Shrinkage estimation of mean for complex
multivariate normal distribution with unknown
covariance when p > n

Yoshiko KONNO
collaborated with Satomi SEITA

Japan Women’s University
Video Remote Presentation

Mathematical Methods of Modern Statistics 2

15-19 June 2020 1/16



Bl Preliminaries : Notaion and setup of Problem
m Notaion
m Problem
m The Moore-Penrose generalized inverse

B Some results

B Remark to the results : difference between real and complex
cases

B Summary of talk and references

2/16



Preliminaries : Notaion and setup of Problem

Notaion
Notaion
Notaion

(1) Let n, p € N such that min(n, p) > 2.

(2) For a matrix A with complex entries, A* stands for a complex
transpose conjugate of A.

(3) A p x p matrix C is Hermitian if C = C*. Herm™ (p, C)
stands for the set of all positive definite Hermitian matrices.

(4) Let Z, a CP-values random vector, follow a multivariate
complex normal distritution with a mean vector 8 € CP and a
covariance matrxi £ € Herm™ (p, C), i.e., Z ~ CNp(0, X).

(5) Z and S are independently distributed.

(6) A p x p semi-positive definite Hermitian matrix S(not
necessarily nonsingular) follow a complex Wishart distribution
with the degrees of freedom n and a scale matirx X, i.e.,

S ~ CWp(n, X).

(7) @ = (2, S) is an estimator for 6.

(8) E[-] stants for the expectation with respect to the joint
distribution of (Z, S).
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Preliminaries : Notaion and setup of Problem

Notaion
Notaion
Notaion

El When the covariance matrix X is unknow and a sample size n
is smaller than the dimension of the mean vextor, we consider
a problem of estimating the unknown mean vector 6 based on
observation (Z, S) under an invariant loss function.

HE This setup is a complex analogue of the problem of estimating
mean vector of a multivariate real normal distribution,
consider by Chételat and Wells (Ann. Statist., 2012).
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Preliminaries : Notaion and setup of Problem

Notaion
Notaion
Notaion

An invariant loss function and its risk function
(1) Aloss function is given by

L0, 0X)=(6-06)"T1(0-0). (1)
(2) The risk function is denoted by R(6, 8| £) = E[L (6, 6] X)].

Comparision of estimators
An estimator 65 is better than another estimator 8 if
R(6, 6:1X) < R(H, 11 X) for V(6, X) € CP x Herm™ (p, C),
and
R(60, 611 o) < R(6o, 611 o) for A(fo, o) € CPxHerm™ (p, C).
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Preliminaries : Notaion and setup of Problem

Notaion
Notaion
Notaion

Note that S is nonsingular if n > p and singular if p > n. We focus
on the situation of p > n, i.e., the case that S is singular. To derive
a shrinkage estimator, we use the Moore-Penrose inverse of S.

Definition of the Moore-Penrose generalized inverse

For an m x n complex matrix A, n x m complex matirx A" is
Moore-Pensrose generalized inverse of S if following conditions
(i)~(iv) are satisfied:

(i) AATA = A;

(i) ATAAT = At (reflective condition);

(iii) (AAT)* = AAT (minimum least squared condition);

(iv) (ATA)* = ATA (minimum norm condition).

Remark | For any m x n matrices A, Moore-Penrose generalized
inverse of A exists uniquely.
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First note that the maximum likelihood estimator of @ is 90 =2
which is minimax with respect to the loss function (1).

Following the idea due to Chételat and Wells (Ann. Statist., 2012),
we consider a class of estimators below. We consider the following
class of estimators

Baranchik-like estimators

For bounded and differentiable functions r : [0, co) — (0, c0), we
define Baranchik-like estimators as

b, = (lp— L’f)ssf)z (2)

r(F)
Ps.Z + (1 - T)Psz,

where I, is a p-th identity matrix, F = Z*S7Z, Ps = SS' and
Ps. = I, — SS'.
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Since X is positive-definite, Note that P(F > 0) = 1.

