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Origins of Regression

regression originates from arguably the most notorious priority
dispute in the history of mathematics and statistics

between Carl-Friedrich Gauss (1777–1855) and Adrien-Marie
Legendre (1752–1833) over the method of least squares

I Stigler (1981): “Gauss probably possessed the method well before
Legendre, but [. . . ] was unsuccessful in communicating it to his
contemporaries”



Current Views: Distributional Regression
Wikipedia notes that

I “commonly, regression analysis estimates the conditional expectation
[. . . ] Less commonly, the focus is on a quantile [. . . ] of the conditional
distribution [. . . ] In all cases, a function of the independent variables
called the regression function is to be estimated”

I “it is also of interest to characterize the variation of the dependent
variable around the prediction of the regression function using a
probability distribution”

Hothorn, Kneib and Bühlmann (2014) argue forcefully that the

I “ultimate goal of regression analysis is to obtain information about the
conditional distribution of a response given a set of explanatory variables”

in a nutshell, distributional regression

I uses training data

{(xi , yi ) ∈ X × R : i = 1, . . . n}
to estimate the conditional distribution of the response variable, y ∈ R,
given the explanatory variables or covariates, x ∈ X

I isotonic distributional regression (IDR) uses monotonicity relations to find
nonparametric conditional distributions

https://en.wikipedia.org/wiki/Regression_analysis
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures

−2

0

2

4

0.0 0.2 0.4 0.6
X

Y

linear quantile regression — beware quantile crossing



Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . in Pictures
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Isotonic Distributional Regression (IDR) . . . the Details

isotonic distributional regression (IDR) uses training data of the form

{(xi , yi ) ∈ X × R : i = 1, . . . n}

to estimate a conditional distribution of the response variable or out-
come, y ∈ R, given the explanatory variables or covariates, x ∈ X

takes advantage of known or assumed nonparametric monotonicity re-
lations between the covariates, x , and the real-valued outcome, y

has primary uses in prediction and forecasting, where we know the cova-
riates x , but do not know the outcome y

a full understanding relies on a number of (partly, rather recent) mathe-
matical concepts and developments, namely,

I calibration and sharpness,

I proper scoring rules, and

I partial orders



Isotonic Distributional Regression (IDR)

1 What is Regression?

2 Mathematical Background

2.1 Calibration and Sharpness

2.2 Proper Scoring Rules

2.3 Partial Orders

3 Isotonic Distributional Regression (IDR)

3.1 Definition, Existence, and Universality

3.2 Computing

3.3 Synthetic Example

4 Case Study on Precipitation Forecasts

5 Discussion



Isotonic Distributional Regression (IDR)

1 What is Regression?

2 Mathematical Background

2.1 Calibration and Sharpness

2.2 Proper Scoring Rules

2.3 Partial Orders

3 Isotonic Distributional Regression (IDR)

3.1 Definition, Existence, and Universality

3.2 Computing

3.3 Synthetic Example

4 Case Study on Precipitation Forecasts

5 Discussion



What is the Goal in Distributional Regression?

the transition from classical regression to distributional regression poses
unprecedented challenges, in that

I the regression functions are conditional predictive distributions in the
form of probability measures or, equivalently, cumulative distribution
functions (CDFs)

I the outcomes are real numbers

I so, in order to evaluate distributional regression techniques, we need to
compare apples and oranges!

guiding principle: the goal is to maximize the sharpness of the conditional
predictive distributions subject to calibration

I calibration refers to the statistical compatibility between the conditional

predictive CDFs and the outcomes

I essentially, the outcomes ought to be indistinguishable from random
draws from the conditional predictive CDFs

I sharpness refers to the concentration of the conditional predictive

distributions

I the more concentrated the better, subject to calibration



Probabilistic Framework

Setting We consider a probability space (Ω,A,Q), where the members
of the sample space Ω are tuples

(X ,FX ,Y ,V ),

such that

I the random vector X takes values in the covariate space X (the
explanatory variables or covariates),

I FX is a CDF-valued random quantity that uses information based on
X only (the conditional predictive distribution or regression function
for Y , given X ),

I Y is a real-valued random variable (the outcome), and

I V is uniformly distributed on the unit interval and independent of X
and Y (a randomization device).

Definition The CDF-valued regression function FX is ideal if
FX = L(Y | X ) almost surely.



Notions of Calibration

Definition Let FX be a CDF-valued regression function with probability
integral transform (PIT)

Z = FX (Y−) + V [FX (Y )− FX (Y−)] .

Then FX is

(a) probabilistically calibrated if Z is uniformly distributed,

(b) threshold calibrated if

Q(Y ≤ y |FX (y)) = FX (y) almost surely for all y ∈ R.

