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Outline

@ Review on (binary) classification

@ High-dimensional (binary) classification by sparse logistic regression

» model, feature selection by penalized maximum likelihood
» theory: misclassification excess bounds, adaptive minimax classifiers

» computational issues: logistic Lasso and Slope

© Multiclass extensions

> sparse multinomial logistic regression

> theory

» multinomial logistic group Lasso and Slope
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Binary Classification

o (X,Y)~F:Y|X=x~B(1,p(x)), X €RY ~ f(x)
o Classifier n: R? — {0,1}
e Missclassification error R(n) = P(Y # n(x))

e Bayes classifier n*(x) = arg min, R(n)

n*(x) = H{p(x) = 1/2},  R(n*) = Ex (min(p(X), 1 — p(X)))
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Binary Classification

o (X,Y)~F:Y[X=xn~B(1p(x) XeR~ f(x)

Classifier n : RY — {0, 1}

Missclassification error R(n) = P(Y # n(x))
e Bayes classifier n*(x) = arg min, R(n)
n*(x) = H{p(x) = 1/2},  R(n*) = Ex (min(p(X), 1 — p(X)))

e Data D = (X1, Y1),...,(Xpn, Yn)) ~ F
(conditional) Missclassification error R(7)) = P(Y # /(x)|D)

Misclassification excess risk £(7}, ") = ER(}) — R(n*)
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Vapnik-Chervonenkis (VC) dimension

Definition
Let C be a set of classifiers. VC(C) is the maximal number of points in X
that can be arbitrarily classified by classifiers in C.
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Vapnik-Chervonenkis (VC) dimension

Definition
Let C be a set of classifiers. VC(C) is the maximal number of points in X
that can be arbitrarily classified by classifiers in C.

Example: VC of linear classifiers C = {n(x) = I{3'x > 0}, 3 € RY}
° X =R? C={n(x) = {Bo+ Bixi + foxo > 0} VC(C) =3 (=d)

4 points

3 points shattered
i Impossible

o X=RI1 BRI (xp=1) VC({C)=d

(Tel Aviv University)  High-dimensional classification by sparse logis; 4/29



Example: VC of sine classifiers: X = R,

C={nlx) =

I{x > sin(0x), 6 > 0}
Can classify any finite subset of points, VC(C) = oo
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Minimax lower bound

Minimax lower bound. Let 2 < VC(C) < oo, n > VC(C) and R(n*) > 0.
Then,

VC
inf sup &(ff,n") = C ©)
i nrec,f(x) n
(e.g., Devroye, Gyorfi and Lugosi, '96).
In particular, for linear classifiers
) L. d
inf sup  &(7],n") = Cy/—
M n*eC,f(x) n
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Two main approaches

1. Empirical Risk Minimization (ERM)

. 1<
= in R(n) = in—>» I(Y; i
i) = arg min (n) arggpelgn;_l (Yi # n(xi))

o well-developed theory

(Devroye, Gyorfi and Lugosi '96; Vapnik '00; see also Boucheron,
Bousquet and Lugosi '05 for review)

vC
sup E(,n") < C veee) (optimal order)
n*EC n

e computationally infeasible, various convex surrogates (e.g., SVM)
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2. Plug-in Classifiers

@ estimate p(x) from the data

(e.g, (parametric) logistic regression: In 1f(px()x) = B'x or

nonparametic: Yang '99, Koltchinskii and Beznosova '05, Audibert
and Tsybakov '07)

o plug-in fi(x) = 1(p(x) > 1/2)
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2. Plug-in Classifiers

@ estimate p(x) from the data

(e.g, (parametric) logistic regression: In 1f(px()x) = B'x or

nonparametic: Yang '99, Koltchinskii and Beznosova '05, Audibert
and Tsybakov '07)

o plug-in fi(x) = 1(p(x) > 1/2)

Logistic regression classifier
Q In- P& _ gty

1-p(x)

@ estimate 3 by MLE

@ plug-in 7j = I(p(x) > 1/2) = I(,@tx >0) — linear classifier
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Big Data era — curse of dimensionality

For large d classification without feature (model) selection is as bad as
Just pure random guessing (e.g., Bickel and Levina '04; Fan and Fan '08)
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Big Data era — curse of dimensionality

