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Cholesky structure : a generalization of Fill-in free
property of a sparse matrix with respect to the Cholesky
decomposition

N

Exact calculation for Gaussian Selection model associ-
ated to decomposable graph with symmetry of vertex
permutation

Plan:

§1. Cholesky structure

2. Colored graphical model

§3. Gaussian selection model with a quasi-Cholesky
structure
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§1. Cholesky structure.

Pn :={x € Sym(n,R) |z is positive definite },
i :={ T = (Tj) € Mat(n,R) |Ty; =0 (i <) |,
Hy ZZ{TE f)n|TZ‘z‘>O (1 = 1,...,n)}.

Fact. One has a bijection H, 2T — T'T € P,,.
In other words,

Ve € P31 Ty € Hy s.t. z = T, 'Ty (Cholesky decomposition).

When x is sparse, 1T, iS sometimes sparse, too.
r11 z21 O O
r21 =22 732 O € Py,
O x32 233 %43
O O x33 244
711 O 0 0
I21 T 0 O
0 T3 T33 O
O O T4z T34

For example, if x =

then T, is of the form



(z17 21 O 0O a57)
rp1 222 232 O O
If £ = O x32 33 243 O € Ps, then T} is
O O 243 w44 w54
\zs1 0 O =54 ws55)
(T1; O 0 0 0 )
T>1 15> O 0 0
of the form O T3 133 O O
0 0 Tu3 Taa O

\T51 Tso Ts3 Tsa Tbs)

We have two fill-ins at Ts> and Tg3.




Let Z1 be a vector subspace of Sym(5,R) consisting of
(11 w21 O O as51)
rp1 x22 z32 0 O

x=1| O x3p x33 x43 O |, and consider a subspace
O 0 x43 x44 54
K$51 0 O 54 zs5)
of hg spanned by T, with x € Z;NPs. Then we see that

dimspang {7y |z € 21 NPg } = dim Z{ 4 2.

On the other hand, if Z5 C Sym(4,R) is the space of
x11 xo1 O 0

p= |21 722 T32 0 | o
O w32 233 743
O O 43 744

dim spanp {7z |x € Zo NPy} = dim Z5.



Definition 1. Let Z be a vector subspace of Sym(n,R)
such that I,, € Z. We say that Z has a Cholesky struc-

ture if

dim span{T1; |z € ZNPy} =dim2Z.
0 (i < 4),
For x € Sym(n,R), defineg € bp by (@z‘j = qx/2 (1=17),
| T4 (i >7),

and 2 1= t(:\15). Then z = z + 2. Let % denote the

space {gmez} C bn. If I, € Z, then %/Z equals the
tangent space of {1 |x € ZNPy} C Hy at Iy, so that
gcspan{TﬂerﬂPn}.




Theorem 2. Let Z be a vector subspace of Sym(n,R)
such that I, € Z. Then the following are all equivalent:
(i) Z has a Cholesky structure.
(i) span{Tx |z € ZNPp} = z:77

(i) Vz € Z :59; cz
(iv) One has a bijection %’ NH, 2T —TY e ZNPy.

(i) < (ii) is obvious, (ii) = (iii) is easy, and (iv) = (ii)
is trivial. A crucial part is (iii) = (iv).

Forz,y € Sym(n,R), definex oy := 2(:6@ -+ y%) € Sym(n,R).
Y,

Then z¢o I, = I,ox = x, and (iii) is equivalent to
ZoZCZie Vx,ye Z xoy € Z.

Temporally, we say that Z C Sym(n,R) is a Cholesky
algebra if I, € Z and Z2¢2Z C Z.



Let Z C Sym(n,R) be a Cholesky algebra and W C
Mat(n,m,R) a subspace such that

ueW = uue Z.

Then
t

E(Z;W) :={<dm u)lcER,uEW,xEZ}

u T
C Sym(m 4+ n,R)

IS a Cholesky algebra because

((c/Q)Im o> ((c/Q)Im tu> (/B a2

B ( cu/2 iz/jc/z\z + utu
Starting from one-dimensional algebra RI,, C Sym(n,R),

we obtain Cholesky algebras by repetition of this exten-
sion procedure.

U x N\

E(Z,W).
/ 0 X )E( )



For example, let Z be the set of symmetric matrices of
the form

ci 0 a O
O ¢c1 0 a

O a b c3

Setting W, := RI» and W, = R, we have
Z = E(E(R; W>), W1).

We say that a Cholesky algebra Z is standard if Z2 =
RIp, or Z2 = E(E(--- (E(RIs; Wy—1);---); Wa); Wy1) with
appropriate vector spaces Wi, Who, ..., W,_1.



Theorem 3. Any Cholesky algebra is isomorphic to a
standard one, and the isomorphism is given by an ap-
propriate permutation of rows and columns.

For example, the Cholesky algebra Z of matrices

a b 0O
b ¢ 0 O
O O a b
O O b d
is isomorphic to the Cholesky algebra Z’ of matrices
a O b O 1 O 0 O a b 00 1 O 0 O
O a O 0] 0010 b ¢ 0 O O 010
b O c Of |01 00 O O a b O 1 0O
O b 0 d O 0 01 O O b d O 0 01
: (1 2 3 4
by the permutation (23) = (1 3 5 4>.
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The crucial part of Theorem 2 (i.e. (iii) = (iv)) fol-
lows from Theorem 3. Eventually, we conclude that Z
has a Cholesky structure if and only if Z is a Cholesky
algebra.

Definition 4. We say that a subspace Z of Sym(n,R)
has a quasi-Cholesky structure if there exists an invert-
ible matrix A € GL(n,R) such that 24 := {Aa:tA |z € z}
has a Cholesky structure.

