On Cholesky structures on real symmetric matrices and their applications

Hideyuki ISHI (Osaka City University)

Virtual Conference "Mathematical Methods of Modern Statistics 2," CIRM, June 2020. Cholesky structure : a generalization of Fill-in free property of a sparse matrix with respect to the Cholesky decomposition

Exact calculation for Gaussian Selection model associated to decomposable graph with symmetry of vertex permutation

Plan:

 \longrightarrow

- $\S1.$ Cholesky structure
- §2. Colored graphical model

§3. Gaussian selection model with a quasi-Cholesky structure

Joint with P. Graczyk, B. Kołodziejek and H. Massam

§1. Cholesky structure. $\mathcal{P}_n := \{ x \in \text{Sym}(n, \mathbb{R}) \mid x \text{ is positive definite } \},$ $\mathfrak{h}_n := \{ T = (T_{ij}) \in \text{Mat}(n, \mathbb{R}) \mid T_{ij} = 0 \ (i < j) \},$ $H_n := \{ T \in \mathfrak{h}_n \mid T_{ii} > 0 \ (i = 1, ..., n) \}.$ **Fact.** One has a bijection $H_n \ni T \mapsto T^{\mathsf{t}}T \in \mathcal{P}_n$. In other words,

 $\forall x \in \mathcal{P}_n \exists 1 T_x \in H_n \text{ s.t. } x = T_x {}^{\mathsf{t}} T_x$ (Cholesky decomposition).

When x is sparse, T_x is sometimes sparse, too.

For example, if $x = \begin{pmatrix} x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{43} & x_{44} \end{pmatrix} \in \mathcal{P}_4$, then T_x is of the form $\begin{pmatrix} T_{11} & 0 & 0 & 0 \\ T_{21} & T_{22} & 0 & 0 \\ 0 & T_{32} & T_{33} & 0 \\ 0 & 0 & T_{43} & T_{44} \end{pmatrix}$.

If
$$x = \begin{pmatrix} x_{11} & x_{21} & 0 & 0 & x_{51} \\ x_{21} & x_{22} & x_{32} & 0 & 0 \\ 0 & x_{32} & x_{33} & x_{43} & 0 \\ 0 & 0 & x_{43} & x_{44} & x_{54} \\ x_{51} & 0 & 0 & x_{54} & x_{55} \end{pmatrix} \in \mathcal{P}_5$$
, then T_x is of the form $\begin{pmatrix} T_{11} & 0 & 0 & 0 & 0 \\ T_{21} & T_{22} & 0 & 0 & 0 \\ 0 & T_{32} & T_{33} & 0 & 0 \\ 0 & 0 & T_{43} & T_{44} & 0 \\ T_{51} & T_{52} & T_{53} & T_{54} & T_{55} \end{pmatrix}$.

We have two fill-ins at T_{52} and T_{53} .

Let \mathcal{Z}_1 be a vector subspace of Sym $(5,\mathbb{R})$ consisting of $x = \begin{pmatrix} x_{11} & x_{21} & 0 & 0 & x_{51} \\ x_{21} & x_{22} & x_{32} & 0 & 0 \\ 0 & x_{32} & x_{33} & x_{43} & 0 \\ 0 & 0 & x_{43} & x_{44} & x_{54} \\ x_{51} & 0 & 0 & x_{54} & x_{55} \end{pmatrix}, \text{ and consider a subspace}$ of \mathfrak{h}_5 spanned by T_x with $x \in \mathbb{Z}_1 \cap \mathcal{P}_5$. Then we see that dim span_{$\mathbb{R}} { <math>T_x \mid x \in \mathcal{Z}_1 \cap \mathcal{P}_5$ } = dim $\mathcal{Z}_1 + 2$.</sub> On the other hand, if $\mathcal{Z}_2 \subset \text{Sym}(4,\mathbb{R})$ is the space of $x = \begin{pmatrix} x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{42} & x_{44} \end{pmatrix}, \text{ then}$

 $\dim \operatorname{span}_{\mathbb{R}} \{ T_x \, | \, x \in \mathcal{Z}_2 \cap \mathcal{P}_4 \} = \dim \mathcal{Z}_2.$

Definition 1. Let \mathcal{Z} be a vector subspace of Sym (n, \mathbb{R}) such that $I_n \in \mathcal{Z}$. We say that \mathcal{Z} has a Cholesky structure if

dim span {
$$T_x \mid x \in \mathcal{Z} \cap \mathcal{P}_n$$
 } = dim \mathcal{Z} .

