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» Second order Poincaré inequalities and de-biasing arbitrary
convex regularizers arXiv:1912.11943

» De-biasing the Lasso with degrees-of-freedom adjustment.
arXiv:1902.08885.



High-dimensional statistics

» n data points (x;, Y;, i=1,...,n)
» p covariates, x; € RP

p=>n, p=cn p > n

For instance, linear model Y; = x,-TB + ¢; for unknown 3



M-estimators and regularization

N 1
B =argmin? = ¢(x] b, Y;) + regularizer(b)
beRP n i=1

for some loss ¢(-,-) and regularization penalty.

Typically in the linear model, with the least-squares loss,

A

B = argmin {|ly — Xb|*/(2n) + g(b)}
beRP
with g convex.

Example

» Lasso, Elastic-Net
Bridge g(b) = 371 [by[°
Group-Lasso

>

>

» Nuclear Norm penalty

» Sorted L1 penalty (SLOPE)



Different goals, different scales

B = argmingcpo {|ly — Xb|?/(2n) + g(b)}, g convex

1. Design of regularizer g with intuition about complexity,
structure
» convex relaxation of unknown structure (sparsity, low-rank)
» /1 balls are spiky at sparse vectors

2. Upper and lower bounds on the risk of B:
cra < [|B = BII* < Cra.
3. Characterization of the risk
1B = BII* = ra(1 + op(1))

under some asymptotics, e.g., p/n — «y or slog(p/s)/n — 0.
4. Asymp. distribution in fixed direction ag € R (resp ag = €;)
and confidence interval for aj 3 (resp 3;)

Vnag (B—B) =7 N(0, V), Vn(Bi—B;) =7 N(O, V)).



Focus of today: Confidence interval in the linear model

based on convex regularized estimators of the form

B = argmingeg {lly - XbI2/(20) + g(B)}, g convex
oy
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ﬁ(lgj — B;) = N(0,V)), Bj unknown parameter of interest



Confidence interval in the linear model

Design X with iid N(0, X) rows, known X, noise € ~ N(0,021,),

y=XB+e, and a given initial estimator B

Goal: Inference for § = aj 3, projection in direction ay

Examples:
> ap = e;, interested in inference on the j-th coefficient 3;
» ag = Xpew Where X, is the characteristics of a new patient,
inference for x,,eWT,B.



De-biasing, confidence intervals for the Lasso

Confidence intervals for low dimensional parameters in high dimensional linear
models

CH Zhang, SS Zhang - Journal of the Royal Statistical Society ..., 2014 - Wiley Online Library

The purpose of this paper is to propose methodologies for statistical inference of low

dimensional parameters with high dimensional data. We focus on constructing confidence

intervals for individual coefficients and linear combinations of several of them in a linear ...

Y¢ P9 Cited by 591 Related articles All 17 versions

On asymptotically optimal confidence regions and tests for high-dimensional
models

..., P Bihlmann, Y Ritov, R Dezeure - The Annals of ..., 2014 - projecteuclid.org

We propose a general method for constructing confidence intervals and statistical tests for

single or low-dimensional components of a large parameter vector in a high-dimensional

model. It can be easily adjusted for multiplicity taking dependence among tests into account ...

Yr P9 Cited by 668 Related articles All 17 versions

rroF] Confidence intervals and hypothesis testing for high-dimensional

regression

A Javanmard, A Montanari - The Journal of Machine Learning Research, 2014 - jmir.org
Fitting high-dimensional statistical models often requires the use of non-linear parameter
estimation procedures. As a consequence, it is generally impossible to obtain an exact
characterization of the probability distribution of the parameter estimates. This in turn implies
that it is extremely challenging to quantify the uncertainty associated with a certain
parameter estimate. Concretely, no commonly accepted procedure exists for computing
classical measures of uncertainty and statistical significance as confidence intervals or ...

