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Binary Classification

(X,Y ) ∼ F : Y |X = x ∼ B(1, p(x)), X ∈ Rd ∼ f (x)

Classifier η : Rd → {0, 1}

Missclassification error R(η) = P(Y 6= η(x))

Bayes classifier η∗(x) = arg minη R(η)

η∗(x) = I{p(x) ≥ 1/2}, R(η∗) = EX (min(p(X), 1− p(X)))

Data D = (X1,Y1), . . . , (Xn,Yn)) ∼ F

(conditional) Missclassification error R(η̂) = P(Y 6= η̂(x)|D)

Misclassification excess risk E(η̂, η∗) = ER(η̂)− R(η∗)
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Vapnik-Chervonenkis (VC) dimension

Definition

Let C be a set of classifiers. VC (C) is the maximal number of points in X
that can be arbitrarily classified by classifiers in C.

Example: VC of linear classifiers C = {η(x) = I{βtx ≥ 0}, β ∈ Rd}

X = R2, C = {η(x) = I{β0 + β1x1 + β2x2 ≥ 0} VC (C) = 3 (= d)

X = Rd−1, β ∈ Rd (x0 = 1) VC (C) = d
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Example: VC of sine classifiers: X = R,
C = {η(x) = I{x ≥ sin(θx), θ > 0}

Can classify any finite subset of points, VC (C) =∞
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Minimax lower bound

Minimax lower bound. Let 2 ≤ VC (C) <∞, n ≥ VC (C) and R(η∗) > 0.
Then,

inf
η̃

sup
η∗∈C,f (x)

E(η̃, η∗) ≥ C

√
VC (C)

n

(e.g., Devroye, Györfi and Lugosi, ’96).

In particular, for linear classifiers

inf
η̃

sup
η∗∈C,f (x)

E(η̃, η∗) ≥ C

√
d

n
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Two main approaches

1. Empirical Risk Minimization (ERM)

η̂ = arg min
η∈C

R̂(η) = arg min
η∈C

1

n

n∑
i=1

I (Yi 6= η(xi ))

well-developed theory
(Devroye, Györfi and Lugosi ’96; Vapnik ’00; see also Boucheron,
Bousquet and Lugosi ’05 for review)

sup
η∗∈C
E(η̂, η∗) ≤ C

√
VC (C)

n
(optimal order)

computationally infeasible, various convex surrogates (e.g., SVM)

Felix Abramovich (Tel Aviv University) High-dimensional classification by sparse logistic regression 7 / 29



2. Plug-in Classifiers

estimate p(x) from the data

(e.g, (parametric) logistic regression: ln p(x)
1−p(x) = βtx or

nonparametic: Yang ’99, Koltchinskii and Beznosova ’05, Audibert
and Tsybakov ’07)

plug-in η̂(x) = I (p̂(x) ≥ 1/2)

Logistic regression classifier

1 ln p(x)
1−p(x) = βtx

2 estimate β by MLE

3 plug-in η̂ = I (p̂(x) ≥ 1/2) = I (β̂
t
x ≥ 0) – linear classifier
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Big Data era – curse of dimensionality

For large d classification without feature (model) selection is as bad as
just pure random guessing (e.g., Bickel and Levina ’04; Fan and Fan ’08)

Sparse logistic regression classifier

1 model/feature selection – M̂

2 plug-in η̂
M̂

= I (β̂
t
M̂x ≥ 0)
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Sparse logistic regression

(X,Y ) ∼ F : Y |X = x ∼ B(1, p(x)), X ∈ Rd ∼ f (x)

logit(p(x)) = ln p(x)
1−p(x) = βtx

sparsity assumption: ||β||0 ≤ d0

Lemma (thanks to Noga Alon)

Let C(d0) = {η(x) = I{βtx ≥ 0} : β ∈ Rd , ||β||0 ≤ d0}.

d0 log2

(
2d

d0

)
≤ VC (C(d0)) ≤ 2d0 log2

(
de

d0

)
, i .e.

