High-dimensional classification by sparse logistic regression

Felix Abramovich

Tel Aviv University

(based on joint work with Vadim Grinshtein, The Open University of Israel and Tomer Levy, Tel Aviv University)

< 同 > < 三 > < 三 >

Outline

- Review on (binary) classification
- **2** High-dimensional (binary) classification by sparse logistic regression
 - model, feature selection by penalized maximum likelihood
 - theory: misclassification excess bounds, adaptive minimax classifiers
 - computational issues: logistic Lasso and Slope
- Multiclass extensions
 - sparse multinomial logistic regression
 - theory
 - multinomial logistic group Lasso and Slope

• • = • • = •

Binary Classification

•
$$(\mathbf{X}, Y) \sim \mathcal{F} : Y | \mathbf{X} = \mathbf{x} \sim B(1, p(\mathbf{x})), \ \mathbf{X} \in \mathbb{R}^d \sim f(\mathbf{x})$$

- Classifier $\eta : \mathbb{R}^d \to \{0, 1\}$
- Missclassification error $R(\eta) = P(Y \neq \eta(\mathbf{x}))$
- Bayes classifier $\eta^*(\mathbf{x}) = \arg \min_{\eta} R(\eta)$

 $\eta^*(\mathbf{x}) = I\{p(\mathbf{x}) \ge 1/2\}, \quad R(\eta^*) = E_{\mathbf{X}}\left(\min(p(\mathbf{X}), 1 - p(\mathbf{X}))\right)$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Binary Classification

•
$$(\mathbf{X}, Y) \sim \mathcal{F} : Y | \mathbf{X} = \mathbf{x} \sim B(1, p(\mathbf{x})), \ \mathbf{X} \in \mathbb{R}^d \sim f(\mathbf{x})$$

- Classifier $\eta : \mathbb{R}^d \to \{0, 1\}$
- Missclassification error $R(\eta) = P(Y \neq \eta(\mathbf{x}))$
- Bayes classifier $\eta^*(\mathbf{x}) = \arg \min_{\eta} R(\eta)$

 $\eta^*(\mathbf{x}) = I\{p(\mathbf{x}) \ge 1/2\}, \quad R(\eta^*) = E_{\mathbf{X}}\left(\min(p(\mathbf{X}), 1 - p(\mathbf{X}))\right)$

• Data $D = (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)) \sim \mathcal{F}$

(conditional) Missclassification error $R(\hat{\eta}) = P(Y \neq \hat{\eta}(\mathbf{x})|D)$

Misclassification excess risk $\mathcal{E}(\hat{\eta}, \eta^*) = ER(\hat{\eta}) - R(\eta^*)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Vapnik-Chervonenkis (VC) dimension

Definition

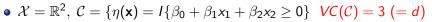
Let C be a set of classifiers. VC(C) is the maximal number of points in \mathcal{X} that can be arbitrarily classified by classifiers in C.

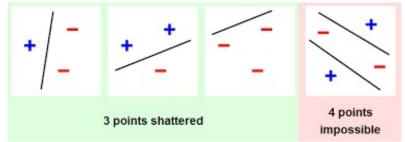
Vapnik-Chervonenkis (VC) dimension

Definition

Let C be a set of classifiers. VC(C) is the maximal number of points in \mathcal{X} that can be arbitrarily classified by classifiers in C.

Example: VC of linear classifiers $C = \{\eta(\mathbf{x}) = I\{\beta^t \mathbf{x} \ge 0\}, \ \beta \in \mathbb{R}^d\}$

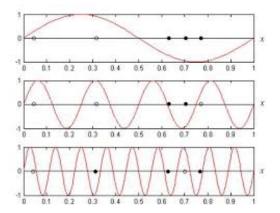




• $\mathcal{X} = \mathbb{R}^{d-1}, \ \boldsymbol{\beta} \in \mathbb{R}^d \ (x_0 = 1) \quad VC(\mathcal{C}) = d$

Example: VC of sine classifiers: $\mathcal{X} = \mathbb{R}$, $\mathcal{C} = \{\eta(x) = I \{ x \ge \sin(\theta x), \ \theta > 0 \}$

Can classify any finite subset of points, $VC(C) = \infty$



A (1) × A (2) × A (2) ×

Minimax lower bound

Minimax lower bound. Let $2 \leq VC(C) < \infty$, $n \geq VC(C)$ and $R(\eta^*) > 0$. Then,

$$\inf_{\tilde{\eta}} \sup_{\eta^* \in \mathcal{C}, f(\mathsf{x})} \mathcal{E}(\tilde{\eta}, \eta^*) \geq C \sqrt{\frac{VC(\mathcal{C})}{n}}$$

(e.g., Devroye, Györfi and Lugosi, '96).