Ps = SST and Ps. = I, — SS' are projections to the
space spanned by the columns of S and the orthogonally

complementant to its space, respectively.
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Theorem 1

Let min(n, p) > 2, n # p. If the function r in (2) satisfies the
following conditions

2(min(n, p) - 1)

n+ p —2min(n, p) +2
(i) ris nondecreasing;

(y]osr<

(iii) r’, the derivative of r, is bounded,
the estimators (2) is minimax.
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Idea of Proof.

We proved it almost in the same way as that in Chételat and
Wells (Ann. Statist., 2012). There are three ingredients to prove
the result:

El Stein’s identity for the multivariate complex normal,

K Haff and Stein’s identity for nonsingular complex Wishart
distribution (see Konno(2009, JMVA)),

E Derivative to the Moore-Penrose inverse.
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Some results

Example: the James-Stein like estimators

Corollary 1. the James-Stein estimator

—1
Letp > n>2andput r = "—+2 Then the conditions (i)~(ii)

in the main theorem are satisfied.
Then the James-Stein-like estimator is given by

dus —(I P ss*)z
st = lp — —————
i (n-p+2)F
p-1
=(lp—SST)Z+(1——)SSTZ
(n-p+2)F

is better than 6.
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Corollary 2. the James-Stein estimator

1
Letn>p >2andputr= p—+2 Then the conditions (i)~(iii)

in the main theorem are satisfied and the James-Stein estimator is
given by
p-1

OysL = () - —8 —
Jot (p (n-p+2)F

)z; F=2s"2, (3)

is better than 6.
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Some results

Further improvement over the Baranchik-like estimators 9,

For a real number b, let by = max(b, 0). Consider the estimator
in the following:

Ory = (I - SSN)Z + (1 - @) ss'z (4)
F s

Theorem 2
Let min(n, p) > 2. If

R(6, 6,]1X) < co and P(8,4 # 6,) > 0

for V(6, ) € CP x Herm™ (p), then the estimator 6, is better
than 6.
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Some results

Two examples: An improvement over

the Baranchik-like estimators 8,

Corollary. 3

When n > p > 2, the positive-part estimator
9 (1 P
s+ = |1 - ————=
A (n-p+2)F
estimator 6ys.

) Z is better than the James-Stein
+

Corollary. 4
When p > n > 2, the postive-part estimator

o n-1

(7] =I—SSTZ+(1——
ust+ = (lp ) (P_"+2)F

the James-Stein-like estimator 6,g; .

) SS7Z is better than
+
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Remark to the results : difference between real and complex case

Real case

Let min(n, p) > 3. Let X ~ RNp(0, X) and S ~ RWy(n, X)
independently. If the following three conditions (i) ~ (iii) are satisfied,
estimators 8, = (I — 5) —~SS") X are better than B = X.

o 2(min(n, p)- 2) d b ded
o< r< Prp—2min(n p)33 (ii) r is nondecreasing; (iii) r’ is bounded,

where r: [0, c0) = (0, o0) and F = X7STX > 0.

Complex case

Letmin(n, p) > 2. Let Z ~ CNp(6, ) and S ~ CWp(n, X),
independently. If the following three conditoins (i) ~ (iii) are satisfied,
estimators 8, = (I, — e 222 8S7)Z are better than 8, = Z.

. 2(min(n, p)— 1)
0<r< T p—2min(np) i3 (i) r is nondecreasing; (iii) r’ is bounded,
where r : [0, o0) = (0, ) and F = Z*S7Z > 0.
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Summary of talk and references

| Summary of the talk |

El We proposed Baranchik-type shrinkage estimators for a
complex mean vector of the multivariate complex normal
distributions when the sample size n is smaller that the
dimension of mean vector p.

H Minimaxity is proved via using the integration-by-parts
formulae, so-caleed Stein’s identity for a complex normal
distribution and Haff-Stein’s identity for nonsingular complex
Wishart distributions

E We proved that the positive-part estimator works well.
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