VC (C(d0)) ∼ d0 ln

(
de

d0

)
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Model/feature selection by penalized MLE

For a given model M ⊆ {1, . . . , d}, MLE:

β̂M = arg max
β̃∈BM

n∑
i=1

{
β̃
t

MxiYi − ln
(

1 + exp(β̃M)txi
)}
,

where BM = {β ∈ Rd : βj = 0 iff j /∈ M}

M̂ = arg minM

{∑n
i=1

(
ln
(

1 + exp(β̂
t

Mxi )
)
− β̂

t

MxiYi

)
+ Pen(|M|)

}
p̂
M̂

(x) =
exp(β̂

t

M̂x)

1 + exp(β̂
t

M̂x)

η̂
M̂

(x) = I (p̂
M̂

(x) ≥ 1/2) = I (β̂
t

M̂x ≥ 0)
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Complexity Penalties

linear-type penalties Pen(|M|) = λ|M|

λ = 1 AIC (Akaike, ’73)

λ = ln(n)/2 BIC (Schwarz, ’78)

λ = ln d RIC (Foster and George, ’94)

k ln(d/k)-type nonlinear penalties Pen(|M|) ∼ C |M| ln(de/|M|)
(Birgé and Massart, ’01, ’07; Bunea et al. ’07; AG ’10 for Gaussian

regression; AG ’16 for GLM)

k ln(d/k) ∼ ln

(
d

k

)
− log(number of models of size k)

In addition, for classification, k ln(d/k) ∼ VC (C(k)) (recall Lemma)
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(Birgé and Massart, ’01, ’07; Bunea et al. ’07; AG ’10 for Gaussian

regression; AG ’16 for GLM)

k ln(d/k) ∼ ln

(
d

k

)
− log(number of models of size k)

In addition, for classification, k ln(d/k) ∼ VC (C(k)) (recall Lemma)

Felix Abramovich (Tel Aviv University) High-dimensional classification by sparse logistic regression 12 / 29



Various complexity penalties

k

P
en

(k
)

AIC
RIC
2kln(de/k)
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Let supp(f (x)) be bounded, w.l.o.g. ||x||2 ≤ 1 for all x ∈ X

Assumption (boundedness)

There exists 0 < δ < 1/2 such that δ < p(x) < 1− δ or, equivalently,
there exists C0 > 0 such that |βtx| < C0 for all x ∈ X .

The assumption prevents the variance Var(Y ) = p(x)(1− p(x)) to be
infinitely close to zero.
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Excess risk bounds

Theorem (upper bound)

Under the boundedness assumption, for Pen(|M|) = C |M| ln
(

de
|M|

)
,

sup
η∈C(d0)

E(η̂
M̂
, η∗) ≤ C (δ)

√
d0 ln de

d0

n

The idea of the proof:

1 E(η̂
M̂
, η∗) ≤

√
2 EKL(p∗, p̂

M̂
) (Zhang ’04; Bartlett et al. ’06)

2 supβ∈B(d0) EKL(p∗, p̂
M̂

) = O

(
d0 ln de

d0
n

)
(AG ’16)

Recall the lower bound for 2 ≤ d0 ln
(
de
d0

)
≤ n :

inf
η̃

sup
η∗∈C(d0),f (x)

E(η̃, η∗) ≥ C

√
VC (C(d0))

n
≥ C

√
d0 ln de

d0

n
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Tighter bounds under the additional low-noise condition

The main challenges are near the hyperplane βtx = 0, where p(x) = 1/2.