In particular, for linear classifiers

$$\inf_{\tilde{\eta}} \sup_{\eta^* \in \mathcal{C}, f(\mathbf{x})} \mathcal{E}(\tilde{\eta}, \eta^*) \geq C \sqrt{\frac{d}{n}}$$

< 回 > < 回 > < 回 >

Two main approaches

1. Empirical Risk Minimization (ERM)

$$\hat{\eta} = \arg\min_{\eta \in \mathcal{C}} \hat{R}(\eta) = \arg\min_{\eta \in \mathcal{C}} \frac{1}{n} \sum_{i=1}^{n} I(Y_i \neq \eta(\mathbf{x}_i))$$

 well-developed theory (Devroye, Györfi and Lugosi '96; Vapnik '00; see also Boucheron, Bousquet and Lugosi '05 for review)

$$\sup_{\eta^*\in\mathcal{C}}\mathcal{E}(\hat{\eta},\eta^*)\leq C\sqrt{\frac{V\mathcal{C}(\mathcal{C})}{n}}\quad \text{(optimal order)}$$

• computationally infeasible, various convex surrogates (e.g., SVM)

(四) (ヨ) (ヨ)

2. Plug-in Classifiers

• estimate $p(\mathbf{x})$ from the data

(e.g, (parametric) logistic regression: $\ln \frac{p(\mathbf{x})}{1-p(\mathbf{x})} = \beta^t \mathbf{x}$ or nonparametic: Yang '99, Koltchinskii and Beznosova '05, Audibert and Tsybakov '07)

• plug-in $\hat{\eta}(\mathbf{x}) = I(\hat{p}(\mathbf{x}) \ge 1/2)$

2. Plug-in Classifiers

• estimate $p(\mathbf{x})$ from the data

(e.g, (parametric) logistic regression: $\ln \frac{p(\mathbf{x})}{1-p(\mathbf{x})} = \beta^t \mathbf{x}$ or nonparametic: Yang '99, Koltchinskii and Beznosova '05, Audibert and Tsybakov '07)

• plug-in $\hat{\eta}(\mathbf{x}) = I(\hat{\rho}(\mathbf{x}) \ge 1/2)$

Logistic regression classifier

$$ln \frac{p(\mathsf{x})}{1-p(\mathsf{x})} = \boldsymbol{\beta}^t \mathsf{x}$$

2) estimate eta by MLE

3 plug-in
$$\hat{\eta} = I(\hat{p}(\mathbf{x}) \geq 1/2) = I(\hat{oldsymbol{\beta}}^t \mathbf{x} \geq 0)$$
 – linear classifier

Big Data era - curse of dimensionality

For large *d* classification without feature (model) selection *is as bad as just pure random guessing* (e.g., Bickel and Levina '04; Fan and Fan '08)

Big Data era - curse of dimensionality

For large *d* classification without feature (model) selection *is as bad as just pure random guessing* (e.g., Bickel and Levina '04; Fan and Fan '08)

Sparse logistic regression classifier

• model/feature selection –
$$\widehat{M}$$

2 plug-in
$$\hat{\eta}_{\widehat{M}} = I(\hat{\boldsymbol{\beta}}_{\widehat{M}}^{t}\mathbf{x} \geq 0)$$

Sparse logistic regression

•
$$(\mathbf{X}, Y) \sim \mathcal{F} : Y | \mathbf{X} = \mathbf{x} \sim B(1, p(\mathbf{x})), \ \mathbf{X} \in \mathbb{R}^d \sim f(\mathbf{x})$$

•
$$logit(p(\mathbf{x})) = ln \frac{p(\mathbf{x})}{1-p(\mathbf{x})} = \beta^t \mathbf{x}$$