Theorem An ideal regression function is both probabilistically calibrated
and threshold calibrated.

Remark In practice, calibration is assessed by plotting PIT histograms

I U-shaped PIT histograms indicate underdispersed forecasts with
prediction intervals that are too narrow on average

I skewed PIT histograms indicate biased predictive distributions
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Scoring Rules

scoring rules seek to quantify predictive performance, assessing calibra-
tion and sharpness simultaneously

a scoring rule is a function
S(F , y)

that assigns a negatively oriented numerical score to each pair (F , y),
where F is a probability distribution, represented by its cumulative dis-
tribution function (CDF), and y is the real-valued outcome

a scoring rule S is proper if

EY∼G [S(G ,Y )] ≤ EY∼G [S(F ,Y )] for all F ,G ,

and strictly proper if, furthermore, equality implies F = G

truth serum: under a proper scoring rule truth telling is an optimal stra-
tegy in expectation

characterization results relate closely to convex analysis (Gneiting and
Raftery 2007)



Continuous Ranked Probability Score (CRPS)

the widely used, proper continuous ranked probability score (CRPS) is
defined as

CRPS(F , y) =

∫ ∞
−∞

[F (x)− 1(x ≥ y)]2 dx

= EF |X − y | − 1

2
EF |X − X ′|,

where X and X ′ are independent with CDF F

for all customary distributions, closed form expressions are available; e.g.,

CRPS
(
N (µ, σ2), y

)
= σ

(
y − µ
σ

(
2 Φ

(
y − µ
σ

)
− 1

)
+ 2φ

(
y − µ
σ

)
− 1√

π

)

the CRPS is reported in the same unit as the outcomes, and it
generalizes the absolute error, to which it reduces if F is a point measure

reduces to the Brier score when the outcome is binary



Mixture (Choquet) Representations of the CRPS

the CRPS can be represented equivalently as

CRPS(F , y) = 2

∫
(0,1)

QSα(F , y) dλ(α)

= 2

∫
(0,1)

∫
R

SQ
α,θ(F , y) dλ(θ, α)

=

∫
R

∫
(0,1)

SP
z,c(F , y) dλ(c , z)

in terms of the asymmetric piecewise linear loss QSα, or the elementary
or extremal scoring functions SQ

α,θ for the α-quantile functional, or SP
z,c

for probability assessments of the binary outcome 1(y ≤ z), namely

QSα(F , y) =

{
(1− α) (F−1(α)− y), y ≤ F−1(α),

α (y − F−1(α)), y ≥ F−1(α),

SQα,θ(F , y) =


1− α, y ≤ θ < F−1(α),

α, F−1(α) ≤ θ < y,

0, otherwise,

SPz,c (F , y) =


1− c, F (z) < c, y ≤ z,

c, F (z) ≥ c, y > z,

0, otherwise,

respectively (Ehm et al. 2016)
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Partial Orders

a partial order relation � on a general set X
I has the same properties as a total order, namely reflexivity, antisymmetry

and transitivity

I except that the elements need not be comparable, i.e., there might be
elements x ∈ X and x ′ ∈ X such that neither x � x ′ nor x ′ � x

I a key example is the componentwise order on Rd

of particular importance in our context are partial orders on the set P of
the Borel probability measures on R, which we identify with their
respective CDFs

I stochastic order (≤st) G ≤st H if, and only if, G(y) ≥ H(y) for y ∈ R

I increasing convex order (≤icx) G ≤icx H if, and only if,

E[φ(XG )] ≤ E[φ(XH)]

whenever φ is increasing and convex and the expectations exist



Partial Orders on Rd

in our case study X = Rd , and we consider the

I componentwise order (�)

x � x ′ ⇐⇒ xi ≤ x ′i for i = 1, . . . , d

I empirical stochastic order (�st) induced by the stochastic order on
the associated empirical distributions, and equivalent to the
componentwise order on the sorted elements

I empirical increasing convex order (�icx) induced by the increasing
convex order on the associated empirical distributions
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Isotonic Distributional Regression (IDR): Basic Concepts

basic concepts

I we use training data

{(xi , yi ) ∈ X × R : i = 1, . . . , n}

to estimate the conditional distribution of the response variable or out-
come, y ∈ R, given the explanatory variables or covariates, x ∈ X

I formally, distributional regression generates a mapping from a covariate
vector x ∈ X to a probability measure Fx , which serves to model the
conditional distribution of the outcome, y , given x

I given a partial order � on the covariate space X , this mapping is isotonic
if

x � x ′ ⇒ Fx ≤st Fx′ ,

where ≤st denotes the usual stochastic order on the space P of the Borel
probability measures in R



IDR: Definition, Existence and Uniqueness

formal
setting

I covariate space X equipped with partial order �
I training data {(xi , yi ) ∈ X × R : i = 1, . . . n}
I the stochastic order ≤st on the space P of the Borel

probability measures on R
I proper scoring rule S

Definition (isotonic S-regression) An element F̂FF = (F̂1, . . . , F̂n) ∈ Pn is
an isotonic S-regression if it is a minimizer of the empirical loss

`S(FFF ) =
1

n

n∑
i=1

S(Fi , yi )

over all FFF = (F1, . . . ,Fn) ∈ Pn, subject to the condition that Fi ≤st Fj if
xi � xj , for i , j = 1, . . . , n.

