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Program

I The Gaussian scale mixing, the logistic and
Kolmogorov-Smirnov distributions, and the anonymous
physicist question

I The quasi logistic distributions

I The quasi Kolmogorov Smirnov distributions

I More about Gaussian scale mixing in several dimensions

I The L2 approximation
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Foreword

This is an elementary lecture on the unfashoniable distribution
theory: but you can pick exercises from it for your undergraduate
classes....
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Gaussian scale mixing

If Z ∼ N(0, In) is independent of the positive definite random
matrix V then
the distribution of X =

√
VZ is called a Gaussian scaled

mixing distribution.

Example: n = 1 and V ∼ 1
2δ1 + 1

2δ4
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But the law of V can be continuous

Example n = 1
V ∼ e−v/21(0,∞)(v)dv/2 is an exponential distribution of mean 2

independent of Z ∼ N(0, 1) implies that X =
√
VZ has the

bilateral density e−|x |/2. Indeed

E(e itX ) = E(E(e it
√
VZ |V )) = E(e−t

2V 2/2) =
1

1 + t2
.
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After all, this is just a multiplicative deconvolution ?

For n = 1
2 log |X | = logZ 2 + logV

which means that if we wonder if the law of X is a Gaussian scale
mixing we have just to check whether or not its Mellin transform
MX 2(s) divided by the Mellin transform 2sΓ(1 + s

2) of Z 2 is the
Mellin transform MV (s) of some random variable V ?
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The beautiful example of Edwards-Mallows- Monahan-
Stefanski

These statisticians have observed in 1973 and 1990 that if

Pr(X < x) =
1

1 + e−x

has the logistic distribution then this law is a Gaussian mixing,
with Y =

√
V having the Kolmogorov-Smirnov distribution

Pr(Y < y) = 2
∞∑
n=1

(−1)n−1e−2n
2y2

(Think of this distribution function of V : the fact that it is
increasing is not obvious!)
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The anonymous physicist

On a mathematical site he has asked for the probability measure
µa,b(dv) such that for 0 < a < b∫ ∞

0
e−svµa,bdv =

b sinh a
√
s

a sinh b
√
s

Since Kolmolmogorov Smirnov is more or less µ0,b what about a
little generalization on Edwards- Mallows- Monahan- Stefanski?
And a little generalization of the logistic distribution?
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The quasi logistic distributions

They are densities proportional to

1

2(cosh x + θ)
=

ex

e2x + 2θex + 1

with θ > −1. The case θ = 1 is the logistic one. The shape of the
curve ressembles to the normal curve, but the asymptotic is rather
e−|x | rather than e−x

2/2. For our purposes of the day, we
concentrate to the case

−1 < θ = cos a < 1

with 0 < a < π. The next theorem lists their properties (however
the case θ > 1 remains interesting in itself).
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Quasi logistic laws of parameter θ = cos a: properties

Theorem 1: Let 0 < a < π and s ∈ (−1, 1).

1. We have ∫ ∞
−∞

esxdx

2(cosh x + cos a)
=

π

sinπs
× sin as

sin a
. (1)

2. In particular if

X ∼ sin a

a

dx

2(cosh x + cos a)

has the quasi logistic distribution of parameter θ = cos a then
for real t we have

E(esX ) =
πs

sinπs
× sin as

as
, E(e itx) =

πt

sinhπt
× sinh at

at
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Other properties of the QL laws 1

1. The variance of X ∼ −X and the fourth moment are

E(X 2) =
1

3
(π2 − a2), E(X 4) =

1

15
(π2 − a2)(7π2 − 3a2).

2. The distribution function of X is

F (x) = Pr(X < x) = 1− 1

a
Arc cotan

ex + cos a

sin a

and the quantile function Q(p) defined for p ∈ (0, 1) by
F (Q(p)) = p is equal to

Q(p) = log
sin pa

sin(1− p)a
.
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Other properties of the QL laws 2

X is infinitely divisible. In particular its Lévy measure is

ν(dx) =
e−|x |/a − e−|x |/π

(1− e−|x |/π)(1− e−|x |/a)
× dx

|x |

with
∫
R min(1, |x |)ν(dx) =∞.
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Other properties of the QL laws 3

1. If (εn)n ≥ 1 are Bernoulli iid rv such that Pr(εn) = a2/π2 and
if (Yn)n ≥ 1 are iid rv with bilateral exponential density
e−|y |/2 then

X ∼
∞∑
n=1

εn
Yn

n
.