• sparsity assumption: $||\boldsymbol{\beta}||_0 \leq d_0$

< 1 k

Sparse logistic regression

•
$$(\mathbf{X}, Y) \sim \mathcal{F} : Y | \mathbf{X} = \mathbf{x} \sim B(1, p(\mathbf{x})), \ \mathbf{X} \in \mathbb{R}^d \sim f(\mathbf{x})$$

•
$$logit(p(\mathbf{x})) = ln \frac{p(\mathbf{x})}{1-p(\mathbf{x})} = \beta^t \mathbf{x}$$

• sparsity assumption: $||\boldsymbol{\beta}||_0 \leq d_0$

Lemma (thanks to Noga Alon)
Let
$$C(d_0) = \{\eta(\mathbf{x}) = I\{\beta^t \mathbf{x} \ge 0\} : \beta \in \mathbb{R}^d, ||\beta||_0 \le d_0\}.$$

 $d_0 \log_2\left(\frac{2d}{d_0}\right) \le VC(C(d_0)) \le 2d_0 \log_2\left(\frac{de}{d_0}\right), i.e.$
 $VC(C(d_0)) \sim d_0 \ln\left(\frac{de}{d_0}\right)$

Model/feature selection by penalized MLE

• For a given model $M \subseteq \{1, \ldots, d\}$, MLE:

$$\widehat{\boldsymbol{\beta}}_{M} = \arg \max_{\widetilde{\boldsymbol{\beta}} \in \mathcal{B}_{M}} \sum_{i=1}^{n} \Big\{ \widetilde{\boldsymbol{\beta}}_{M}^{t} \mathbf{x}_{i} Y_{i} - \ln \Big(1 + \exp(\widetilde{\boldsymbol{\beta}}_{M})^{t} \mathbf{x}_{i} \Big) \Big\},$$

where $\mathcal{B}_M = \{ \boldsymbol{\beta} \in \mathbb{R}^d : \beta_j = 0 \text{ iff } j \notin M \}$

- 4 同 ト 4 三 ト - 4 三 ト - -

Model/feature selection by penalized MLE

• For a given model $M \subseteq \{1, \ldots, d\}$, MLE:

$$\begin{split} \widehat{\boldsymbol{\beta}}_{M} &= \arg \max_{\widetilde{\boldsymbol{\beta}} \in \mathcal{B}_{M}} \sum_{i=1}^{n} \left\{ \widetilde{\boldsymbol{\beta}}_{M}^{t} \mathbf{x}_{i} Y_{i} - \ln \left(1 + \exp(\widetilde{\boldsymbol{\beta}}_{M})^{t} \mathbf{x}_{i} \right) \right\},\\ \text{where } \mathcal{B}_{M} &= \{ \boldsymbol{\beta} \in \mathbb{R}^{d} : \beta_{j} = 0 \text{ iff } j \notin M \}\\ \widehat{\boldsymbol{M}} &= \arg \min_{M} \left\{ \sum_{i=1}^{n} \left(\ln \left(1 + \exp(\widehat{\boldsymbol{\beta}}_{M}^{t} \mathbf{x}_{i}) \right) - \widehat{\boldsymbol{\beta}}_{M}^{t} \mathbf{x}_{i} Y_{i} \right) + Pen(|\boldsymbol{M}|) \right\}\\ \widehat{\boldsymbol{p}}_{\widehat{\boldsymbol{M}}}(\mathbf{x}) &= \frac{\exp(\widehat{\boldsymbol{\beta}}_{\widehat{\boldsymbol{M}}}^{t} \mathbf{x})}{1 + \exp(\widehat{\boldsymbol{\beta}}_{\widehat{\boldsymbol{M}}}^{t} \mathbf{x})}\\ \widehat{\boldsymbol{\eta}}_{\widehat{\boldsymbol{M}}}(\mathbf{x}) &= l(\widehat{\boldsymbol{p}}_{\widehat{\boldsymbol{M}}}(\mathbf{x}) \geq 1/2) = l(\widehat{\boldsymbol{\beta}}_{\widehat{\boldsymbol{M}}}^{t} \mathbf{x} \geq 0) \end{split}$$

