2020)
Let ε ∈ (0, 1), ξ > 1 be arbitrary. Suppose that F(ξ) defined in (2) is positive and

T >
36
[
(max

w∈V
|Sw|+ 1) log 2 + log (d||ν||2/ε)

]
min

w∈V,s∈Xw,cSw∈XSw
π2(s, cSw , 0)ρ1

. (3)

We also assume that T∆ ≥ 2 and

2
ξ + 1
ξ − 1

log(K/ε)

√
∆

T
≤ λ ≤

2ζF(ξ)

e(ξ + 1)|S|
, (4)

where K = 2(2 + e2)d(d− 1) and ζ = min
w∈V,s∈Xw,cSw∈XSw

π(s, cSw , 0)/2.

Then with probability at least 1− 2ε we have

|β̂ − β|∞ ≤
2eξλ

(ξ + 1)ζF(ξ)
. (5)
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Consistency of model selection

Corollary 2
Let R denote the right-hand side of the inequality (5). Consider the
thresholded Lasso estimator with the set of nonzero coordinates Ŝ. The set Ŝ
contains only those coefficients of the Lasso estimator , which are larger in
the absolute value than a pre-specified threshold δ. If βmin/2 > δ ≥ R, then

P
(

Ŝ = S
)
≥ 1− 2ε .
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Remarks

If we forget about constants, ∆ and parameters of MJP, i.e.
ν, π, ρ1, ζ etc. in assumptions. Then the estimation error is small,
if we have that

T ≥ log2(d/ε)|S|2

F2(ξ)

Conditions (3) and (4) depend also on parameters of MJP.
Precisely, they depend on the stationary distribution π and the
spectral gap ρ1, which in general decrease exponentially with d.
However, in some specific cases, it can be proved that they
decrease polynomially.
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CIF vs. F
The cone invertibility factor is defined as

F̄(ξ) = inf
0 6=θ∈C(ξ,S)

θ′∇2`(β)θ

|θS|1|θ|∞
.

and

θT∇2`(β)θ =
1
T

∑
w∈V

∑
c∈X−w

∑
s′ 6=s

tw(c; s)
(
θw>

s,s′ Zw(c)
)2

exp(βw>
s,s′ Zw(c)). (6)

CIF implies “strong convexity” restricted to cone.
We use classical strategy of proof where positive CIF is required.
In our case CIF contains a sum of exponentially many r.v.. So we
introduce F to overcome this difficulty.
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Lower bounds on F

Lemma 3
For every ξ > 1 we have with high probablity

F̄(ξ) ≥ ζF(ξ) ≥ ζ

ξAβ
, (7)

where
Aβ =

∑
w∈V

∑
s′ 6=s

∑
j:βw

s,s′ (j) 6=0

exp
(
−βw

s,s′(j)
)
. (8)
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Sketch of proof

We use classical technique where it is required to bound
‖∇`(β)‖∞ and F̄(ξ) with high probability.
To bound ‖∇`(β)‖∞ we derive new concentration inequality for
occupation time of MJPs.
To bound F̄(ξ) we use Lezaud inequality.
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Details of implementation

1 Compute lasso estimator on a grid (Estimators for different
nodes could be computed in parallel)

β̂w
s,s′(i) = arg min

θw
s,s′

{
`w

s,s′(θ
w
s,s′) + λi|θw

s,s′ |1
}
,

2 Choose λ by BIC:

i∗ = arg min
1≤i≤100

{
n`w

s,s′(β̂
w
s,s′(i)) + log(n)‖β̂w

s,s′(i)‖0

}
,

3 Choose threshold δ by GIC:

δ∗ = arg min
δ∈Ω

{
n`w

s,s′(β̂
w,δ
s,s′ ) + log(2d(d− 1))‖β̂w,δ

s,s′ ‖0

}
,
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Chain example
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Partial observations
For the partial observation we can analogously define the lasso
estimator, but with likelihood of form

`(β) = − log

(∫
g(y|x)pβ(x)

)
dx ,

where g is distribution of observed y and pβ is density of hidden
trajectory of CTBN.

To solve the lasso problem we can use generalized EM algorithm.
The expectation step could be done via numerical integration
(Nodelman (2007), Linzner and Koeppl (2018),Linzner et al.
(2019))
or by MCMC algorithm Rao and Teh (2012)
The theoretical analysis of estimator would me much more
challenging, because ` is no convex anymore.
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Thank you!
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