For example, a vector space Z C Sym(4,R) consisting
a b 0 O
b ¢ d O .

of x = 0dc bl corresponding to a colored graph
O O b a

b b

a—c—c—a, has a quasi-Cholesky structure.
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1 0 0 -1
: . 1(1 0 0 1
Indeed, putting A := 7lo 1 -1 o | we have
01 1 0
a b 0 O a O b 0
b ¢c d Ol¢y, |10 a O b
A O d c b A= b 0 c—d 0 ’
O O b a O b O c+d
so that
(/fa O b O )
A O a O b
Z7 = 9 b 0 ¢ O |la,b,c,d e R 3,
L \O b O d )

which has a Cholesky structure.

12



32. Colored graphical model

Let G = (V, E) be an undirected graph with V. ={1,--- /n}
and £ C VxV. The graph G is said to be decomposable
or chordal if any cycle in G of length > 4 has a chord.
Let Z5 C Sym(n,R) be the space of z = (x;;) for which
r;; =0 ifi% j and (4,5) € E. It is known that, if G is
decomposable and V is labeled appropriately, then each

r € Z; is decomposed as z = T, YT, without fill-ins. In
our terminology, Z4 has a Cholesky structure.

For example, when G =1 -2 -3 — 4, then Z4 is the
r11 xo21 O 0
rp1 x22 x32 O
O x32 33 743
O O L3 T44

vector space of x =
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Let Aut(G) be the set of permutations o € S;, such that
(0(i),0(3)) € E < (i,7) € E. Let I be a subgroup of
Aut(G), and define

ZCI;;:{ZIZEZG|VO'E Vi, €V To(i)o(5) =a:z-j},

which corresponds to the graph G whose vertices and
edges are colored so that the objects mapped each
other by ' have the same color.

For example, if G =1—-2—-3 -4 with ' = Aut(G) =
{id, (14)(23)}. Then we have a colored graph 1-2-3—-4
and

( )

O

o o

la,b,c,d € R

S o"t O O

OO o 2
o
S0
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Theorem 4. Let G be a decomposable and [ any
subgroup of Aut(G). Then 2}, C Sym(n,R) has a quasi-
Cholesky structure.

A crucial point is how to find A € GL(n,R) for which
(25)4 has a Cholesky structure.

Thanks to Theorem 4, we can generalize analysis on
Zq by Letac-Massam (2007) to Z.

15



§3. Gaussian selection model with a quasi-Cholesky
structure.

Let Z be a vector subspace of Sym(n,R) such that
Pz = ZNPp is non-empty. We consider a statistical
model M = {Nn(O,Z)|Z_1 EPZ}, where N, (0,X)
stands for the multivariate zero-mean normal law with
covariant matrix 2.

Let 7z : Sym(n,R) — Z be the orthogonal projection
with respect to the trace inner product. Let X1, X5, ..., X5
bei. i. d. obeying N,(0,X) with X~1 € P~. Then a 2-
valued random matrix ¥ := nz(X1' X7 + - - + Xt Xs) /2
is a sufficient statistics of the model M. Let W, s de-
note the law of Y, which we call the Wishart law for
the model M.
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Let

Qz = {yEZ|tr(my) > 0 for xEP—Z\{O}}
Then we have a bijection Pz 3>z +— mz(z71) € Q. We
define 6z : Oz — R by

5z(y) == (detz) ! (y=rnz(z™!) € Qz, z € Pz).

The log-gradient map ViIogdz : Oz — Pz gives the
inverse map of Pz oz — mz(z™ ) € Qz. If 1,...,25 €
R™ are samples of the model M, then

. 1 S
s = Viogdz (71‘2( Z azktxk)> c Pz
® k=1

provided that mz(2 Y3_; z3tay) € Qz.
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In what follows, we assume that Z has a quasi-Cholesky
structure.

Proposition 5. §z(y) is explicitly expressed as a ratio-
nal function of y € Q%.

Define pz(y) := sz et (2Y) da for y € Qz.

Theorem 6. One has
[, e 52 (w) ez () dy = Tz(s)(deta) ™ (z € Pz, #s > so),
Z

where sg is a real number, and I z(s) is a holomorphic
function of s with Rs > sq.

Theorem 7 If s/2 > sqg, then the density function of
the Wishart law WS,Z of Y = Wz(XltXl—F' : °—|—X3tX3)/2
equals

r2(s/2) " L(det ) /2 U W="D5 (1) 202 (1) 10, ().
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~”
.

a b 00
If Z is the space of matrices b oc d O - then
O d c¢c b
O O b a
( a b 0 O )
o b ¢ d 0 B Y
Qz=1Y= 1|0 4 ¢ b €EZ|lc—d>0,c+d>0,a—b/c>0
\ O 0 b a )
Moreover,

5z(y) = (¢ — d)(c+ d)(a — b?/c)?,
pz(y) =227 2(c—d)y Y+ d)"H(a —b2/c) 732,

for y € Q%, and

Mz(s) =273/27M (s — 1/4) (s + 1/4)(s)2.
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The Gamma-type formula becomes
/Q e~ @ (¢ — )5 (e+ ) (a — b2/c)253/2c7 12 qadbdedd
Z

=27 7/2M (s — 1/ (s + 1/4)[(s2)(det z) %,

for x € Pz and Rs > 1/4. Therefore, for any s > 1, the
density function of W s equals

2721 (s/2 —1/4) "I (s/2 4+ 1/4) "1 (s/2) 2(det =) ~5/2
Xe—tr(yZ_l)(C . d)s/2—1(c_|_ d)s/Q—l(a _ b2/0)8_3/20_1/2193(y).

20