2. The Mellin transform of |X | is for s > 0

E(|X |s) = 2Γ(1 + s)
∞∑
n=1

(−1)n−1
sin na

na
× 1

ns
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Comments about the Laplace transform

∫ ∞
−∞

esxdx

2(cosh x + cos a)
=

∫ ∞
0

zsdz

z2 + 2 cos az + 1
=

πs

sinπs
× sin as

as

is not so easy, the simplest proof uses the residues calculus along
the contour

R

iR

γε

γR

l1

l2
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Comments about the factorization 1

sinπz

πz
=
∞∏
n=1

(
1− z2

n2

)
,

sinhπz

πz
=
∞∏
n=1

(
1 +

z2

n2

)
. (2)

For 0 < a < b the second formula of (2) one leads to:

b sinhπat

a sinhπbt
=
∞∏
n=1

(
1 + a2t2

n2

1 + b2t2

n2

)
(3)
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Comments about the factorization 2

Let us consider the simple identity for 0 < a < b :

1 + a2t2

1 + b2t2
=

a2

b2
+ (1− a2

b2
)

1

1 + b2t2
(4)

If Y ∼ e−|y |dy/2 is a bilateral exponential random variable, we
have E(e itY ) = 1/(1 + t2). If ε is a Bernoulli random variable such
that

Pr(ε = 0) = 1− Pr(ε = 1) = a2/b2

and if ε and Y are independent, then
E(e itbεY ) = (1 + a2t2)/(1 + b2t2). From this observation and from
(3) we get that if (εn)n≥1 and (Yn)n≥1 are independent with
εn ∼ ε and Yn ∼ Y we have that

X = b
∞∑
n=1

εn
Yn

n

satisfies E(e itX ) = b sinh at
a sinh bt .
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Comments about the Mellin transform

If we assume that s > 0 we have

E(|X |s) =
sin a

a

∫ ∞
0

x s

cosh x + cos a
dx

=
2 sin a

a

∫ ∞
0

x se−x

1 + 2e−x cos a + e−2x
dx

=
1

ia

∫ ∞
0

x s
(

1

1 + e−x−ia
− 1

1 + e−x+ia

)
dx

=
1

ia

∞∑
n=1

(−1)n−1(e ina − e−ina)

∫ ∞
0

e−nxx sdx

.

E(|X |s) = 2Γ(1 + s)
∞∑
n=1

(−1)n−1
sin na

na
× 1

ns
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Now the quasi Kolmogorov Smirnov laws

Theorem 2. Given 0 < a < b, we denote q = a/b. There exists a
probability µa,b(dv) on (0,∞) such that∫ ∞

0
e−svµa,b(dv) =

b sinh(a
√
s)

a sinh(b
√
s)
. (5)

More specifically
If (εn)∞n=1 and (Wn)∞n=1 are Bernoulli and exponential independent
random variables:

Pr(εn = 0) = 1− Pr(εn = 1) = q2, Wn ∼ e−w1(0,∞)(w)dw

we denote V ∼
∑∞

n=1 εn
Wn
n2
. Then π2

b2
V ∼ µa,b and V ∼ µπq,π.
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The density of the quasi Kolmogorov Smirnov laws

The density of V is

g(v) =
2

πq

∞∑
n=1

(−1)n−1 sin(nπq)× ne−n
2v

In particular

E((
√
V )s) = 2Γ(1 +

s

2
)
∞∑
n=1

(−1)n−1
sin(nπq)

nπq
× 1

ns
(6)
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and crucial corollaries

Corollary 1. Let V ∼ µa√2,π√2 be independent of Z ∼ N(0, 1).

Then X = Z
√
V is quasi logistic with parameter θ = cos a and has

a scale mixing Gaussian distribution.

Proof. If we take V ∼ µa,b then for t ∈ R we have

E(e itZ
√
V ) = E(E(e itZ

√
V |V )) = E(e−t

2V /2) =
b sinh(at/

√
2)

a sinh(bt/
√

2)

In particular replacing (a, b) by (a
√

2, π
√

2) and using the first
Theorem we get the result.

