
. . . . . .

Preliminaries：Notaion and setup of Problem
Some results

Remark to the results : difference between real and complex cases
Summary of talk and references

Shrinkage estimation of mean for complex
multivariate normal distribution with unknown

covariance when p > n

Yoshiko KONNO
collaborated with Satomi SEITA

Japan Women’s University

Video Remote Presentation

Mathematical Methods of Modern Statistics 2

15–19 June 2020 1 / 16



. . . . . .

Preliminaries：Notaion and setup of Problem
Some results

Remark to the results : difference between real and complex cases
Summary of talk and references

1 Preliminaries：Notaion and setup of Problem
Notaion
Problem
The Moore-Penrose generalized inverse

2 Some results

2 Remark to the results : difference between real and complex
cases

2 Summary of talk and references

2 / 16



. . . . . .

Preliminaries：Notaion and setup of Problem
Some results

Remark to the results : difference between real and complex cases
Summary of talk and references

Notaion
Notaion
Notaion

(1) Let n, p ∈ N such that min(n, p) ≥ 2.
(2) For a matrix A with complex entries, A∗ stands for a complex

transpose conjugate of A .
(3) A p × p matrix C is Hermitian if C = C∗. Herm+(p, C)

stands for the set of all positive definite Hermitian matrices.
(4) Let Z , a Cp-values random vector, follow a multivariate

complex normal distritution with a mean vector θ ∈ Cp and a
covariance matrxi Σ ∈ Herm+(p, C), i.e., Z ∼ CNp(θ, Σ).

(5) Z and S are independently distributed.
(6) A p × p semi-positive definite Hermitian matrix S(not

necessarily nonsingular) follow a complex Wishart distribution
with the degrees of freedom n and a scale matirx Σ, i.e.,
S ∼ CWp(n, Σ).

(7) θ̂ = θ̂(Z , S) is an estimator for θ.
(8) E[ · ] stants for the expectation with respect to the joint

distribution of (Z , S).
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Notaion
Notaion
Notaion

1 When the covariance matrix Σ is unknow and a sample size n
is smaller than the dimension of the mean vextor, we consider
a problem of estimating the unknown mean vector θ based on
observation (Z , S) under an invariant loss function.

2 This setup is a complex analogue of the problem of estimating
mean vector of a multivariate real normal distribution,
consider by Chételat and Wells (Ann. Statist., 2012).
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Notaion
Notaion
Notaion

An invariant loss function and its risk function

(1) A loss function is given by

L(θ, θ̂|Σ) = (θ̂ − θ)∗Σ−1(θ̂ − θ). (1)

(2) The risk function is denoted by R(θ, θ̂|Σ) = E[L(θ, θ̂|Σ)].

Comparision of estimators

An estimator θ̂1 is better than another estimator θ̂2 if

R(θ, θ̂1|Σ) ≤ R(θ, θ̂1|Σ) for ∀(θ, Σ) ∈ Cp × Herm+(p, C),

and

R(θ0, θ̂1|Σ0) < R(θ0, θ̂1|Σ0) for ∃(θ0, Σ0) ∈ Cp×Herm+(p, C).
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Notaion
Notaion
Notaion

Note that S is nonsingular if n ≥ p and singular if p > n. We focus
on the situation of p > n, i.e., the case that S is singular. To derive
a shrinkage estimator, we use the Moore-Penrose inverse of S .

Definition of the Moore-Penrose generalized inverse

For an m × n complex matrix A , n × m complex matirx A† is
Moore-Pensrose generalized inverse of S if following conditions
(i)∼(iv) are satisfied:
(i) AA†A = A ;
(ii) A†AA† = A† (reflective condition);
(iii) (AA†)∗ = AA† (minimum least squared condition);
(iv) (A†A)∗ = A†A (minimum norm condition).

Remark For any m × n matrices A , Moore-Penrose generalized
inverse of A exists uniquely.
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First note that the maximum likelihood estimator of θ is θ̂0 = Z
which is minimax with respect to the loss function (1).
Following the idea due to Chételat and Wells (Ann. Statist., 2012),
we consider a class of estimators below. We consider the following
class of estimators

Baranchik-like estimators

For bounded and differentiable functions r : [0, ∞) → (0, ∞), we
define Baranchik-like estimators as

θ̂r =

(
Ip −

r(F)

F
SS†

)
Z (2)

= PS⊥Z +

(
1 −

r(F)