For
$$x \in \text{Sym}(n, \mathbb{R})$$
, define $\underset{\vee}{x} \in \mathfrak{h}_n$ by $(\underset{\vee}{x})_{ij} := \begin{cases} 0 & (i < j), \\ x_{ii}/2 & (i = j), \\ x_{ij} & (i > j), \end{cases}$

and $\stackrel{\wedge}{x} := {}^{t}(x)$. Then $x = x + \stackrel{\wedge}{x}$. Let $\stackrel{Z}{\lor}$ denote the space $\left\{ \begin{array}{c} x \mid x \in \mathcal{Z} \end{array} \right\} \subset \mathfrak{h}_{n}$. If $I_{n} \in \mathcal{Z}$, then $\stackrel{Z}{\lor}$ equals the tangent space of $\left\{ \begin{array}{c} T_{x} \mid x \in \mathcal{Z} \cap \mathcal{P}_{n} \end{array} \right\} \subset H_{n}$ at I_{n} , so that $\stackrel{Z}{\lor} \subset \operatorname{span} \left\{ \begin{array}{c} T_{x} \mid x \in \mathcal{Z} \cap \mathcal{P}_{n} \end{array} \right\}$.

6

Theorem 2. Let \mathcal{Z} be a vector subspace of Sym (n, \mathbb{R}) such that $I_n \in \mathcal{Z}$. Then the following are all equivalent: (i) \mathcal{Z} has a Cholesky structure. (ii) span $\{T_x | x \in \mathcal{Z} \cap \mathcal{P}_n\} = \mathcal{Z}_{\bigvee}$. (iii) $\forall x \in \mathcal{Z} \xrightarrow[]{}{}_{\bigvee}^{\wedge} \in \mathcal{Z}$. (iv) One has a bijection $\mathcal{Z} \cap H_n \ni T \mapsto T^{\mathsf{t}}T \in \mathcal{Z} \cap \mathcal{P}_n$.

(i) \Leftrightarrow (ii) is obvious, (ii) \Rightarrow (iii) is easy, and (iv) \Rightarrow (ii) is trivial. A crucial part is (iii) \Rightarrow (iv).

For $x, y \in \text{Sym}(n, \mathbb{R})$, define $x \diamond y := 2(\bigvee y + \bigvee x) \in \text{Sym}(n, \mathbb{R})$. Then $x \diamond I_n = I_n \diamond x = x$, and (iii) is equivalent to $\mathcal{Z} \diamond \mathcal{Z} \subset \mathcal{Z}$ i.e. $\forall x, y \in \mathcal{Z} \ x \diamond y \in \mathcal{Z}$. Temporally, we say that $\mathcal{Z} \subset \text{Sym}(n, \mathbb{R})$ is a Cholesky algebra if $I_n \in \mathcal{Z}$ and $\mathcal{Z} \diamond \mathcal{Z} \subset \mathcal{Z}$. Let $\mathcal{Z} \subset \text{Sym}(n, \mathbb{R})$ be a Cholesky algebra and $\mathcal{W} \subset \text{Mat}(n, m, \mathbb{R})$ a subspace such that

 $u \in \mathcal{W} \Rightarrow u^{\mathsf{t}} u \in \mathcal{Z}.$

Then

$$\begin{split} E(\mathcal{Z};\mathcal{W}) &:= \left\{ \begin{pmatrix} cI_m & {}^{\mathsf{t}} u \\ u & x \end{pmatrix} | \, c \in \mathbb{R}, \, u \in \mathcal{W}, \, x \in \mathcal{Z} \right\} \\ &\subset \mathsf{Sym}(m+n,\mathbb{R}) \end{split}$$

is a Cholesky algebra because

$$\begin{pmatrix} (c/2)I_m & 0\\ u & x\\ \vee \end{pmatrix} \begin{pmatrix} (c/2)I_m & {}^{\mathsf{t}}u\\ 0 & {}^{\wedge}x \end{pmatrix} = \begin{pmatrix} (c^2/4)I_m & c^{\mathsf{t}}u/2\\ cu/2 & x & {}^{\wedge}x + u^{\mathsf{t}}u \end{pmatrix} \in E(\mathcal{Z}, \mathcal{W}).$$