For large d classification without feature (model) selection is as bad as
Just pure random guessing (e.g., Bickel and Levina '04; Fan and Fan '08)

Sparse logistic regression classifier

@ model/feature selection — M

@ plug-in g = I(Bx > 0)
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Sparse logistic regression

o (X,Y)~F:Y|X=x~ B(1,p(x), X€R?~ f(x)

o logit(p(x)) = In 1’_’(px()x) = B'x

@ sparsity assumption: ||3||o < do
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Sparse logistic regression
o (X,Y)~F:Y|X=x~ B(1,p(x), X€R?~ f(x)
o logit(p(x)) = p(x)) = B'x

@ sparsity assumption: ||3||o < do

Lemma (thanks to Noga Alon)
Let C(do) = {n(x) = {B'x > 0} : B € RY, ||Bllo < do}.

2
il (;;’) < VC(C(do)) < 2db log, <Z§>, e

VC(C(do)) ~ don (Zj)
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Model /feature selection by penalized MLE
e For a given model M C {1,...,d}, MLE:

B = arg max 3" {Bhox¥i — 1o (14 e0(Bu'x) )

where By = {3 €RY: 3, = 0iff j ¢ M}
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Model /feature selection by penalized MLE
o For a given model M C {1,...,d}, MLE:
Bua = arg max 3 (B ¥s — n (14 en(B)x) ).
where By = {3 €RY: 3, = 0iff j ¢ M}

o M= arg minyy {27:1 (In <1 + exp(,@;wx,-)) — BLX,’Y;) + Pen(|l\/l|)}

~t

. exp(Bx

() = PP
1+ exp(Byx)

Aa(x) = 1Py (x) > 1/2) = 1(Bx > 0)
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Complexity Penalties

@ linear-type penalties Pen(|M|) = A|M|
A=1 AIC (Akaike, '73)

A =1In(n)/2 BIC (Schwarz, '78)

A=Ind RIC (Foster and George, '94)
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Complexity Penalties

@ linear-type penalties Pen(|M|) = A|M|
A=1 AIC (Akaike, '73)
A =1In(n)/2 BIC (Schwarz, '78)

A=Ind RIC (Foster and George, '94)

@ kln(d/k)-type nonlinear penalties Pen(|M|) ~ C|M|In(de/|M|)
(Birgé and Massart, '01, '07; Bunea et al. '07; AG '10 for Gaussian
regression; AG '16 for GLM)

kin(d/k) ~ In <Z> — log(number of models of size k)

In addition, for classification, k In(d/k) ~ VC(C(k)) (recall Lemma)
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Various complexity penalties

— AC
— RIC
2kin(de/k)

Pen(k)
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Let supp(f(x)) be bounded, w.l.o.g. ||x|[2 <1 forall x € X

Assumption (boundedness)

There exists 0 < § < 1/2 such that 6 < p(x) < 1 — 0 or, equivalently,
there exists Co > 0 such that |3'x| < G for all x € X.

The assumption prevents the variance Var(Y) = p(x)(1 — p(x)) to be
infinitely close to zero.
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Excess risk bounds

Theorem (upper bound)

Under the boundedness assumption, for Pen(|M|) = C|M|In <dw>

do In %
sup E(fgn*) < C(8) {| —=
nec(do) n

The idea of the proof:

@ E(fgn*) < /2 EKL(p*, By;) (Zhang '04; Bartlett et al. '06)

N doIn de
@ supg4,) EKL(P", Py) = O (u) (AG '16)
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Excess risk bounds

Theorem (upper bound)
Under the boundedness assumption, for Pen(|M|) = C|M|In <dw>

The idea of the proof:
@ E(fgn*) < /2 EKL(p*, By;) (Zhang '04; Bartlett et al. '06)

de
(2] SUP BeB(d) EKL(p*,pg) = O < (AG '16)
<n

Recall the lower bound for 2 < dgIn ( )

. dO do In
inf  sup \/
" nxeC(do),f(x)
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Tighter bounds under the additional low-noise condition

The main challenges are near the hyperplane 3'x = 0, where p(x) = 1/2.

Assumption (low-noise condition)
P(|p(X) —1/2| < h) < Ch*, «a >0 (Tsybakov'04) J

@ a = 0 — no assumptions on the noise (as previously)

@ a = oo — there exists a “corridor” of width 2 In 12" that separates
the sets {x : B'x > 0} and {x: B'x < 0}

1-2h
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Tighter bounds under the additional low-noise condition
The main challenges are near the hyperplane 3'x = 0, where p(x) = 1/2.