Theorem (existence and uniqueness) There exists a unique isotonic

CRPS-regression F̂FF ∈ Pn.

Terminology We refer to this unique F̂FF as the isotonic distributional
regression (IDR) solution.



Isotonic Distributional Regression (IDR): Universality
Theorem (universality) The IDR solution F̂FF is threshold calibrated, and it
is an isotonic S-regression under just any scoring rule of the form

S(F , y) =

∫
(0,1)×R

SQ
α,θ(F , y) dH(α, θ)

or

S(F , y) =

∫
R×(0,1)

SP
z,c(F , y) dM(z , c),

where SQ
α,θ and SP

z,c are the elementary quantile and probability scoring
functions, and H and M are locally finite Borel measures.

Proof relies on results and techniques in Ehm et al. (2016) and Jordan
et al. (2019)

Consequence (theoretical) IDR is optimal under just any proper scoring
rule that depends on quantile or binary probability assessments only.

Consequence (practical) IDR subsumes extant approaches to non-
parametric isotonic regression as special cases, including but not limited
to quantile regression and binary regression.
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Estimation
the IDR solution exists and, by definition, is the solution to a constrained
optimization problem in Pn . . . but can we actually compute it?

yes — universality and the method of least squares come to the rescue!

I by universality (M = δz ⊗ λ1), the IDR solution F̂FF
satisfies

F̂FF (z) = arg minη∈[0,1]n
n∑

i=1

(ηi − 1(yi ≤ z))2 ,

at every threshold z ∈ R, subject to the condition that
ηi ≥ ηj if xi � xj , for i , j = 1, . . . , n

I at any fixed threshold, the IDR CDFs yield a quadratic
programming problem, which we tackle with the OSQP
solver (Stellato et al. 2017)

I the target function is constant for z inbetween the
unique values of y1, . . . , yn, and so it suffices to
consider these points only

I the overall computational cost is at least O(n2)



Prediction

by construction, the IDR solution F̂FF = (F̂1, . . . , F̂n) is defined at the
training covariate values x1, . . . , xn ∈ X only

a key task in practice is to make a prediction at a new covariate value
x ∈ X where x 6∈ {x1, . . . , xn}, for which we proceed as follows

I define the sets p(x) and s(x) of the indices of immediate predecessors
and successors of x among x1, . . . , xn as

p(x) = {i ∈ {1, . . . , n} : xi � xj � x =⇒ xj = xi , j = 1, . . . , n}
s(x) = {i ∈ {1, . . . , n} : x � xj � xi =⇒ xj = xi , j = 1, . . . , n},

I any predictive CDF F that is consistent with F̂FF must satisfy

max
i∈s(x)

F̂i (z) ≤ F (z) ≤ min
j∈p(x)

F̂j(z)

at all threshold values z ∈ R
I if both p(x) and s(x) are nonempty, we let F be the pointwise arithmetic

average of these bounds, i.e.,

F (z) =
1

2

(
max
i∈s(x)

F̂i (z) + min
j∈p(x)

F̂j(z)

)
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Synthetic Example
we compute the IDR solution based on a training sample of size n = 600
from a population where X ∼ Unif(0,10) and

Y | X ∼ Gamma(shape =
√
X , scale = min{max{X , 1}, 6})
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Synthetic Example: Subset Aggregation

same setting as before, but now for a training sample of size n = 10 000
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(a) IDR based on full sample (n = 10'000)
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(b) IDR using subagging

linear aggregation of IDR estimates on 100 subsamples of size 1 000 each
(subagging, panel (b)) is superior to using the full training sample (panel
(a)) in terms of both computational costs and estimation accuracy
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Numerical Weather Prediction (NWP)

modern weather forecasts rely on numerical weather prediction (NWP)
models that represent physical processes in the atmosphere

Source: NOAA

run operationally on supercom-
puters, with huge success

nevertheless, major sources of
uncertainty remain (initial condi-
tions, representation of sub-grid
scale processes, . . . )

ensemble simulations seek to
quantify uncertainty and provide
distributional forecasts

despite continuous improvement,
NWP ensemble forecasts remain
subject to systematic deficiencies

https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png

https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png


ECMWF Ensemble System

the 52-member ensemble system operated by the European Centre for
Medium-Range Weather Forecasting (ECMWF) comprises