Assumption (low-noise condition)

P(|p(X)− 1/2| ≤ h) ≤ Chα, α ≥ 0 (Tsybakov ′04)

α = 0 – no assumptions on the noise (as previously)

α =∞ – there exists a “corridor” of width 2 ln 1+2h
1−2h that separates

the sets {x : βtx > 0} and {x : βtx < 0}

Under the low-noise assumption, for all 1 ≤ d0 ≤ min(d , n) and all α ≥ 0,

sup
η∈C(d0)

E(η̂
M̂
, η∗) ≤

(
C (δ)

d0 ln de
d0

n

)α+1
α+2

η̂
M̂

is rate-optimal and adaptive to both d0 and α.
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Computational aspects

M̂ = arg min
M
{−`(M) + Pen(|M|)}

combinatorial search over 2d models (NP problem)

Greedy algorithms (e.g., forward selection) – approximate the global
solution by a stepwise sequence of local ones

(require strong constraints on design)

Convex relaxation methods – replace the original combinatorial
problem by some convex surrogate
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Convex relaxation methods

Recall that ||x||2 ≤ 1.

logistic Lasso (for linear penalties): ||β̂||0 → ||β̂||1
β̂Lasso = arg minβ

{
− 1

n`(β) + λ||β||1
}

I fixed λ ∝
√

ln d
n : rate-suboptimal (up to an extra log-factor:

O(
√

d0 ln d
n )) (van de Geer ’08, Bellec et al. ‘16)

I adaptively chosen λ : rate-optimal (O(
√

d0 ln(de/d0)
n )

(Bellec et al. ’16 for Gaussian regression; conjecture for classification)

logistic Slope: k ln(2d/k) ∼
∑k

j=1 ln(2d/j)

β̂Slope = arg minβ

{
− 1

n`(β) +
∑d

j=1 λj |β|(j)
}
, λ1 ≥ . . . ≥ λd > 0

λj ∝
√

ln(2d/j)
n : rate-optimal (O(

√
d0 ln(de/d0)

n ) (AG ’19)
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Multiclass classification

appears in a variety applications, a lot of methods

much less theory behind

Main approaches :

1 reduction to a series of binary classifications

I One-vs-All – each class is compared against all others

I One-vs-One – all pairs of classes are compared to each other

2 extensions of binary classification approaches
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Multiclass classification

(X,Y ) ∼ F : Y |X = x ∼ Mult(p1(x), . . . , pL(x)), X ∈ Rd ∼ f (x)

Classifier η : Rd → {1, . . . , L}

Missclassification error R(η) = P(Y 6= η(x))

Bayes classifier η∗(x) = arg max1≤j≤L pj(x),
R(η∗) = 1− EX (max1≤j≤L pj(X))

Misclassification excess risk E(η̂, η∗) = ER(η̂)− R(η∗)
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Multinomial logistic regression

Y ∼ Mult(p1(x), . . . , pL(x)), x ∈ Rd ,

L∑
j=1

pj(x) = 1

θj = ln
pj(x)

pL(x)
= βt

j x, pj(x) =
exp

(
βt
j x
)∑L

k=1 exp
(
βt
kx
) , j = 1, . . . , L; βL = 0

(the choice of the reference class is arbitrary)

To each Y assign the corresponding indicator vector ξ ∈ {0, 1}L

MLE: B ∈ Rd×L – matrix of regression coefficients (B·L = 0)

`(B) =
n∑

i=1

{
xtiBξi − ln

L∑
l=1

exp(βt
l xi )

}
→ max

B
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Sparse multinomial logistic regression

for multiclass setup there are various ways to define sparsity

global sparsity: part of features do not have any impact on
classification at all, i.e. Bj · = 0

for a given model M ⊆ {1, . . . , d}
I |M| = #{non− zero rows of B} = rB
I

B̂M = arg max
B̃∈BM

n∑
i=1

{
Xt

i B̃ξi − ln
L∑

l=1

exp(β̃
t

lXi )

}
,

where BM = {B ∈ Rd×L : B·L = 0, and Bj· = 0 iff j 6∈ M}

M̂ = arg minM{−`(B̂M) + Pen(|M|)}

η̂
M̂

= arg max1≤l≤L β̂
t

M̂lx
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CL(d0) = {η(x) = arg max1≤l≤L β
t
l x : B ∈ Rd×L, B·L = 0 and rB ≤ d0}

Assumption (boundedness)

There exists 0 < δ < 1/2 such that δ ≤ pl(x) ≤ 1− δ or, equivalently,
|βt

l x| < C0 with C0 = ln 1−δ
δ for all l = 1, . . . , L and x ∈ X .