イロト 不得 ト イヨト イヨト

Complexity Penalties

• linear-type penalties $Pen(|M|) = \lambda |M|$

$$\begin{split} \lambda &= 1 & \text{AIC (Akaike, '73)} \\ \lambda &= \ln(n)/2 & \text{BIC (Schwarz, '78)} \\ \lambda &= \ln d & \text{RIC (Foster and George, '94)} \end{split}$$

イロト 不得 ト イヨト イヨト

Complexity Penalties

• linear-type penalties $Pen(|M|) = \lambda |M|$

 $\lambda = 1$ AIC (Akaike, '73) $\lambda = \ln(n)/2$ BIC (Schwarz, '78) $\lambda = \ln d$ RIC (Foster and George, '94)

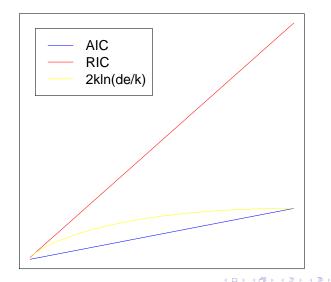
 k ln(d/k)-type nonlinear penalties Pen(|M|) ~ C|M|ln(de/|M|) (Birgé and Massart, '01, '07; Bunea et al. '07; AG '10 for Gaussian regression; AG '16 for GLM)

$$k \ln(d/k) \sim \ln \begin{pmatrix} d \\ k \end{pmatrix}$$
 – log(number of models of size k)

In addition, for classification, $k \ln(d/k) \sim VC(C(k))$ (recall Lemma)

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Various complexity penalties



Let $supp(f(\mathbf{x}))$ be bounded, w.l.o.g. $||\mathbf{x}||_2 \leq 1$ for all $x \in \mathcal{X}$

Assumption (boundedness)

There exists $0 < \delta < 1/2$ such that $\delta < p(\mathbf{x}) < 1 - \delta$ or, equivalently, there exists $C_0 > 0$ such that $|\beta^t \mathbf{x}| < C_0$ for all $\mathbf{x} \in \mathcal{X}$.

The assumption prevents the variance $Var(Y) = p(\mathbf{x})(1 - p(\mathbf{x}))$ to be infinitely close to zero.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Excess risk bounds

Theorem (upper bound)

Under the boundedness assumption, for $Pen(|M|) = C|M|\ln\left(\frac{de}{|M|}\right)$,

$$\sup_{\eta \in \mathcal{C}(d_0)} \mathcal{E}(\hat{\eta}_{\widehat{\mathcal{M}}}, \eta^*) \le C(\delta) \, \sqrt{\frac{d_0 \ln \frac{de}{d_0}}{n}}$$

The idea of the proof:

1
$$\mathcal{E}(\hat{\eta}_{\widehat{M}}, \eta^*) \leq \sqrt{2} EKL(p^*, \hat{p}_{\widehat{M}})$$
 (Zhang '04; Bartlett *et al.* '06)
2 $\text{sup}_{\widehat{\mathcal{A}} \in \mathcal{B}(d_0)} EKL(p^*, \hat{p}_{\widehat{M}}) = O\left(\frac{d_0 \ln \frac{d_e}{d_0}}{n}\right)$ (AG '16)

- A IB IN A IB IN

Excess risk bounds

Theorem (upper bound)

Under the boundedness assumption, for $Pen(|M|) = C|M|\ln\left(\frac{de}{|M|}\right)$,

$$\sup_{\eta \in \mathcal{C}(d_0)} \mathcal{E}(\hat{\eta}_{\widehat{M}}, \eta^*) \leq C(\delta) \, \sqrt{\frac{d_0 \ln \frac{de}{d_0}}{n}}$$

The idea of the proof:

Recall the lower bound for $2 \le d_0 \ln \left(\frac{de}{d_0} \right) \le n$:

$$\inf_{\tilde{\eta}} \sup_{\eta * \in \mathcal{C}(d_0), f(\mathbf{x})} \mathcal{E}(\tilde{\eta}, \eta^*) \geq C \sqrt{\frac{VC(\mathcal{C}(d_0))}{n}} \geq C \sqrt{\frac{d_0 \ln \frac{d_e}{d_0}}{n}}$$

Tighter bounds under the additional low-noise condition

The main challenges are near the hyperplane $\beta^t \mathbf{x} = 0$, where $p(\mathbf{x}) = 1/2$.