I a high-resolution member (xhres) at 9 km horizontal grid spacing

I a control member (xctr) at 18 km horizontal grid spacing

I 50 perturbed members (x1, . . . , x50) at the same lower resolution but with
perturbed initial conditions, to be considered exchangeable

systematic deficiencies call for postprocessing of the raw ensemble output
via distributional regression, with covariate vector

x = (xhres, xctr, x1, . . . , x50)



Case Study: Precipitation Forecasts

our weather data comprise

I 52-member ECMWF ensemble forecasts and associated observations of
24-hour accumulated precipitation

I at prediction horizons of 1 to 5 days ahead

I from 6 January 2007 to 1 January 2017

I at weather stations on airports in London, Brussels, Zurich and Frankfurt

I precipitation is a particularly challenging variable, due to its nonnegativity
and mixed discrete-continuous character with a point mass at zero and a
right skewed component on (0,∞)

we perform an out-of-sample evaluation and comparison of distributional
regression forecasts

I years 2015 and 2016 as test period

I prior years serve to provide training data

I generally, IDR uses all available training data, whereas parametric
competitors benefit from smaller, rolling training periods



Out-of-sample Comparison of Predictive Performance

systematic deficiencies call for postprocessing of the raw ensemble output
via distributional regression, with covariate vector

x = (xhres, xctr, x1, . . . , x50)

we compare IDR to the raw ensemble and state-of-the-art distributional
regression techniques developed specifically for the purpose

I ENS ECMWF raw ensemble forecast, i.e., the empirical distribution of
the 52 ensemble members

I BMA Bayesian Model Averaging (Sloughter et al. 2007)

I semi-parametric, based on mixtures of Bernoulli and power-
transformed Gamma components

I plenty of implementation decisions to be made

I EMOS Ensemble Model Output Statistics (Scheuerer 2014)

I parametric, predictive CDFs from the three-parameter family of
left-censored generalized extreme value (GEV) distributions

I location and scale parameters linked to covariates, numerous
implementation decisions to be made



Choice of Partial Order for IDR

IDR applies readily in this setting

I without any need for adaptations due to the mixed discrete-continuous
character of precipitation, nor requiring data transformations

however, the partial order on the elements x = (xhres, xctr, x1, . . . , x50) of
the covariate space X = R52 needs to be selected thoughtfully

I considering that the elements of xptb = (x1, . . . , x50) are exchangeable

we apply IDR in three variants

I IDRcw based on xhres, xctr and mptb = 1
50

∑50
i=1 xi and the componentwise

order on R3, so that

x � x ′ ⇐⇒ xhres ≤ x ′hres, xctr ≤ x ′ctr, mptb ≤ m′ptb,

I IDRsbg same as IDRcw but combined with subset aggregation

I IDRicx invokes the empirical increasing convex order on xptb, so that

x � x ′ ⇐⇒ xhres ≤ x ′hres, xptb �icx x
′
ptb



Example: Predictive CDFs for Brussels, 16 December 2015
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Calibration Assessed by PIT Histograms
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CRPS
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Brier Score
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Summary

in regression analysis

I we are witnessing a transition from conditional mean estimation to
conditional distribution estimation

I prompted and accompanied by a transition from point forecasts to
distributional or probabilistic forecasts (Gneiting and Katzfuss 2014)

isotonic distributional regression (IDR) is a powerful nonparametric
technique for estimating conditional distributions under order restrictions

I IDR learns conditional distributions that are calibrated, and simul-
taneously optimal relative to comprehensive classes of proper scoring rules

I IDR provides a unified treatment of all types of real-valued outcomes

I IDR is entirely generic and fully automated

I code for the implementation of IDR in R is available online, with
functions for partial orders, estimation, prediction and evaluation

https://github.com/AlexanderHenzi/isodistrreg

https://github.com/AlexanderHenzi/isodistrreg


Discussion

IDR might serve as an ideal benchmark technique in distributional
regression and probabilistic forecasting problems

I method is entirely generic

I does not require potentially subjective implementation decisions, except
for the choice of a partial order

I shows strongly competitive predictive performance in challenging and
important applications

deep thinking vs. deep learning?

I IDR requires the a priori selection of a partial order

I at least for now, this process cannot be automated
I requires deep thinking about the substantive problem at hand
I once the partial order has been fixed, IDR is fully automated

I nonparametric distributional regression techniques based on modern neu-
ral networks such as CNNs or RNNs (e.g., SQF-RNN, Gasthaus et
al. 2019) are attractive alternatives

I partly overlapping though largely complementary uses
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