Yv U9 Cited by 501 Related articles All 13 versions 99



Confidence interval in the linear model

Design X with iid N(0, X) rows, known X, noise € ~ N(0,021,),

y=XB+e, and a given initial estimator /Aj’

Goal: Inference for § = aj 3, projection in direction a
Examples:
> ap = e;, interested in inference on the j-th coefficient 3;
» ag = Xpew Where X, is the characteristics of a new patient,
inference for x,,eWT,B.

De-biasing: construct an unbiased estimate in the direction ag

i.e., find a correction such that [agﬁ—correction] is an unbiased
estimator of aj 8*



Existing results

Lasso
» Zhang and Zhang (2014) (slog(p/s)/n — 0)
» Javanmard and Montanari (2014a) ; Javanmard and Montanari
(2014b) ; Javanmard and Montanari (2018) (slog(p/s)/n — 0)
» Van de Geer et al. (2014) (slog(p/s)/n — 0)
» Bayati and Montanari (2012) ; Miolane and Montanari (2018)

(p/n— ")

Beyond Lasso?

» Robust M-estimators El Karoui et al. (2013) Lei, Bickel, and
El Karoui (2018) Donoho and Montanari (2016) (p/n — )

» Celentano and Montanari (2019) symmetric convex penalty and
(X =1p, p/n— 7), using Approximate Message Passing ideas
from statistical physics

» logistic regression Sur and Candes (2018) (X = I, p/n — 7)



Focus today: General theory for confidence intervals

based on any convex regularized estimators of the form
B = argmingcgs {|ly — Xb|?/(2n) + g(b)}, g convex
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Little or no constraint on the convex regularizer g.



Degrees-of-freedom of estimator

~

B = argmin { |ly — Xb|[/(2n) + g(b)}
beRP

> then y — X3 for fixed X is 1-Lipscthiz
» the Jacobian of y — X[ exists everywhere (Rademacher’s
theorem)

a

8ﬂ(xvy)}
oy ’

used for instance in Stein’s Unbiased Risk Estimate (SURE).

~

df = trace V(y — XJ3), df = trace [X

The Jacobian matrix H is also useful. H is always symmetric!

I:I:XB'B(xvy) e RN
dy
!P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n — ~




Isotropic design, any g, p/n — ~ (B. and Zhang, 2019)

Assumptions

» Sequence of linear regression problems y = X3 + ¢

» with n,p — 400 and p/n — v € (0, 0),

> g :RP — R coercive convex penalty, strongly convex if v > 1.
» Rows of X are iid N(0,/,) and

> Noise € ~ N(0,021,) is independent of X.



Isotropic design, any penalty g, p/n — v
Theorem (B. and Zhang, 2019)

B = argmin {|ly — Xb|[/(2n) + g(b) }
beRP

> Bj = (ej, B) parameter of interest
> H= X(@/ay) df = trace H, R
> V(3) = lly = XBI + tracel(H — 1,2)(5; — ;)%

Then there exists a subset J, C [p] of size at least (p — log log p) s.t.

n—df)(B; — ) + e X (y — XB)
sup ‘IP’(

e, V(BJ)1/2 < t) - ¢(t)‘ — 0.



Correlated design, any g, p/n — 7

Assumption

» Sequence of linear regression problems y = X3 + ¢

with n, p — +o0 and p/n — v € (0, ),

g : RP — R coercive convex penalty, strongly convex if v > 1.
Rows of X are iid N(0,X) and

| 2
>
>
> Noise € ~ N(0,021,) is independent of X.



Correlated design, any penalty g, p/n — =
Theorem (B. and Zhang, 2019)

B = argmin {|ly - Xb|[*/(20) + g(b)}

> 0= (ao, B) parameter of interest

> H= X(0/dy)B, df = trace H

> (0) = lly = XBIP + tracel(F — 1,)%]((a0, ) — 0)%
> Assume aj Xag = 1 and set

Zy = Z’lao.

Then there exists a subset S C SP~1 with relative volume
- 0.99
S1/|1SPH > 1—2eP

IS

(= dB.20) —0) + (z0.y — XB)

ao) —
Vv (9)1/2

sup
30621/2§

t)—CD(t)‘ — 0.

