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I Second order Poincaré inequalities and de-biasing arbitrary
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I De-biasing the Lasso with degrees-of-freedom adjustment.
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High-dimensional statistics

I n data points (x i ,Yi , i = 1, ..., n)
I p covariates, x i ∈ Rp

p ≥ n, p ≥ cn p ≥ nα

For instance, linear model Yi = x>i β + εi for unknown β



M-estimators and regularization

β̂ = arg min
b∈Rp

{
1
n

n∑
i=1

`(x>i b,Yi ) + regularizer(b)
}

for some loss `(·, ·) and regularization penalty.

Typically in the linear model, with the least-squares loss,

β̂ = arg min
b∈Rp

{
‖y − Xb‖2/(2n) + g(b)

}
with g convex.

Example
I Lasso, Elastic-Net
I Bridge g(b) =

∑p
j=1 |bj |c

I Group-Lasso
I Nuclear Norm penalty
I Sorted L1 penalty (SLOPE)



Different goals, different scales

β̂ = arg minb∈Rp
{
‖y − Xb‖2/(2n) + g(b)

}
, g convex

1. Design of regularizer g with intuition about complexity,
structure
I convex relaxation of unknown structure (sparsity, low-rank)
I `1 balls are spiky at sparse vectors

2. Upper and lower bounds on the risk of β̂:

crn ≤ ‖β̂ − β‖2 ≤ Crn.

3. Characterization of the risk

‖β̂ − β‖2 = rn(1 + oP(1))

under some asymptotics, e.g., p/n→ γ or s log(p/s)/n→ 0.
4. Asymp. distribution in fixed direction a0 ∈ Rp (resp a0 = ej)

and confidence interval for a>0 β (resp βj)
√

na>0 (β̂−β)→? N(0,V0),
√

n(β̂j−βj)→? N(0,Vj).



Focus of today: Confidence interval in the linear model

based on convex regularized estimators of the form

β̂ = arg minb∈Rp
{
‖y − Xb‖2/(2n) + g(b)

}
, g convex

√
n(b̂j − βj)⇒ N(0,Vj), βj unknown parameter of interest



Confidence interval in the linear model

Design X with iid N(0,Σ) rows, known Σ, noise ε ∼ N(0, σ2In),

y = Xβ + ε, and a given initial estimator β̂.

Goal: Inference for θ = a>0 β, projection in direction a0

Examples:
I a0 = ej , interested in inference on the j-th coefficient βj
I a0 = xnew where xnew is the characteristics of a new patient,

inference for xnew
>β.



De-biasing, confidence intervals for the Lasso



Confidence interval in the linear model

Design X with iid N(0,Σ) rows, known Σ, noise ε ∼ N(0, σ2In),

y = Xβ + ε, and a given initial estimator β̂.

Goal: Inference for θ = a>0 β, projection in direction a0

Examples:
I a0 = ej , interested in inference on the j-th coefficient βj
I a0 = xnew where xnew is the characteristics of a new patient,

inference for xnew
>β.

De-biasing: construct an unbiased estimate in the direction a0

i.e., find a correction such that [a>0 β̂−correction] is an unbiased
estimator of a>0 β∗



Existing results

Lasso
I Zhang and Zhang (2014) (s log(p/s)/n→ 0)
I Javanmard and Montanari (2014a) ; Javanmard and Montanari

(2014b) ; Javanmard and Montanari (2018) (s log(p/s)/n→ 0)
I Van de Geer et al. (2014) (s log(p/s)/n→ 0)
I Bayati and Montanari (2012) ; Miolane and Montanari (2018)

(p/n→ γ)

Beyond Lasso?
I Robust M-estimators El Karoui et al. (2013) Lei, Bickel, and

El Karoui (2018) Donoho and Montanari (2016) (p/n→ γ)
I Celentano and Montanari (2019) symmetric convex penalty and

(Σ = Ip, p/n→ γ), using Approximate Message Passing ideas
from statistical physics

I logistic regression Sur and Candès (2018) (Σ = Ip, p/n→ γ)



Focus today: General theory for confidence intervals

based on any convex regularized estimators of the form
β̂ = arg minb∈Rp

{
‖y − Xb‖2/(2n) + g(b)

}
, g convex.

Little or no constraint on the convex regularizer g .