F

)
PSZ ,

where Ip is a p-th identity matrix, F = Z∗S†Z , PS = SS† and
PS⊥ = Ip − SS†.
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Remark Since Σ is positive-definite, Note that P(F > 0) = 1.
Remark PS = SS† and PS⊥ = Ip − SS† are projections to the

space spanned by the columns of S and the orthogonally
complementant to its space, respectively.
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Theorem 1

Let min(n, p) ≥ 2, n , p. If the function r in (2) satisfies the
following conditions

(i) ] 0 ≤ r ≤
2(min(n, p) − 1)

n + p − 2 min(n, p) + 2
;

(ii) r is nondecreasing;

(iii) r′, the derivative of r, is bounded,

the estimators (2) is minimax.
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Idea of Proof.
We proved it almost in the same way as that in Chételat and
Wells (Ann. Statist., 2012). There are three ingredients to prove
the result:

1 Stein’s identity for the multivariate complex normal,

2 Haff and Stein’s identity for nonsingular complex Wishart
distribution (see Konno(2009, JMVA)),

3 Derivative to the Moore-Penrose inverse.
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Example: the James-Stein like estimators

Corollary 1. the James-Stein estimator

Let p > n ≥ 2 and put r =
n − 1

p − n + 2
. Then the conditions (i)∼(iii)

in the main theorem are satisfied.
Then the James-Stein-like estimator is given by

θ̂JSL =

(
Ip −

p − 1

(n − p + 2)F
SS†

)
Z

= (Ip − SS†)Z +

(
1 −

p − 1

(n − p + 2)F

)
SS†Z

is better than θ̂0.
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Corollary 2. the James-Stein estimator

Let n > p ≥ 2 and put r =
p − 1

n − p + 2
. Then the conditions (i)∼(iii)

in the main theorem are satisfied and the James-Stein estimator is
given by

θ̂JSL =

(
Ip −

p − 1

(n − p + 2)F

)
Z; F = Z∗S−1Z , (3)

is better than θ̂0.
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Further improvement over the Baranchik-like estimators θ̂r

For a real number b , let b+ = max(b , 0). Consider the estimator
in the following:

θ̂r+ = (Ip − SS†)Z +

(
1 −

r(F)

F

)
+

SS†Z (4)

Theorem 2

Let min(n, p) ≥ 2. If

R(θ, θ̂r |Σ) < ∞ and P(θ̂r+ , θ̂r) > 0

for ∀(θ, Σ) ∈ Cp × Herm+(p), then the estimator θ̂r+ is better
than θ̂r .
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Two examples: An improvement over
the Baranchik-like estimators θ̂r

Corollary. 3

When n > p ≥ 2, the positive-part estimator

θ̂JS+ =

(
1 −

p − 1

(n − p + 2)F

)
+

Z is better than the James-Stein

estimator θ̂JS .

Corollary. 4

When p > n ≥ 2, the postive-part estimator

θ̂JSL+ = (Ip − SS†)Z +

(
1 − n − 1

(p − n + 2)F

)
+

SS†Z is better than

the James-Stein-like estimator θ̂JSL .
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Real case

Let min(n, p) ≥ 3. Let X ∼ RNp(θ, Σ) and S ∼ RWp(n, Σ)
independently. If the following three conditions (i) ∼ (iii) are satisfied,
estimators θ̂r = (Ip −

r(F)
F SS†)X are better than θ̂0 = X .

(i) 0 < r < 2(min(n, p)−2)
n+p−2min(n, p)+3 ; (ii) r is nondecreasing; (iii) r′ is bounded,

where r : [0, ∞) → (0, ∞) and F = XT S†X > 0.

Complex case

Let min(n, p) ≥ 2. Let Z ∼ CNp(θ, Σ) and S ∼ CWp(n, Σ),
independently. If the following three conditoins (i) ∼ (iii) are satisfied,
estimators θ̂r = (Ip −

r(F)
F SS†)Z are better than θ̂0 = Z .

(i) 0 < r < 2(min(n, p)−1)
n+p−2min(n, p)+2 ; (ii) r is nondecreasing; (iii) r′ is bounded,

where r : [0, ∞) → (0, ∞) and F = Z∗S†Z > 0.
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Summary of the talk

1 We proposed Baranchik-type shrinkage estimators for a
complex mean vector of the multivariate complex normal
distributions when the sample size n is smaller that the
dimension of mean vector p.

2 Minimaxity is proved via using the integration-by-parts
formulae, so-caleed Stein’s identity for a complex normal
distribution and Haff-Stein’s identity for nonsingular complex
Wishart distributions

3 We proved that the positive-part estimator works well.
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