Starting from one-dimensional algebra $\mathbb{R}I_n \subset \text{Sym}(n, \mathbb{R})$, we obtain Cholesky algebras by repetition of this extension procedure. For example, let \mathcal{Z} be the set of symmetric matrices of the form

$$\begin{pmatrix} c_1 & 0 & a & 0 \\ 0 & c_1 & 0 & a \\ a & 0 & c_2 & b \\ 0 & a & b & c_3 \end{pmatrix}$$

Setting $\mathcal{W}_1 := \mathbb{R}I_2$ and $\mathcal{W}_2 := \mathbb{R}$, we have $\mathcal{Z} = E(E(\mathbb{R}; \mathcal{W}_2); \mathcal{W}_1).$

We say that a Cholesky algebra \mathcal{Z} is standard if $\mathcal{Z} = \mathbb{R}I_n$ or $\mathcal{Z} = E(E(\cdots(E(\mathbb{R}I_s; \mathcal{W}_{r-1}); \cdots); \mathcal{W}_2); \mathcal{W}_1)$ with appropriate vector spaces $\mathcal{W}_1, \mathcal{W}_2, \ldots, \mathcal{W}_{r-1}$.

Theorem 3. Any Cholesky algebra is isomorphic to a standard one, and the isomorphism is given by an appropriate permutation of rows and columns.

For example, the Cholesky algebra $\ensuremath{\mathcal{Z}}$ of matrices

$$\begin{pmatrix} a & b & 0 & 0 \\ b & c & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & b & d \end{pmatrix}$$

is isomorphic to the Cholesky algebra \mathcal{Z}^\prime of matrices

$$\begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ b & 0 & c & 0 \\ 0 & b & 0 & d \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & 0 & 0 \\ b & c & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & b & d \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
by the permutation (23) =
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}.$$

The crucial part of Theorem 2 (i.e. (iii) \Rightarrow (iv)) follows from Theorem 3. Eventually, we conclude that \mathcal{Z} has a Cholesky structure if and only if \mathcal{Z} is a Cholesky algebra.

Definition 4. We say that a subspace \mathcal{Z} of $\text{Sym}(n, \mathbb{R})$ has a quasi-Cholesky structure if there exists an invertible matrix $A \in GL(n, \mathbb{R})$ such that $\mathcal{Z}^A := \{Ax^{\text{t}}A | x \in \mathcal{Z}\}$ has a Cholesky structure.

For example, a vector space $\mathcal{Z} \subset \text{Sym}(4, \mathbb{R})$ consisting of $x = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & c & b \\ 0 & 0 & b & a \end{pmatrix}$, corresponding to a colored graph $a \stackrel{b}{-} c \stackrel{d}{-} c \stackrel{b}{-} a$, has a quasi-Cholesky structure.

Indeed, putting
$$A := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
, we have
$$A \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & c & b \\ 0 & 0 & b & a \end{pmatrix} {}^{\mathsf{t}} A = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ b & 0 & c - d & 0 \\ 0 & b & 0 & c + d \end{pmatrix},$$

so that

$$\mathcal{Z}^{A} = \left\{ \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ b & 0 & c & 0 \\ 0 & b & 0 & d \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\},\$$

which has a Cholesky structure.

$\S2$. Colored graphical model

Let G = (V, E) be an undirected graph with $V = \{1, \dots, n\}$ and $E \subset V \times V$. The graph G is said to be decomposable or chordal if any cycle in G of length ≥ 4 has a chord. Let $\mathcal{Z}_G \subset \text{Sym}(n, \mathbb{R})$ be the space of $x = (x_{ij})$ for which $x_{ij} = 0$ if $i \neq j$ and $(i, j) \notin E$. It is known that, if G is decomposable and V is labeled appropriately, then each $x \in \mathcal{Z}_G$ is decomposed as $x = T_x {}^t T_x$ without fill-ins. In our terminology, \mathcal{Z}_G has a Cholesky structure.

For example, when
$$G = 1 - 2 - 3 - 4$$
, then \mathcal{Z}_G is the vector space of $x = \begin{pmatrix} x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{43} & x_{44} \end{pmatrix}$.