Degrees-of-freedom of estimator

β̂ = arg min
b∈Rp

{
‖y − Xb‖2/(2n) + g(b)

}
I then y → Xβ̂ for fixed X is 1-Lipscthiz
I the Jacobian of y 7→ Xβ̂ exists everywhere (Rademacher’s

theorem)

d̂f = trace∇(y 7→ Xβ̂), d̂f = trace
[
X ∂β̂(X , y)

∂y
]
.

used for instance in Stein’s Unbiased Risk Estimate (SURE).

The Jacobian matrix Ĥ is also useful. Ĥ is always symmetric1

Ĥ = X ∂β̂(X , y)
∂y ∈ Rn×n

1P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n → γ



Isotropic design, any g , p/n→ γ (B. and Zhang, 2019)

Assumptions

I Sequence of linear regression problems y = Xβ + ε
I with n, p → +∞ and p/n→ γ ∈ (0,∞),
I g : Rp → R coercive convex penalty, strongly convex if γ ≥ 1.
I Rows of X are iid N(0, Ip) and
I Noise ε ∼ N(0, σ2In) is independent of X .



Isotropic design, any penalty g , p/n→ γ

Theorem (B. and Zhang, 2019)

β̂ = arg min
b∈Rp

{
‖y − Xb‖2/(2n) + g(b)

}
I βj = 〈ej ,β〉 parameter of interest
I Ĥ = X(∂/∂y)β̂, d̂f = trace Ĥ,
I V̂ (βj) = ‖y − Xβ̂‖2 + trace[(Ĥ − In)2](β̂j − βj)2.

Then there exists a subset Jp ⊂ [p] of size at least (p− log log p) s.t.

sup
j∈Jp

∣∣∣P((n − d̂f)(β̂j − βj) + e>j X>(y − Xβ̂)
V̂ (βj)1/2

≤ t
)
− Φ(t)

∣∣∣→ 0.



Correlated design, any g , p/n→ γ

Assumption

I Sequence of linear regression problems y = Xβ + ε
I with n, p → +∞ and p/n→ γ ∈ (0,∞),
I g : Rp → R coercive convex penalty, strongly convex if γ ≥ 1.
I Rows of X are iid N(0,Σ) and
I Noise ε ∼ N(0, σ2In) is independent of X .



Correlated design, any penalty g , p/n→ γ
Theorem (B. and Zhang, 2019)

β̂ = arg min
b∈Rp

{
‖y − Xb‖2/(2n) + g(b)

}
I θ = 〈a0,β〉 parameter of interest
I Ĥ = X(∂/∂y)β̂, d̂f = trace Ĥ,
I V̂ (θ) = ‖y − Xβ̂‖2 + trace[(Ĥ − In)2](〈a0, β̂〉 − θ)2.
I Assume a>0 Σa0 = 1 and set

z0 = Σ−1a0.

Then there exists a subset S ⊂ Sp−1 with relative volume
|S|/|Sp−1| ≥ 1− 2e−p0.99

sup
a0∈Σ1/2S

∣∣∣P((n − d̂f)(〈β̂, a0〉 − θ) + 〈z0, y − Xβ̂〉
V̂ (θ)1/2

≤ t
)
−Φ(t)

∣∣∣→ 0.

This applies to at least (p − φcond(Σ) log log p) indices j ∈ [p].



Resulting 0.95 confidence interval

ĈI =
{
θ ∈ R :

∣∣∣(n − d̂f)(〈β̂, a0〉 − θ) + 〈z0, y − Xβ̂〉
V̂ (θ)1/2

∣∣∣ ≤ 1.96
}

Variance approximation
Typically, V̂ (θ) ≈ ‖y − Xβ̂‖2 and the length of the interval is

2 · 1.96‖y − Xβ̂‖
/

(n − d̂f).

ĈIapprox =
{
θ ∈ R :

∣∣∣(n − d̂f)(〈β̂, a0〉 − θ) + 〈z0, y − Xβ̂〉
‖y − Xβ̂‖

∣∣∣ ≤ 1.96
}
.



Simulations using the approximation V̂ (θ) ≈ ‖y − Xβ̂‖2
n = 750, p = 500, correlated Σ.
β is the vectorization of a row-sparse matrix of size 25× 20.
a0 is a direction that leads to large initial bias.
Estimators: 7 different penalty functions:
I Group Lasso with tuning parameters µ1, µ2
I Lasso with tuning parameters λ1, ..., λ4
I Nuclear norm penalty

Boxplots of initial errors
√

na>0 (β̂ − β) (biased!)