Assumption (low-noise condition)

 $P(|p(\mathbf{X}) - 1/2| \le h) \le Ch^{\alpha}, \quad \alpha \ge 0 \quad (\text{Tsybakov '04})$

- $\alpha = 0$ no assumptions on the noise (as previously)
- $\alpha = \infty$ there exists a "corridor" of width $2 \ln \frac{1+2h}{1-2h}$ that separates the sets $\{\mathbf{x} : \beta^t \mathbf{x} > 0\}$ and $\{\mathbf{x} : \beta^t \mathbf{x} < 0\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Tighter bounds under the additional low-noise condition

The main challenges are near the hyperplane $\beta^t \mathbf{x} = 0$, where $p(\mathbf{x}) = 1/2$.

Assumption (low-noise condition)

 $P(|p(\mathbf{X}) - 1/2| \le h) \le Ch^{\alpha}, \quad \alpha \ge 0 \quad (\text{Tsybakov '04})$

• $\alpha = 0$ – no assumptions on the noise (as previously)

• $\alpha = \infty$ - there exists a "corridor" of width $2 \ln \frac{1+2h}{1-2h}$ that separates the sets $\{\mathbf{x} : \beta^t \mathbf{x} > 0\}$ and $\{\mathbf{x} : \beta^t \mathbf{x} < 0\}$

Under the low-noise assumption, for all $1 \le d_0 \le \min(d, n)$ and all $\alpha \ge 0$,

$$\sup_{\eta\in\mathcal{C}(d_0)}\mathcal{E}(\hat{\eta}_{\widehat{M}},\eta^*)\leq \left(C(\delta)\;\frac{d_0\ln\frac{de}{d_0}}{n}\right)^{\frac{\alpha+1}{\alpha+1}}$$

 $\widehat{\eta}_{\widehat{M}}$ is rate-optimal and adaptive to both d_0 and α .

御下 くきと くきとうき

Computational aspects

$$\widehat{M} = \arg\min_{M} \left\{ -\ell(M) + Pen(|M|) \right\}$$

combinatorial search over 2^d models (NP problem)

< □ > < □ > < □ > < □ > < □ > < □ >

Computational aspects

$$\widehat{M} = \arg\min_{M} \left\{ -\ell(M) + Pen(|M|) \right\}$$

combinatorial search over 2^d models (NP problem)

 Greedy algorithms (e.g., forward selection) – approximate the global solution by a stepwise sequence of local ones (require strong constraints on design)

Felix Abramovich (Tel Aviv University) High-dimensional classification by sparse logis

Computational aspects

$$\widehat{M} = \arg\min_{M} \left\{ -\ell(M) + Pen(|M|) \right\}$$

combinatorial search over 2^d models (NP problem)

- Greedy algorithms (e.g., forward selection) approximate the global solution by a stepwise sequence of local ones (require strong constraints on design)
- Convex relaxation methods replace the original combinatorial problem by some convex surrogate

Convex relaxation methods

Recall that $||\mathbf{x}||_2 \leq 1$.

• logistic Lasso (for linear penalties): $||\hat{eta}||_0
ightarrow ||\hat{eta}||_1$

$$\hat{\boldsymbol{\beta}}_{Lasso} = \arg\min_{\boldsymbol{\beta}} \left\{ -\frac{1}{n}\ell(\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_1 \right\}$$

► fixed $\lambda \propto \sqrt{\frac{\ln d}{n}}$: rate-suboptimal (up to an extra log-factor: $O(\sqrt{\frac{d_0 \ln d}{n}}))$ (van de Geer '08, Bellec *et al.* '16)

 adaptively chosen λ : rate-optimal (O(√(doln(de/do))/n)) (Bellec et al. '16 for Gaussian regression; conjecture for classification)

< □ > < □ > < □ > □ = =

Convex relaxation methods

Recall that $||\mathbf{x}||_2 \leq 1$.

