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Cholesky structure : a generalization of Fill-in free

property of a sparse matrix with respect to the Cholesky

decomposition

−→
Exact calculation for Gaussian Selection model associ-

ated to decomposable graph with symmetry of vertex

permutation

Plan:

§1. Cholesky structure

§2. Colored graphical model

§3. Gaussian selection model with a quasi-Cholesky

structure
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§1. Cholesky structure.
Pn := {x ∈ Sym(n,R) |x is positive definite },
hn :=

{
T = (Tij) ∈ Mat(n,R) |Tij = 0 (i < j)

}
,

Hn := {T ∈ hn |Tii > 0 (i = 1, . . . , n) }.
Fact. One has a bijection Hn 3 T 7→ T tT ∈ Pn.
In other words,

∀x ∈ Pn ∃1Tx ∈ Hn s.t. x = Tx
tTx (Cholesky decomposition).

When x is sparse, Tx is sometimes sparse, too.

For example, if x =


x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

 ∈ P4,

then Tx is of the form


T11 0 0 0
T21 T22 0 0
0 T32 T33 0
0 0 T43 T44

.
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If x =


x11 x21 0 0 x51
x21 x22 x32 0 0
0 x32 x33 x43 0
0 0 x43 x44 x54

x51 0 0 x54 x55

 ∈ P5, then Tx is

of the form


T11 0 0 0 0
T21 T22 0 0 0
0 T32 T33 0 0
0 0 T43 T44 0

T51 T52 T53 T54 T55

.

We have two fill-ins at T52 and T53.
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Let Z1 be a vector subspace of Sym(5,R) consisting of

x =


x11 x21 0 0 x51
x21 x22 x32 0 0
0 x32 x33 x43 0
0 0 x43 x44 x54

x51 0 0 x54 x55

, and consider a subspace

of h5 spanned by Tx with x ∈ Z1∩P5. Then we see that

dim spanR {Tx |x ∈ Z1 ∩ P5 } = dimZ1 + 2.

On the other hand, if Z2 ⊂ Sym(4,R) is the space of

x =


x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

, then

dim spanR {Tx |x ∈ Z2 ∩ P4 } = dimZ2.
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Definition 1. Let Z be a vector subspace of Sym(n,R)

such that In ∈ Z. We say that Z has a Cholesky struc-

ture if

dim span {Tx |x ∈ Z ∩ Pn } = dimZ.

For x ∈ Sym(n,R), define x
∨
∈ hn by (x

∨
)ij :=


0 (i < j),

xii/2 (i = j),

xij (i > j),

and
∧
x := t(x

∨
). Then x = x

∨
+

∧
x. Let Z

∨
denote the

space
{
x
∨
|x ∈ Z

}
⊂ hn. If In ∈ Z, then Z

∨
equals the

tangent space of {Tx |x ∈ Z ∩ Pn } ⊂ Hn at In, so that

Z
∨

⊂ span {Tx |x ∈ Z ∩ Pn }.
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Theorem 2. Let Z be a vector subspace of Sym(n,R)
such that In ∈ Z. Then the following are all equivalent:
(i) Z has a Cholesky structure.
(ii) span {Tx |x ∈ Z ∩ Pn } = Z

∨
.

(iii) ∀x ∈ Z x
∨
∧
x ∈ Z.

(iv) One has a bijection Z
∨
∩Hn 3 T 7→ T tT ∈ Z ∩ Pn.

(i) ⇔ (ii) is obvious, (ii) ⇒ (iii) is easy, and (iv) ⇒ (ii)
is trivial. A crucial part is (iii) ⇒ (iv).

For x, y ∈ Sym(n,R), define x � y := 2(x
∨
∧
y + y

∨
∧
x) ∈ Sym(n,R).

Then x � In = In � x = x, and (iii) is equivalent to
Z � Z ⊂ Z i.e. ∀x, y ∈ Z x � y ∈ Z.

Temporally, we say that Z ⊂ Sym(n,R) is a Cholesky
algebra if In ∈ Z and Z � Z ⊂ Z.
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Let Z ⊂ Sym(n,R) be a Cholesky algebra and W ⊂
Mat(n,m,R) a subspace such that

u ∈ W ⇒ utu ∈ Z.