Corollary 2. Suppose that V ∼ µπq,π and Y =
√
V with a QKS

distribution. Then

Pr(Y > y) = 2
∞∑
n=1

(−1)n−1
sin(πqn)

πqn
e−n

2y2
.

q = 0 gives the classical Kolmogorov Smirnov distribution.
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Proof of the existence of µa,b

Proof of Theorem 3.1. We use

b sinh a
√
s

a sinh b
√
s

=
∞∏
n=1

(
1 + a2s

π2n2

1 + b2s
π2n2

)
. (7)

With the definition of (εn,Wn) we write

1 + a2s
π2n2

1 + b2s
π2n2

= q2 +
(
1− q2

) 1

1 + b2s
π2n2

= E(e−s
b2

π2n2
εnWn) (8)

From the convergence theorem of Laplace transforms the existence
of µa,b is proved.
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Calculation of the density of µa,b, first proof

We first give the Mellin transform of V and we will get the density
of V from its Mellin transform. We have seen in part 1) that
V ∼ µπq,π and that

E(e−sV ) =
1

q

sinhπq
√
s

sinhπ
√
s
.

We now use part 2) of Theorem 2.1, by considering Xθ with
θ = cosπq, and the Gaussian random variable Z ∼ N(0, 1)
independent of V :

E(e itZ
√
2V ) = E(E(e itZ

√
2V )|V ) = E(e−t

2V ) =
1

q

sinhπqt

sinhπt
= E(e itXθ)

which implies Xθ = Z
√

2V .
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Calculation of the density of µa,b, continuation of the first
proof

Recall that Z 2 is χ2
1 distributed: this implies that

E(Z 2s) = 2s
Γ(s + 1

2)
√
π

, E(|Z |s) = 2s/2
Γ(1+s

2 )
√
π

.

Recall also the duplication formula

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z)

that we are going to apply to z = (1 + s)/2. For convenience we
write

K (s) = 2
∞∑
n=1

(−1)n−1
sinhπnq

πnq

1

ns
.

From the Mellin transform obtained in Theorem 1 we have
E(|X |s) = Γ(1 + s)K (s).
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Calculation of the density of µa,b, end of the first proof

Since |X | = |Z |
√

2V we obtain

E((
√
V )s) =

E(|X |s)

2s/2E(|Z |s)

= Γ(1 + s)K (s)× 2−s/2
√
π

2s/2Γ(1+s
2 )

= Γ(1 +
s

2
)K (s),

this proves (6). From this we can write

E(V s) = 2Γ(1 + s)
∞∑
n=1

(−1)n−1
sinhπnq

πnq

1

n2s

= 2
∞∑
n=1

(−1)n−1
sinhπnq

πnq

∫ ∞
0

n2e−n
2
v sdv .

We have proved that E(V s) =
∫∞
0 v sg(v)dv which implies that g

is the density of V .
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Calculation of the density of µa,b, second proof

Step 1: Decomposition in partial fractions of a rational fraction:
if c1, . . . , cN , . . . are positive distinct numbers then

1∏N
n=1(1 + cns)

=
N∑

n=1

1∏
j 6=n,1≤j≤N(1− cj

cn
)
× 1

1 + cns
(9)
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Approximation g (N) of the density g of µa,b

Step 2: We now compute an approximation of the density g of
V . To do this we introduce the partial sums

VN =
N∑

n=1

εnWn

n2

the density g (N)(v) of VN and the density g
(N)
ε (v) of VN

conditioned by ε = (εn)n≥1. We now apply (9) to the particular
case cn = εn/n

2 and we obtain

g (N)
ε (v) =

N∑
n=1

εn∏
j 6=n,1≤j≤N(1− εjn2

j2
)
× n2e−n

2v (10)

Since ε = (εn)1≤n≤N takes only a finite number of values we can

claim that g (N)(v) = E(g
(N)
ε (v)).
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Approximation : continuation

E

(
1

1− εj n
2

j2

)
=

1− a2n2

b2j2

1− n2

j2

.

With the following notation

u
(N)
q (n) = (1− q2)

∏
j 6=n,1≤j≤N

1− q2n2

j2

1− n2

j2

and using the independence of the εj ’s we have

g (N)(v) =
N∑

n=1

u
(N)
q (n)× n2e−n

2v .
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An elegant limit

Step 3: We compute limN→∞ u
(N)
q (n). Numerator:

lim
N→∞

∏
j 6=n,1≤j≤N

(1− q2n2

j2
) =

1

πqn
× sin(πqn).