This applies to at least (p — Pcond(X) log log p) indices j € [p].



Resulting 0.95 confidence interval

é/: eR: ’(n_d\f)«r@?aw_‘9)+<20ay_xlé>‘ <1.96
' V(6)1/2 -

Variance approximation
Typically, V(6) ~ ||y — X3 and the length of the interval is

2 - 1.96]ly — XB]| /(n - df).

élapprox — {0 ER: ‘(n - df)(</3¢ aO> - 9) + <ZO>y — XB)) < 196} )

ly — XB|



Simulations using the approximation V/(0) ~ ||y — X3||?
n =750, p = 500, correlated X.
B is the vectorization of a row-sparse matrix of size 25 x 20.
ap is a direction that leads to large initial bias.
Estimators: 7 different penalty functions:

» Group Lasso with tuning parameters p1, uo
» Lasso with tuning parameters A1, ..., \q
» Nuclear norm penalty

Boxplots of initial errors \/nag (3 — B) (biased!)

Boxplot grouped by Estimator Type
initial error (normalized)
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Estimator Type



Simulations using the approximation V(0) ~ ||y — X2
n =750, p =500, correlated X
B is the vectorization of a row-sparse matrix of size 25 x 20
Estimators: 7 different penalty functions:
» Group Lasso with tuning parameters p1, o
P> Lasso with tuning parameters A1, ..., \q
» Nuclear norm penalty

Boxplots of ﬁ[ag(ﬁ —B)+ 24 (y — XB)]

Boxplot grouped by Estimator Type
corrected (same normalization)
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Before/after bias correction

Boxplot grouped by Estimator Type
initial error (normalized)

Gr-Lasso y; Gr-Lassou, LassoA; Lasso-A; Lasso-A3
Estimator Type

Boxplot grouped by Estimator Type
corrected (same normalization)

oo

-1

-3 T
°
Gr-Lasso 1 Gr-Lasso [/ Lasso Ay Lasso-A; Lasso-A3
Estimator Type
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Lasso-A4 Nulcear Norm



QQ-plot, Lasso, A1, A2, A3, As.
For Lasso, df = {ji=1,..,p: BJ # 0}].

Lasson

Pivotal quantity when using |ly — X3||? instead of V/(0) for the
variance.

> The visible discrepancy in the last plot is fixed when using V/(6)
instead.



AN

QQ-plot, Group Lasso, u1, i1o. Explicit formula for df

Gr-Lasso 11
3

sample Quantiles

o 1 2 3
Theoretical Quantiles

Gr-Lasso L2

sample Quantiles




QQ-plot, Nuclear norm penalty

Nulcear Norm

Sample Quantiles

Theoretical Quantiles

No explicit formula for df available,
although it is possible to compute numerical approximations.



Summary of the main result?

Asymptotic normality result, and valid 1 — a confidence interval by
de-biasing any convex regularized M estimator.

» Asymptotics p/n — 7y

» Under Gaussian design, known covariance matrix X

» Strong convexity of the penalty required if v > 1;
otherwise any penalty is allowed.

2P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n — ~



Time-pertmitting

1. Necessity of degrees-of-freedom adjustment

2. Central Limit Theorems and Second Order Poincar'e
inequalities

3. Unknown X.



1. Necessity of degrees-of-freedom adjustment

The previous de-biasing correction features a “degrees-of-freedom”
adjustment in the form of multiplication by

(1 —df/n)
or depending on the normalization, multiplication by

n — df.

Generalization, in high-dimensions, of the classical
normalization by multiplying by n — p to obtain unbiased
estimates when p < n.

This degrees-of-freedom adjustment for the Lasso was initially
motivated by statistical physics arguments>

3 Javanmard and Montanari (2014b), Hypothesis Testing in High-Dimensional
Regression under the Gaussian Random Design Model: Asymptotic Theory



Initial proposals for de-biasing the Lasso do not include the
“degrees-of-freedom” adjustment

Confidence intervals for low dimensional parameters in high dimensional linear
models
CH Zhang, SS Zhang - Journal of the Royal Statistical Society ..., 2014 - Wiley Online Library

The purpose of this paper is to propose methodologies for statistical inference of low
dimensional parameters with high dimensional data. We focus on constructing confidence
intervals for individual coefficients and linear combinations of several of them in a linear ...