Assumption (low-noise condition)

P(|p(X) —1/2| < h) < Ch*, «a >0 (Tsybakov'04) }

@ a = 0 — no assumptions on the noise (as previously)

@ a = oo — there exists a “corridor” of width 2In % that separates
the sets {x : B'x > 0} and {x: B'x < 0}

Under the low-noise assumption, for all 1 < dy < min(d, n) and all & > 0,

do In %€ o
sup E(fig,n") < (C(5) °>
neC(do) n

7 is rate-optimal and adaptive to both dp and a.
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Computational aspects

~

M = argmin {—((M) + Pen(|M])}

combinatorial search over 2¢ models (NP problem)
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Computational aspects

M = arg ml\jln {=€(M) + Pen(|M|)}
combinatorial search over 2¢ models (NP problem)

o Greedy algorithms (e.g., forward selection) — approximate the global
solution by a stepwise sequence of local ones

(require strong constraints on design)
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Computational aspects

M = arg ml\jln {=€(M) + Pen(|M|)}
combinatorial search over 2¢ models (NP problem)

o Greedy algorithms (e.g., forward selection) — approximate the global
solution by a stepwise sequence of local ones

(require strong constraints on design)

@ Convex relaxation methods — replace the original combinatorial
problem by some convex surrogate
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Convex relaxation methods

Recall that ||x||2 < 1.

e logistic Lasso (for linear penalties): [|3||o — ||8|]1
IBLasso = arg minﬁ {_%6(6) + )‘HﬁHl}

Ind . H .
. rate-suboptimal (up to an extra log-factor:

O(y/%"9))  (van de Geer '08, Bellec et al. '16)

» adaptively chosen A : rate-optimal (O( M)
(Bellec et al. '16 for Gaussian regression; conjecture for classification)

» fixed \ o
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Convex relaxation methods

Recall that ||x||2 < 1.

e logistic Lasso (for linear penalties): [|3||o — ||8|]1
IBLasso = arg minﬁ {_%6(6) + )‘HﬁHl}

Ind . H .
. rate-suboptimal (up to an extra log-factor:

O(y/%"9))  (van de Geer '08, Bellec et al. '16)

do In(de/dg) )
n

» fixed \ o

» adaptively chosen A : rate-optimal (O(
(Bellec et al. '16 for Gaussian regression; conjecture for classification)

o logistic Slope: kIn(2d/k) ~ 3K, In(2d/j)

Bstope = argming {—%g(ﬁ) +30 Aj‘ﬁ‘(j)} ;A= > A >0
Aj o \/M . rate-optimal (O( M) (AG '19)
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Multiclass classification

@ appears in a variety applications, a lot of methods

@ much less theory behind
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Multiclass classification

@ appears in a variety applications, a lot of methods

@ much less theory behind

Main approaches :

© reduction to a series of binary classifications

» One-vs-All — each class is compared against all others

» One-vs-One — all pairs of classes are compared to each other

@ extensions of binary classification approaches
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Multiclass classification

o (X,Y)~F:Y|X=xn~ Mult(pi(x),...,p(x), X € RY ~ f(x)
o Classifier n: RY — {1,...,L}
e Missclassification error R(n) = P(Y # n(x))

e Bayes classifier n*(x) = argmaxi<j<; pj(x),
R(™) =1 = Ex(maxi<j<t pj(X))

Misclassification excess risk £(7,n*) = ER(7}) — R(n*)
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Multinomial logistic regression

L
Y ~ Mult(py(x), ..., pL(x)), x€R?, D pi(x)=1
j=1

pi(x) — Btx (x) = exp (Bjtx)
pu(x) T Al Y1 exp (Bx)

(the choice of the reference class is arbitrary)
To each Y assign the corresponding indicator vector £ € {0,1}-