• logistic Lasso (for linear penalties): $||\hat{m{eta}}||_0
ightarrow ||\hat{m{eta}}||_1$

$$\hat{\boldsymbol{\beta}}_{Lasso} = \arg\min_{\boldsymbol{\beta}} \left\{ -\frac{1}{n}\ell(\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_1 \right\}$$

► fixed $\lambda \propto \sqrt{\frac{\ln d}{n}}$: rate-suboptimal (up to an extra log-factor: $O(\sqrt{\frac{d_0 \ln d}{n}}))$ (van de Geer '08, Bellec *et al.* '16)

• adaptively chosen λ : rate-optimal $\left(O\left(\sqrt{\frac{d_0 \ln(de/d_0)}{n}}\right)\right)$ (Bellec *et al.* '16 for Gaussian regression; conjecture for classification)

• logistic Slope:
$$k \ln(2d/k) \sim \sum_{j=1}^{k} \ln(2d/j)$$

 $\hat{\beta}_{Slope} = \arg \min_{\beta} \left\{ -\frac{1}{n} \ell(\beta) + \sum_{j=1}^{d} \lambda_j |\beta|_{(j)} \right\}, \quad \lambda_1 \ge \ldots \ge \lambda_d > 0$
 $\lambda_j \propto \sqrt{\frac{\ln(2d/j)}{n}} : \text{rate-optimal } \left(O(\sqrt{\frac{d_0 \ln(de/d_0)}{n}}) \right) \quad (AG '19)$

< □ > < □ > < □ > □ = =

Multiclass classification

• appears in a variety applications, a lot of methods

• much less theory behind

▲ 国 ▶ | ▲ 国 ▶

Multiclass classification

• appears in a variety applications, a lot of methods

much less theory behind

Main approaches :

reduction to a series of binary classifications

- One-vs-All each class is compared against all others
- One-vs-One all pairs of classes are compared to each other
- extensions of binary classification approaches

Multiclass classification

•
$$(\mathbf{X}, Y) \sim \mathcal{F} : Y | \mathbf{X} = \mathbf{x} \sim Mult(p_1(\mathbf{x}), \dots, p_L(\mathbf{x})), \ \mathbf{X} \in \mathbb{R}^d \sim f(\mathbf{x})$$

- Classifier $\eta : \mathbb{R}^d \to \{1, \dots, L\}$
- Missclassification error $R(\eta) = P(Y \neq \eta(\mathbf{x}))$
- Bayes classifier $\eta^*(\mathbf{x}) = \arg \max_{1 \le j \le L} p_j(\mathbf{x}),$ $R(\eta^*) = 1 - E_{\mathbf{X}} (\max_{1 \le j \le L} p_j(\mathbf{X}))$

Misclassification excess risk $\mathcal{E}(\hat{\eta}, \eta^*) = ER(\hat{\eta}) - R(\eta^*)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Multinomial logistic regression

$$\mathbf{Y} \sim Mult(p_1(\mathbf{x}), \dots, p_L(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^d, \ \sum_{j=1}^L p_j(\mathbf{x}) = 1$$

$$\theta_j = \ln \frac{p_j(\mathbf{x})}{p_L(\mathbf{x})} = \beta_j^t \mathbf{x}, \quad p_j(\mathbf{x}) = \frac{\exp\left(\beta_j^t \mathbf{x}\right)}{\sum_{k=1}^L \exp\left(\beta_k^t \mathbf{x}\right)}, \quad j = 1, \dots, L; \ \beta_L = \mathbf{0}$$

(the choice of the reference class is arbitrary)

To each Y assign the corresponding indicator vector $\boldsymbol{\xi} \in \{0,1\}^L$

MLE: $B \in \mathbb{R}^{d \times L}$ – matrix of regression coefficients ($B_{L} = \mathbf{0}$)

$$\ell(B) = \sum_{i=1}^{n} \left\{ \mathbf{x}_{i}^{t} B \boldsymbol{\xi}_{i} - \ln \sum_{l=1}^{L} \exp(\beta_{l}^{t} \mathbf{x}_{i}) \right\} \to \max_{B}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sparse multinomial logistic regression

- for multiclass setup there are various ways to define sparsity
- global sparsity: part of features do not have any impact on classification at all, i.e. $B_{j.} = \mathbf{0}$