Simulations using the approximation V̂ (θ) ≈ ‖y − Xβ̂‖2
n = 750, p = 500, correlated Σ
β is the vectorization of a row-sparse matrix of size 25× 20
Estimators: 7 different penalty functions:
I Group Lasso with tuning parameters µ1, µ2
I Lasso with tuning parameters λ1, ..., λ4
I Nuclear norm penalty

Boxplots of
√

n[a>0 (β̂ − β) + z>0 (y − Xβ̂)]



Before/after bias correction



QQ-plot, Lasso, λ1, λ2, λ3, λ3.
For Lasso, d̂f =

∣∣{j = 1, ..., p : β̂j 6= 0}
∣∣.

Pivotal quantity when using ‖y − Xβ̂‖2 instead of V̂ (θ) for the
variance.

I The visible discrepancy in the last plot is fixed when using V̂ (θ)
instead.



QQ-plot, Group Lasso, µ1, µ2. Explicit formula for d̂f



QQ-plot, Nuclear norm penalty

No explicit formula for d̂f available,
although it is possible to compute numerical approximations.



Summary of the main result2

Asymptotic normality result, and valid 1− α confidence interval by
de-biasing any convex regularized M estimator.

I Asymptotics p/n→ γ
I Under Gaussian design, known covariance matrix Σ
I Strong convexity of the penalty required if γ ≥ 1;

otherwise any penalty is allowed.

2P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n → γ



Time-pertmitting

1. Necessity of degrees-of-freedom adjustment

2. Central Limit Theorems and Second Order Poincar’e
inequalities

3. Unknown Σ.



1. Necessity of degrees-of-freedom adjustment

The previous de-biasing correction features a “degrees-of-freedom”
adjustment in the form of multiplication by

(1− d̂f/n)

or depending on the normalization, multiplication by

n − d̂f.

Generalization, in high-dimensions, of the classical
normalization by multiplying by n − p to obtain unbiased
estimates when p ≪ n.
This degrees-of-freedom adjustment for the Lasso was initially
motivated by statistical physics arguments3

3Javanmard and Montanari (2014b), Hypothesis Testing in High-Dimensional
Regression under the Gaussian Random Design Model: Asymptotic Theory



Initial proposals for de-biasing the Lasso do not include the
“degrees-of-freedom” adjustment



1. Necessity of degrees-of-freedom adjustment
I Sparse linear regression y = Xβ + ε, sparsity s0 = ‖β‖0
I X has iid N(0,Σ) rows, noise ε ∼ N(0, σ2In)

θ̂ν de-biasing estimate with adjustment of the form (1− ν/n),
here ν represents a possible degrees-of-freedom adjustment
or absence thereof (ν = 0).
√

n(θ̂ν − θ) when the initial estimator is the Lasso
The pivotal quantity for ν = 0
(unadjusted) is biased.
(Yellow boxplot).
The degrees-of-freedom
adjustment exactly repairs this.

For s0 ≫ n2/3, absence of degrees-of-freedom adjustment provably
leads to incorrect coverage for certain directions a − 0.4

4B. and Zhang (2018): De-Biasing The Lasso With Degrees-of-Freedom
Adjustment



2. Central Limit Theorems/Second Order Poinacr’e
inequalities

If f : Rn → Rn and z0 ∼ N(0, In), then the random variable

z>0 f (z0)− divf (z0)

is close to normal when

E‖∇f (z0)‖2F
E‖f (z0)‖2

is small5.

I This leads to the asymptotic normal results when de-biasing
convex regularizers

I Mechanically computing/bounding gradients leads to
asymptotic normality results (Second Order Poincar’e
inequalities, see Chatterjee (2009))

5P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n → γ



3. Unknown Σ

The general theory of de-biasing/asymptotic normality for arbitrary
regularizers is applicable to any penalty when Σ is known.

In practice, z0 = Σ−1a0 needs to be estimated.
I sample splitting
I case-by-case basis for a given regularizer g
I e.g.: Nodewise Lasso. Dense and sparse a0 have to be handled

differently.6
I leaves open interesting problems for different regularizers

6B. and Zhang (2018), Section 2.2. De-Biasing The Lasso With
Degrees-of-Freedom Adjustment



Thank you!

Asymptotic normality result, and valid 1− α confidence interval7 by
de-biasing any convex regularized M estimator.

I Asymptotics p/n→ γ
I Under Gaussian design, known covariance matrix Σ
I Strong convexity of the penalty required if γ ≥ 1;

otherwise any penalty is allowed.

7P.C.B and C.-H. Zhang (2019) Second order Poincaré inequalities and
de-biasing arbitrary convex regularizers when p/n → γ
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