MLE: B € R¥*L — matrix of regression coefficients (B., = 0)

n

L
UB) = Z {xfBﬁ,- - InZexp(,@,tx,-)} — max
=1

i=1
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Sparse multinomial logistic regression

o for multiclass setup there are various ways to define sparsity

@ global sparsity: part of features do not have any impact on
classification at all, i.e. B;. =0

e for a given model M C {1,... d}

» |M| = #{non — zero rows of B} = rg

L
By = arg max Z {XtBS In Zexp(ﬁfxi)},
=1

BeBw i
where By = {B e Rt : B, =0, and B;. =0 iff j ¢ M}
o M = argminy{—€(By) + Pen(|M|)}

~ ~t
@ 7y = arg maxi<i<t Bjx
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Cr(do) = {n(x) = argmaxy<j<, Bix: BeR¥*L B, =0and rg < do}
Assumption (boundedness)

There exists 0 < 6 < 1/2 such that 6 < pj(x) <1 — ¢ or, equivalently,
1Bix| < Co with Co =In%52 forall I =1,...,L andx € X.

Consider the complexity penalty

Pen(IM)) = Ci [M|(L—1) + G |I\/I|In<de>

# parameters,AIC S—
log(# models of size |M])

Theorem (upper bound)

Assume dy-sparse multinomial logistic regression model. Under the
boundedness assumption,

o do(L — 1) + doln (‘j,f)
sup  E(Ng,n") < C(6)
n*€Cy(do) n
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Excess risk bounds

Theorem (lower bound)

Let 2 < dgln ( ) < n, do(L —1) < n and R(*) > 0. Then,

do(L — 1) + doln (%0)
inf sup E(mn*)>C
N n*€CL(do),F(x) n

The idea of the proof:

@ the error cannot be smaller than that for binary classification :

do!
Error > C L(d") (see above)

@ for a given true (oracle) model with |Mp| = dp :

Error > Cy/ M — via multiclass extension of VC (Daniely et al., '12, '15)
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Two regimes

@ Small number of classes:L < 2 +In dio
» Pen(|M]) ~ \M\In ‘M‘

dolIn( g
> the error is of the order % (does not depend on L, binary case)

@ Large number of classes: 2 + In d% <L< g
» Pen(|M|) ~ |M|(L— 1) (AIC)

doLl

> the error is of the order ) (regardless of d)

QL> dﬂo — consistent classification is impossible

As before, the rates can be improved under the additional low-noise
condition P (p(l)(X) — p(2)(X) S h) S Ch“
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Multinomial logistic group Lasso

B has a a row-wise sparsity. Let |B|; = ||Bj.|l2, |[]x|[2<1

n L d
. 1 ~t - -
Bg = arg m|n . 1 ( (Z exp(ﬁ,x;)) - xfo;) + )\z; |B|;
= j=
with A ~ |/ EHnd

Under the boundedness assumption,

. do(L—1)+ doInd
sup  E(MgL,n*) < C(5)\/ ol )+ do
n*€Cyr(do) n

(sub-optimal)
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Multinomial logistic group Slope

n L d
~ 1 ~t 5 R
Bgs = arg m|n N ( <Z exp(,@,x;)) - XfB§i> + Z )‘j’B’(J')

i=1 j=1

L+In(d/j)

with ) ~

Under the boundedness assumption,

o, do(L — 1) + do In <&
sup  E(7gs,n") < C(5)\/ %
n*€Cy(do) n

(optimal)
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Future work /extensions

o different types of sparsity (e.g., double sparsity: nonzero rows are also
sparse — multinomial logistic sparse group Slope

gsgs = arg mln{ Z (In (Z exp( ,x, ) —xféf,-)
B

i=1

+Z/\ ’B‘(J)—FZZCK/’B

j=1I1=1
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Future work /extensions

o different types of sparsity (e.g., double sparsity: nonzero rows are also
sparse — multinomial logistic sparse group Slope

gsgg = arg mln{ Z (In (Z exp ,B,x ) —xféf,-)
B

i=1

+Z/\ ’B‘(])—FZZQ/’B

j=1I1=1

o different types of design (e.g., Gaussian, sub-Gaussian)
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Future work /extensions

o different types of sparsity (e.g., double sparsity: nonzero rows are also
sparse — multinomial logistic sparse group Slope

§sg5 = arg m’;n{ Z (In (Z exp ,B,x ) —xféf,-)

i=1

+ZA VB\UWZZO"’B

j=1I1=1

o different types of design (e.g., Gaussian, sub-Gaussian)

@ cost-sensitive classification
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Thank You!
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