• for a given model
$$M \subseteq \{1, ..., d\}$$

• $|M| = \#\{\text{non} - \text{zero rows of } B\} = r_B$
 $\widehat{B}_M = \arg \max_{\widetilde{B} \in \mathcal{B}_M} \sum_{i=1}^n \left\{ \mathbf{X}_i^t \widetilde{B} \boldsymbol{\xi}_i - \ln \sum_{l=1}^L \exp(\widetilde{\beta}_l^t \mathbf{X}_i) \right\},$
where $\mathcal{B}_M = \{B \in \mathbb{R}^{d \times L} : B_{\cdot L} = \mathbf{0}, \text{ and } B_{j \cdot} = \mathbf{0} \text{ iff } j \notin M\}$
• $\widehat{M} = \arg \min_M \{-\ell(\widehat{B}_M) + Pen(|M|)\}$
• $\widehat{\eta}_{\widehat{M}} = \arg \max_{1 \le l \le L} \widehat{\beta}_{\widehat{M}l}^t \mathbf{x}$

 $\mathcal{C}_L(d_0) = \{\eta(\mathbf{x}) = \arg \max_{1 \le l \le L} \beta_l^t \mathbf{x} : B \in \mathbb{R}^{d \times L}, \ B_{\cdot L} = \mathbf{0} \text{ and } r_B \le d_0\}$

Assumption (boundedness)

There exists $0 < \delta < 1/2$ such that $\delta \le p_l(\mathbf{x}) \le 1 - \delta$ or, equivalently, $|\beta_l^t \mathbf{x}| < C_0$ with $C_0 = \ln \frac{1-\delta}{\delta}$ for all l = 1, ..., L and $\mathbf{x} \in \mathcal{X}$.

Consider the complexity penalty

$$Pen(|M|) = C_1 \underbrace{|M|(L-1)}_{\text{\# parameters,AIC}} + C_2 \underbrace{|M| \ln\left(\frac{de}{|M|}\right)}_{\text{log}(\text{\# models of size } |M|)}$$

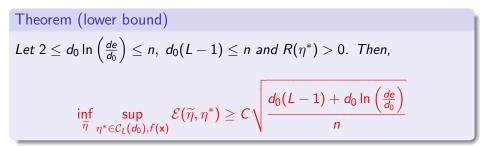
Theorem (upper bound)

Assume d_0 -sparse multinomial logistic regression model. Under the boundedness assumption,

$$\sup_{\eta^* \in \mathcal{C}_L(d_0)} \mathcal{E}(\widehat{\eta}_{\widehat{M}}, \eta^*) \leq C(\delta) \sqrt{\frac{d_0(L-1) + d_0 \ln\left(\frac{de}{d_0}\right)}{n}}$$

1 1 1

Excess risk bounds



The idea of the proof:

the error cannot be smaller than that for binary classification :

$$Error \geq C \sqrt{rac{d_0 \ln \left(rac{de}{d_0}
ight)}{n}}$$
 (see above)

2 for a given true (oracle) model with $|M_0| = d_0$:

Error $\geq C\sqrt{\frac{d_0(L-1)}{n}}$ – via multiclass extension of VC (Daniely *et al.*, '12, '15)

ヘロト 人間 とくき とくき とうき

Two regimes

Small number of classes: $L \le 2 + \ln \frac{d}{d_0}$

- $Pen(|M|) \sim |M| \ln \frac{de}{|M|}$
- the error is of the order $\sqrt{\frac{d_0 \ln\left(\frac{de}{d_0}\right)}{n}}$ (does not depend on *L*, binary case)

Solution 2 Sector 2

•
$$Pen(|M|) \sim |M|(L-1)$$
 (AIC)

• the error is of the order $\sqrt{\frac{d_0(L-1)}{n}}$ (regardless of d)

(a) $L > \frac{n}{d_0}$ – consistent classification is impossible

As before, the rates can be improved under the additional low-noise condition $P(p_{(1)}(\mathbf{X}) - p_{(2)}(\mathbf{X}) \le h) \le Ch^{\alpha}$