Let Aut(G) be the set of permutations $\sigma \in S_n$ such that $(\sigma(i), \sigma(j)) \in E \Leftrightarrow (i, j) \in E$. Let Γ be a subgroup of Aut(G), and define

$$\mathcal{Z}_{G}^{\mathsf{\Gamma}} := \left\{ x \in \mathcal{Z}_{G} \, | \, \forall \sigma \in \mathsf{\Gamma} \, \forall i, j \in V \, x_{\sigma(i)\sigma(j)} = x_{ij} \right\},\$$

which corresponds to the graph G whose vertices and edges are colored so that the objects mapped each other by Γ have the same color.

For example, if G = 1 - 2 - 3 - 4 with $\Gamma = Aut(G) = \{id, (14)(23)\}$. Then we have a colored graph 1-2-3-4 and

$$\mathcal{Z}_{G}^{\Gamma} = \left\{ \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & c & b \\ 0 & 0 & b & a \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}.$$

14

Theorem 4. Let G be a decomposable and Γ any subgroup of Aut(G). Then $\mathcal{Z}_G^{\Gamma} \subset \text{Sym}(n, \mathbb{R})$ has a quasi-Cholesky structure.

A crucial point is how to find $A \in GL(n, \mathbb{R})$ for which $(\mathcal{Z}_G^{\Gamma})^A$ has a Cholesky structure.

Thanks to Theorem 4, we can generalize analysis on \mathcal{Z}_G by Letac-Massam (2007) to \mathcal{Z}_G^{Γ} .

§3. Gaussian selection model with a quasi-Cholesky structure.

Let \mathcal{Z} be a vector subspace of $\operatorname{Sym}(n,\mathbb{R})$ such that $\mathcal{P}_{\mathcal{Z}} = \mathcal{Z} \cap \mathcal{P}_n$ is non-empty. We consider a statistical model $\mathcal{M} := \left\{ N_n(0,\Sigma) | \Sigma^{-1} \in \mathcal{P}_{\mathcal{Z}} \right\}$, where $N_n(0,\Sigma)$ stands for the multivariate zero-mean normal law with covariant matrix Σ .

Let $\pi_{\mathbb{Z}}$: Sym $(n, \mathbb{R}) \to \mathbb{Z}$ be the orthogonal projection with respect to the trace inner product. Let X_1, X_2, \ldots, X_s be i. i. d. obeying $N_n(0, \Sigma)$ with $\Sigma^{-1} \in \mathcal{P}_{\mathbb{Z}}$. Then a \mathbb{Z} valued random matrix $Y := \pi_{\mathbb{Z}}(X_1^{t}X_1 + \cdots + X_s^{t}X_s)/2$ is a sufficient statistics of the model \mathcal{M} . Let $\mathcal{W}_{s,\Sigma}$ denote the law of Y, which we call the Wishart law for the model \mathcal{M} . Let

$$\mathcal{Q}_{\mathcal{Z}} := \left\{ y \in \mathcal{Z} \, | \, \mathsf{tr}(xy) > \mathsf{0} \, \text{ for } \, x \in \overline{\mathcal{P}_{\mathcal{Z}}} \setminus \{\mathsf{0}\} \right\}.$$

Then we have a bijection $\mathcal{P}_{\mathcal{Z}} \ni x \mapsto \pi_{\mathcal{Z}}(x^{-1}) \in \mathcal{Q}_{\mathcal{Z}}$. We define $\delta_{\mathcal{Z}} : \mathcal{Q}_{\mathcal{Z}} \to \mathbb{R}$ by

$$\delta_{\mathcal{Z}}(y) := (\det x)^{-1} \quad (y = \pi_{\mathcal{Z}}(x^{-1}) \in \mathcal{Q}_{\mathcal{Z}}, \ x \in \mathcal{P}_{\mathcal{Z}}).$$

The log-gradient map $\nabla \log \delta_{\mathcal{Z}} : \mathcal{Q}_{\mathcal{Z}} \to \mathcal{P}_{\mathcal{Z}}$ gives the inverse map of $\mathcal{P}_{\mathcal{Z}} \ni x \mapsto \pi_{\mathcal{Z}}(x^{-1}) \in \mathcal{Q}_{\mathcal{Z}}$. If $x_1, \ldots, x_s \in \mathbb{R}^n$ are samples of the model \mathcal{M} , then

$$\widehat{\Sigma}^{-1} = \nabla \log \delta_{\mathcal{Z}} \left(\pi_{\mathcal{Z}} \left(\frac{1}{s} \sum_{k=1}^{s} x_{k}^{t} x_{k} \right) \right) \in \mathcal{P}_{\mathcal{Z}}$$

provided that $\pi_{\mathcal{Z}}(\frac{1}{s}\sum_{k=1}^{s} x_k^{t}x_k) \in \mathcal{Q}_{\mathcal{Z}}.$

In what follows, we assume that \mathcal{Z} has a quasi-Cholesky structure.