Then

E(Z;W) :=

{(
cIm tu
u x

)
| c ∈ R, u ∈ W, x ∈ Z

}
⊂ Sym(m + n,R)

is a Cholesky algebra because(
(c/2)Im 0

u x
∨

)(
(c/2)Im tu

0
∧
x

)
=

(c2/4)Im ctu/2

cu/2 x
∨
∧
x + u tu

 ∈ E(Z,W).

Starting from one-dimensional algebra RIn ⊂ Sym(n,R),

we obtain Cholesky algebras by repetition of this exten-

sion procedure.
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For example, let Z be the set of symmetric matrices of

the form 
c1 0 a 0
0 c1 0 a
a 0 c2 b
0 a b c3


Setting W1 := RI2 and W2 := R, we have

Z = E(E(R;W2);W1).

We say that a Cholesky algebra Z is standard if Z =

RIn or Z = E(E(· · · (E(RIs;Wr−1); · · · );W2);W1) with

appropriate vector spaces W1,W2, . . . ,Wr−1.
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Theorem 3. Any Cholesky algebra is isomorphic to a
standard one, and the isomorphism is given by an ap-
propriate permutation of rows and columns.

For example, the Cholesky algebra Z of matrices
a b 0 0
b c 0 0
0 0 a b
0 0 b d


is isomorphic to the Cholesky algebra Z ′ of matrices
a 0 b 0
0 a 0 b
b 0 c 0
0 b 0 d

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



a b 0 0
b c 0 0
0 0 a b
0 0 b d




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


by the permutation (23) =

(
1 2 3 4
1 3 2 4

)
.
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The crucial part of Theorem 2 (i.e. (iii) ⇒ (iv)) fol-
lows from Theorem 3. Eventually, we conclude that Z
has a Cholesky structure if and only if Z is a Cholesky
algebra.

Definition 4. We say that a subspace Z of Sym(n,R)
has a quasi-Cholesky structure if there exists an invert-
ible matrix A ∈ GL(n,R) such that ZA :=

{
AxtA |x ∈ Z

}
has a Cholesky structure.

For example, a vector space Z ⊂ Sym(4,R) consisting

of x =


a b 0 0
b c d 0
0 d c b
0 0 b a

, corresponding to a colored graph

a
b
−c

d
−c

b
−a, has a quasi-Cholesky structure.
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Indeed, putting A := 1√
2


1 0 0 −1
1 0 0 1
0 1 −1 0
0 1 1 0

, we have

A


a b 0 0
b c d 0
0 d c b
0 0 b a

 tA =


a 0 b 0
0 a 0 b
b 0 c− d 0
0 b 0 c + d

 ,

so that

ZA =



a 0 b 0
0 a 0 b
b 0 c 0
0 b 0 d

 | a, b, c, d ∈ R

 ,

which has a Cholesky structure.
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§2. Colored graphical model

Let G = (V,E) be an undirected graph with V = {1, · · · , n}
and E ⊂ V ×V . The graph G is said to be decomposable

or chordal if any cycle in G of length ≥ 4 has a chord.

Let ZG ⊂ Sym(n,R) be the space of x = (xij) for which

xij = 0 if i 6= j and (i, j) 6∈ E. It is known that, if G is

decomposable and V is labeled appropriately, then each

x ∈ ZG is decomposed as x = Tx tTx without fill-ins. In

our terminology, ZG has a Cholesky structure.

For example, when G = 1 − 2 − 3 − 4, then ZG is the

vector space of x =


x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

.
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Let Aut(G) be the set of permutations σ ∈ Sn such that
(σ(i), σ(j)) ∈ E ⇔ (i, j) ∈ E. Let Γ be a subgroup of
Aut(G), and define

ZΓ
G :=

{
x ∈ ZG | ∀σ ∈ Γ ∀i, j ∈ V xσ(i)σ(j) = xij

}
,

which corresponds to the graph G whose vertices and
edges are colored so that the objects mapped each
other by Γ have the same color.

For example, if G = 1 − 2 − 3 − 4 with Γ = Aut(G) =
{id, (14)(23)}. Then we have a colored graph 1−2−3−4
and

ZΓ
G =



a b 0 0
b c d 0
0 d c b
0 0 b a

 | a, b, c, d ∈ R

 .
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Theorem 4. Let G be a decomposable and Γ any

subgroup of Aut(G). Then ZΓ
G ⊂ Sym(n,R) has a quasi-

Cholesky structure.