(日本・御をくぼをくぼす)。

Multinomial logistic group Lasso

B has a a row-wise sparsity. Let $|B|_j = ||B_{j\cdot}||_2 \ , \ \ ||\mathbf{x}||_2 \leq 1$

$$\widehat{B}_{gL} = \arg\min_{\widetilde{B}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\ln\left(\sum_{l=1}^{L} \exp(\widetilde{\beta}_{l}^{t} \mathbf{x}_{i}) \right) - \mathbf{x}_{i}^{t} \widetilde{B} \xi_{i} \right) + \lambda \sum_{j=1}^{d} |\widetilde{B}|_{j} \right\}$$

ith $\lambda \sim \sqrt{\frac{L+\ln d}{n}}$

Under the boundedness assumption,

w

$$\sup_{\eta^* \in \mathcal{C}_L(d_0)} \mathcal{E}(\widehat{\eta}_{gL}, \eta^*) \leq C(\delta) \sqrt{\frac{d_0(L-1) + d_0 \ln d}{n}}$$

(sub-optimal)

<日

<</p>

Multinomial logistic group Slope

$$\widehat{B}_{gS} = \arg\min_{\widetilde{B}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\ln\left(\sum_{l=1}^{L} \exp(\widetilde{\beta}_{l}^{t} \mathbf{x}_{i}) \right) - \mathbf{x}_{i}^{t} \widetilde{B} \xi_{i} \right) + \sum_{j=1}^{d} \lambda_{j} |\widetilde{B}|_{(j)} \right\}$$
with $\lambda_{j} \sim \sqrt{\frac{L + \ln(d/j)}{n}}$

Under the boundedness assumption,

$$\sup_{\eta^* \in \mathcal{C}_L(d_0)} \mathcal{E}(\widehat{\eta}_{gS}, \eta^*) \le C(\delta) \sqrt{\frac{d_0(L-1) + d_0 \ln \frac{de}{d_0}}{n}}$$
(optimal)

æ

(本間) (本語) (本語) (二)

Future work/extensions

 different types of sparsity (e.g., double sparsity: nonzero rows are also sparse – multinomial logistic sparse group Slope

$$\begin{split} \widehat{B}_{sgS} &= \arg\min_{\widetilde{B}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\ln\left(\sum_{l=1}^{L} \exp(\widetilde{\beta}_{l}^{t} \mathbf{x}_{i}) \right) - \mathbf{x}_{i}^{t} \widetilde{B} \xi_{i} \right) \\ &+ \sum_{j=1}^{d} \lambda_{j} |\widetilde{B}|_{(j)} + \sum_{j=1}^{d} \sum_{l=1}^{L} \alpha_{l} |\widetilde{B}_{j(l)}| \right\} \end{split}$$

Future work/extensions

 different types of sparsity (e.g., double sparsity: nonzero rows are also sparse – multinomial logistic sparse group Slope

$$\begin{split} \widehat{B}_{sgS} &= \arg\min_{\widetilde{B}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\ln\left(\sum_{l=1}^{L} \exp(\widetilde{\beta}_{l}^{t} \mathbf{x}_{i}) \right) - \mathbf{x}_{i}^{t} \widetilde{B} \xi_{i} \right) \\ &+ \sum_{j=1}^{d} \lambda_{j} |\widetilde{B}|_{(j)} + \sum_{j=1}^{d} \sum_{l=1}^{L} \alpha_{l} |\widetilde{B}_{j(l)}| \right\} \end{split}$$

• different types of design (e.g., Gaussian, sub-Gaussian)

Future work/extensions

 different types of sparsity (e.g., double sparsity: nonzero rows are also sparse – multinomial logistic sparse group Slope

$$\begin{split} \widehat{B}_{sgS} &= \arg\min_{\widetilde{B}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\ln\left(\sum_{l=1}^{L} \exp(\widetilde{\beta}_{l}^{t} \mathbf{x}_{i}) \right) - \mathbf{x}_{i}^{t} \widetilde{B} \xi_{i} \right) \\ &+ \sum_{j=1}^{d} \lambda_{j} |\widetilde{B}|_{(j)} + \sum_{j=1}^{d} \sum_{l=1}^{L} \alpha_{l} |\widetilde{B}_{j(l)}| \right\} \end{split}$$

- different types of design (e.g., Gaussian, sub-Gaussian)
- cost-sensitive classification

Thank You!

æ

・ロト ・四ト ・ヨト ・ヨト