Yr P9 Cited by 591 Related articles All 17 versions

On asymptotically optimal confidence regions and tests for high-dimensional
models

..., P Buhimann, Y Ritov, R Dezeure - The Annals of ..., 2014 - projecteuclid.org

We propose a general method for constructing confidence intervals and statistical tests for

single or low-dimensional components of a large parameter vector in a high-dimensional

model. It can be easily adjusted for multiplicity taking dependence among tests into account ...

Y% DY Cited by 668 Related articles All 17 versions

roF] Confidence intervals and hypothesis testing for high-dimensional

regression

A Javanmard, A Montanari - The Journal of Machine Learning Research, 2014 - jmlir.org
Fitting high-dimensional statistical models often requires the use of non-linear parameter
estimation procedures. As a consequence, it is generally impossible to obtain an exact
characterization of the probability distribution of the parameter estimates. This in turn implies
that it is extremely challenging to quantify the uncertainty associated with a certain
parameter estimate. Concretely, no commonly accepted procedure exists for computing
classical measures of uncertainty and statistical significance as confidence intervals or ...
Y¢ Y9 Cited by 501 Related articles All 13 versions 99



1. Necessity of degrees-of-freedom adjustment
> Sparse linear regression y = X/ + €, sparsity so = || 8]0

» X has iid N(0, X) rows,

noise € ~ N(0,021,)

0, de-biasing estimate with adjustment of the form (1 — v/n),
here v represents a possible degrees-of-freedom adjustment

or absence thereof (v = 0).

V/n(0, — 0) when the initial estimator is the Lasso

n=1000, p = 3000, |Blo = 120
supp(ao) < supp(B) with |ag|o = 120

I T+ T 1
B e s e i

.
T
= VA6, - 6)(1 - 3) adjusted with v = |3|
H == T,a-H7

| =3 V6, - 6) adjusted with v = |5|

=3 VA6, - 6) unadjusted (v = 0)

T
120
sparsity of ag

The pivotal quantity for v =0
(unadjusted) is biased.

(Yellow boxplot).

The degrees-of-freedom
adjustment exactly repairs this.

For sp > n?/3, absence of degrees-of-freedom adjustment provably
leads to incorrect coverage for certain directions a — 0.4

“*B. and Zhang (2018): De-Biasing The Lasso With Degrees-of-Freedom

AAdirictment



2. Central Limit Theorems/Second Order Poinacr’e
inequalities
If f:R" — R"” and zg ~ N(0, I,), then the random variable

z{ f(z0) — divf(zo)

is close to normal when

E[[V(z0)lIZ
E[|f(z0)]I?

is small®.

P This leads to the asymptotic normal results when de-biasing
convex regularizers

» Mechanically computing/bounding gradients leads to
asymptotic normality results (Second Order Poincar’e
inequalities, see Chatterjee (2009))

®P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n — ~



3. Unknown X

The general theory of de-biasing/asymptotic normality for arbitrary
regularizers is applicable to any penalty when X is known.

In practice, zo = X 'ag needs to be estimated.
> sample splitting
P case-by-case basis for a given regularizer g

P> e.g.: Nodewise Lasso. Dense and sparse ag have to be handled
differently.®

» leaves open interesting problems for different regularizers

®B. and Zhang (2018), Section 2.2. De-Biasing The Lasso With
Degrees-of-Freedom Adjustment



Thank you!

Asymptotic normality result, and valid 1 — a confidence interval” by
de-biasing any convex regularized M estimator.

I £ e

» Asymptotics p/n — 7y

» Under Gaussian design, known covariance matrix X

» Strong convexity of the penalty required if v > 1;
otherwise any penalty is allowed.

"P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n — ~
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