Denominator: to compute limN→∞
∏

j 6=n,1≤j≤N(1− n2

j2
) we use the

following elementary calculation∏
j 6=n

(1− z2

j2
) =

sinπz

πz
× 1

1− z2

n2

→z→n
(−1)n−1

2
.

leading to lim
N→∞

u
(N)
q (n) = (−1)n−1

2

πqn
sin(πqn) .

With uniform convergence we arrive at

g(v) =
2

πq

∞∑
n=1

(−1)n+1 sin(πnq)× ne−n
2v (11)
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Another topic on deconvolution in several dimensions.

In one dimension we have seen that X =
√
VZ implies that the

law of V > 0 is known if the law of X is known. This is not true
anymore for dimension ≥ 2.

Theorem 3. Let A be a random nonsingular square matrix of
order n, independent of Z ∈ Rn \ {0} and such that uZ ∼ Z for all
u ∈ O(n). Let V = AA∗. Then the following holds.

1. AZ ∼ V 1/2Z , that is, if we replace V 1/2 by any generalized
square root A of V , the distribution of AZ remains the same.

2. If AZ ∼ Z then Pr(V = In) = 1. In other terms, AZ ∼ Z if
and only if Pr(AA∗ = In) = 1, i.e A ∈ O(n) almost surely.

Proof. Let us skip the proof of part 1), no new ideas for it.
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AZ ∼ Z ⇔ A is almost surely orthogonal

To prove 2., consider also ϕ(s) = E(e i〈s,Z〉). Since uZ ∼ Z for all
u ∈ O(n) there exists a real function g defined on [0,∞) such that
ϕ(s) = g(‖s‖2). Since Z ∼ AZ we can write

g(‖s‖2) = E(g(s∗Vs)) . (12)

Next, observe that if R ≥ 0 is independent of Z = (Z1, . . . ,Zn)
and if Z1R ∼ Z1 then Pr(R = 1) = 1 : just check the
characteristic functions of the log.
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Continuation of AZ ∼ Z ⇔ A orthogonal

Now denote V = (Vij)1≤i ,j≤n and apply the above observation to
R =

√
V11 by taking s = (t, 0, . . . , 0) in (12). We obtain

E(e itZ1) = ϕ((t, 0, . . . , 0)) = g(t2) = E(g(t2V11)) = E(e it
√
V11Z1)

which implies Z1 ∼ V11Z1 and Pr(V11 = 1) = 1. Similarly
Pr(Vii = 1) = 1 for all i = 2, · · · , n.
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End of AZ ∼ Z ⇔ A orthogonal

Finally, we consider R =
√

1 + V12 and we take
s = (t/

√
2, t/
√

2, . . . , 0) in (12). Using the fact that
(Z1 + Z2)/

√
2 ∼ Z1 we write

E(e itZ1) = E(e it(Z1+Z2)/
√
2) = ϕ((t/

√
2, t/
√

2, . . . , 0))

= E(g(
1

2
t2(V11 + V22 + 2V12)) = E(g(t2(1 + V12))

= E(e itZ1
√
1+V12)

and we get Pr(V12 = 0) = 1. Similarly Pr(Vij = 0) = 1 for i 6= j
and finally Pr(V = In) = 1 as desired. �
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Non identifiability in dimension ≥ 2

It is not difficult to choose a gamma distribution for the scalar
V−11 and a Wishart distribution for the positive definite matrix
V−1 to get that √

VZ ∼
√
V1Z
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Approximation of the density of X by a Gaussian density

In some practical applications, the distribution of V is not very
well known, and it is interesting to replace the density f of
X =

√
VZ by the density of an ordinary normal distribution

N(0, t0). The L2(R) distance is well adapted to this problem.
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A list of facts about the L2 approximation

Theorem 4.
1) f ∈ L2(R) if and only if

E
(

1√
V + V1

)
<∞

when V and V1 are independent with the same distribution µ.
2) If f ∈ L2(R), there exists a unique t0 = t0(µ) > 0 which
minimizes

t 7→ IV (t) =

∫ ∞
−∞

[
f (x)− 1√

2πt
e−

x2

2t

]2
dx .
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Continuation of facts about the L2 approximation

3)The scalar y0 = 1/t0 the unique positive solution of the equation∫ ∞
0

µ(dv)

(1 + vy)3/2
=

1

23/2
. (13)

4) The value of IV (t0) is

IV (t0) =

√
2

π

(
E
(

1√
V + V1

)
− 2E

(
1√

V + t0

)
+

1√
2t0

)
5 ) Finally t0 ≤ E(V ).
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