Proposition 5. $\delta_{\mathcal{Z}}(y)$ is explicitly expressed as a rational function of $y \in Q_{\mathcal{Z}}$.

Define $\varphi_{\mathcal{Z}}(y) := \int_{\mathcal{P}_{\mathcal{Z}}} e^{-\operatorname{tr}(xy)} dx$ for $y \in \mathcal{Q}_{\mathcal{Z}}$.

Theorem 6. One has

 $\int_{\mathcal{Q}_{\mathcal{Z}}} e^{-\operatorname{tr}(xy)} \,\delta_{\mathcal{Z}}(y)^{s} \varphi_{\mathcal{Z}}(y) \,dy = \Gamma_{\mathcal{Z}}(s) (\det x)^{-s} \quad (x \in \mathcal{P}_{\mathcal{Z}}, \ \Re s > s_{0}),$

where s_0 is a real number, and $\Gamma_{\mathcal{Z}}(s)$ is a holomorphic function of s with $\Re s > s_0$.

Theorem 7 If $s/2 > s_0$, then the density function of the Wishart law $\mathcal{W}_{s,\Sigma}$ of $Y = \pi_{\mathcal{Z}}(X_1^{t}X_1 + \cdots + X_s^{t}X_s)/2$ equals

$$\Gamma_{\mathcal{Z}}(s/2)^{-1}(\det \Sigma)^{-s/2}e^{-\operatorname{tr}(y\Sigma^{-1})}\delta_{\mathcal{Z}}(y)^{s/2}\varphi_{\mathcal{Z}}(y)\mathbf{1}_{\mathcal{Q}_{\mathcal{Z}}}(y).$$

If
$$\mathcal{Z}$$
 is the space of matrices
$$\begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & c & b \\ 0 & 0 & b & a \end{pmatrix}$$
, then

$$\mathcal{Q}_{\mathcal{Z}} = \left\{ y = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & c & b \\ 0 & 0 & b & a \end{pmatrix} \in \mathcal{Z} \mid c - d > 0, \ c + d > 0, \ a - b^2/c > 0 \right\}.$$

Moreover,

$$\delta_{\mathcal{Z}}(y) = (c-d)(c+d)(a-b^2/c)^2,$$

$$\varphi_{\mathcal{Z}}(y) = 2^{-1/2}\pi c^{-1/2}(c-d)^{-1}(c+d)^{-1}(a-b^2/c)^{-3/2},$$

for $y \in \mathcal{Q}_{\mathcal{Z}}$, and

$$\Gamma_{\mathcal{Z}}(s) = 2^{-3/2} \pi \Gamma(s - 1/4) \Gamma(s + 1/4) \Gamma(s)^2.$$

19

The Gamma-type formula becomes

$$\int_{\mathcal{Q}_{\mathcal{Z}}} e^{-\operatorname{tr}(xy)} (c-d)^{s-1} (c+d)^{s-1} (a-b^2/c)^{2s-3/2} c^{-1/2} \, dadbdcdd$$

= $2^{-7/2} \Gamma(s-1/4) \Gamma(s+1/4) \Gamma(s^2) (\det x)^{-s}$,

for $x \in \mathcal{P}_{\mathcal{Z}}$ and $\Re s > 1/4$. Therefore, for any $s \ge 1$, the density function of $\mathcal{W}_{s,\Sigma}$ equals

 $2^{7/2}\Gamma(s/2-1/4)^{-1}\Gamma(s/2+1/4)^{-1}\Gamma(s/2)^{-2}(\det\Sigma)^{-s/2}$ $\times e^{-\operatorname{tr}(y\Sigma^{-1})}(c-d)^{s/2-1}(c+d)^{s/2-1}(a-b^2/c)^{s-3/2}c^{-1/2}\mathbf{1}_{\mathcal{Q}_{\mathcal{Z}}}(y).$