Consider the complexity penalty

Pen(|M|) = C1 |M|(L− 1)︸ ︷︷ ︸
# parameters,AIC

+ C2 |M| ln
(

de

|M|

)
︸ ︷︷ ︸

log(# models of size |M|)

Theorem (upper bound)

Assume d0-sparse multinomial logistic regression model. Under the
boundedness assumption,

sup
η∗∈CL(d0)

E(η̂
M̂
, η∗) ≤ C (δ)

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n
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Excess risk bounds

Theorem (lower bound)

Let 2 ≤ d0 ln
(
de
d0

)
≤ n, d0(L− 1) ≤ n and R(η∗) > 0. Then,

inf
η̃

sup
η∗∈CL(d0),f (x)

E(η̃, η∗) ≥ C

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n

The idea of the proof:

1 the error cannot be smaller than that for binary classification :

Error ≥ C

√
d0 ln

(
de
d0

)
n (see above)

2 for a given true (oracle) model with |M0| = d0 :

Error ≥ C
√

d0(L−1)
n – via multiclass extension of VC (Daniely et al., ’12, ’15)
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Two regimes

1 Small number of classes:L ≤ 2 + ln d
d0

I Pen(|M|) ∼ |M| ln de
|M|

I the error is of the order

√
d0 ln

(
de
d0

)
n (does not depend on L, binary case)

2 Large number of classes: 2 + ln d
d0
< L < n

d0

I Pen(|M|) ∼ |M|(L− 1) (AIC)

I the error is of the order
√

d0(L−1)
n (regardless of d)

3 L > n
d0

– consistent classification is impossible

As before, the rates can be improved under the additional low-noise
condition P

(
p(1)(X)− p(2)(X) ≤ h

)
≤ Chα
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Multinomial logistic group Lasso

B has a a row-wise sparsity. Let |B|j = ||Bj ·||2 , ||x||2 ≤ 1

B̂gL = arg min
B̃

1

n

n∑
i=1

(
ln

(
L∑

l=1

exp(β̃
t

l xi )

)
− xti B̃ξi

)
+ λ

d∑
j=1

|B̃|j


with λ ∼

√
L+ln d

n

Under the boundedness assumption,

sup
η∗∈CL(d0)

E(η̂gL, η
∗) ≤ C (δ)

√
d0(L− 1) + d0 ln d

n

(sub-optimal)
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Multinomial logistic group Slope

B̂gS = arg min
B̃

1

n

n∑
i=1

(
ln

(
L∑

l=1

exp(β̃
t

l xi )

)
− xti B̃ξi

)
+

d∑
j=1

λj |B̃|(j)


with λj ∼

√
L+ln(d/j)

n

Under the boundedness assumption,

sup
η∗∈CL(d0)

E(η̂gS , η
∗) ≤ C (δ)

√
d0(L− 1) + d0 ln de

d0

n

(optimal)
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Future work/extensions

different types of sparsity (e.g., double sparsity: nonzero rows are also
sparse – multinomial logistic sparse group Slope

B̂sgS = arg min
B̃

{
1

n

n∑
i=1

(
ln

(
L∑

l=1

exp(β̃
t

l xi )

)
− xti B̃ξi

)

+
d∑

j=1

λj |B̃|(j) +
d∑

j=1

L∑
l=1

αl |B̃j(l)|



different types of design (e.g., Gaussian, sub-Gaussian)

cost-sensitive classification
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Thank You!
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