A crucial point is how to find A ∈ GL(n,R) for which

(ZΓ
G)A has a Cholesky structure.

Thanks to Theorem 4, we can generalize analysis on

ZG by Letac-Massam (2007) to ZΓ
G.
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§3. Gaussian selection model with a quasi-Cholesky

structure.

Let Z be a vector subspace of Sym(n,R) such that

PZ = Z ∩ Pn is non-empty. We consider a statistical

model M :=
{
Nn(0,Σ) |Σ−1 ∈ PZ

}
, where Nn(0,Σ)

stands for the multivariate zero-mean normal law with

covariant matrix Σ.

Let πZ : Sym(n,R) → Z be the orthogonal projection

with respect to the trace inner product. Let X1, X2, . . . , Xs

be i. i. d. obeying Nn(0,Σ) with Σ−1 ∈ PZ. Then a Z-

valued random matrix Y := πZ(X1
tX1 + · · · + Xs

tXs)/2

is a sufficient statistics of the model M. Let Ws,Σ de-

note the law of Y , which we call the Wishart law for

the model M.
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Let

QZ :=
{
y ∈ Z | tr(xy) > 0 for x ∈ PZ \ {0}

}
.

Then we have a bijection PZ 3 x 7→ πZ(x−1) ∈ QZ. We

define δZ : QZ → R by

δZ(y) := (detx)−1 (y = πZ(x−1) ∈ QZ , x ∈ PZ).

The log-gradient map ∇ log δZ : QZ → PZ gives the

inverse map of PZ 3 x 7→ πZ(x−1) ∈ QZ. If x1, . . . , xs ∈
Rn are samples of the model M, then

Σ̂−1 = ∇ log δZ

πZ(
1

s

s∑
k=1

xk
txk)

 ∈ PZ

provided that πZ(1
s

∑s
k=1 xk

txk) ∈ QZ.
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In what follows, we assume that Z has a quasi-Cholesky
structure.
Proposition 5. δZ(y) is explicitly expressed as a ratio-
nal function of y ∈ QZ.

Define φZ(y) :=
∫
PZ e−tr (xy) dx for y ∈ QZ.

Theorem 6. One has∫
QZ

e−tr(xy) δZ(y)sφZ(y) dy = ΓZ(s)(detx)−s (x ∈ PZ , <s > s0),

where s0 is a real number, and ΓZ(s) is a holomorphic
function of s with <s > s0.
Theorem 7 If s/2 > s0, then the density function of
the Wishart law Ws,Σ of Y = πZ(X1

tX1+ · · ·+Xs
tXs)/2

equals

ΓZ(s/2)−1(det Σ)−s/2e−tr(yΣ−1)δZ(y)s/2φZ(y) 1QZ(y).
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If Z is the space of matrices


a b 0 0
b c d 0
0 d c b
0 0 b a

, then

QZ =

 y =


a b 0 0
b c d 0
0 d c b
0 0 b a

 ∈ Z | c− d > 0, c + d > 0, a− b2/c > 0

 .

Moreover,

δZ(y) = (c− d)(c + d)(a− b2/c)2,

φZ(y) = 2−1/2πc−1/2(c− d)−1(c + d)−1(a− b2/c)−3/2,

for y ∈ QZ, and

ΓZ(s) = 2−3/2πΓ(s− 1/4)Γ(s + 1/4)Γ(s)2.
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The Gamma-type formula becomes∫
QZ

e−tr (xy)(c− d)s−1(c + d)s−1(a− b2/c)2s−3/2c−1/2 dadbdcdd

= 2−7/2Γ(s− 1/4)Γ(s + 1/4)Γ(s2)(detx)−s,

for x ∈ PZ and <s > 1/4. Therefore, for any s ≥ 1, the

density function of Ws,Σ equals

27/2Γ(s/2 − 1/4)−1Γ(s/2 + 1/4)−1Γ(s/2)−2(det Σ)−s/2

×e−tr(yΣ−1)(c− d)s/2−1(c + d)s/2−1(a− b2/c)s−3/2c−1/21QZ(y).
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