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Plan

Motivation: There is something that we do not understand in backpropagation for
deep learning.

Nonsmooth analysis is not really compatible with calculus.

Contribution: Conservative set valued fields. Analytic, geometric and algorithmic
properties.
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Backpropagation

Automatic differentiation (AD, 70s):

Automatized numerical implementation of the chain rule:

H : Rp 7→ Rp, G : Rp 7→ Rp, f : Rp → R, (differentiable).

f ◦ G ◦ H : Rp 7→ R.

∇(f ◦ G ◦ H)T = ∇f T × JG × JH

Function = program: smooth elementary operations, combined smoothly.

x 7→ (H(x),G(H(x)), f (G(H(x))))

Forward mode of AD: ∇f T × (JG × JH).
Backward mode of AD: (∇f T × JG )× JH .

Backpropagation: Backward AD for neural network training.

It computes gradient (provided that everybody is smooth).
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Neural network / compositional modeling

Input
x ∈ Rp z0 ∈ Rp z1 ∈ Rp1 . . . zL ∈ RpL

For i = 1, . . . , L:

zi ∈ Rpi “layer”.

zi = φi (Wizi−1 + bi )

φi : Rpi 7→ Rpi “activation functions”, nonlinear.

Wi ∈ Rpi×pi−1 , bi ∈ Rpi , θ = (W1, b1, . . . ,WL, bL), model parameters.

Fθ(x) = zL

= φL (WL φL−1 (WL−1 (. . . φ1 (W1x + b1) ) + bL−1) + bL)

Training set: {(xi , yi )}ni=1 in Rp × RpL , loss ` : RpL × RpL → R+.

min
θ

J(θ) :=
1

n

n∑
i=1

`(Fθ(xi ), yi ) =
1

n

n∑
i=1

Ji (θ).
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Backpropagation and learning

Stochastic (minibatch) gradient algorithm: Given (Ik)k∈N iid, uniform on {1, . . . , n},
(αk)k∈N positive, iterate,

θk+1 = θk − αk∇JIk (θk).

Backpropagation: Backward mode of automatic differentiation used to compute ∇Ji

Profusion of numerical tools: e.g. Tensorflow, Pytorch. Democratized the usage of
these models. Goes beyond neural nets (differentiable programming).
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Nonsmooth activations

Positive part: relu(t) = max{0, t},

Less straightforward examples:

Max pooling in convolutional networks.

knn grouping layers, farthest point subsampling layers.
Qi et. al. 2017. PointNet++: Deep Hierarchical Feature Learning on point Sets in a Metric Space.

Sorting layers.
Anil et. al. 2019. Sorting Out Lipschitz Function Approximation. ICML.
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Nonsmooth backpropagation

Set relu′(0) = 0 and implement the chain rule of smooth calculus.

(f ◦ g)′ = g ′ × f ′ ◦ g .

Tensorflow examples:
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AD acts on programs, not on functions

relu2(t) = relu(−t) + t = relu(t)

relu3(t) =
1

2
(relu(t) + relu2(t)) = relu(t).
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Known from AD litterature (e.g. Griewank 08, Kakade & Lee 2018).
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Derivative of zero at 0

zero(t) = relu2(t)− relu(t) = 0.
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AD acts on programs, not on functions

Derivative of sine at 0:

sin′ = cos.
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Consequences for optimization and learning

No convexity, no calculus:

∂(f + g) ⊂ ∂f + ∂g .

Minibatch + subgradient: locally Lipschitz, convex,

J(θ) =
1

n

n∑
i=1

Ji (θ)

vi ∈ ∂Ji (θ), i = 1, . . . n,

EI [vI ] ∂J(θ), I uniform on {1, . . . , n} ,

Discrepancy:

Analyse: θk+1 = θk − αk(vk + εk), vk ∈ ∂J(θk),

(εi )i∈N zero mean (martingale increments).
(Davis et. al. 2018. Stochastic subgradient method converges on tame functions. FOCM.)

Implement: θk+1 = θk − αkDIk (θk)
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Question

Smooth: Nonsmooth:

J P

∇J D

diff

num

num

autodiff

J P

∂J D

diff

num

autodiff

A mathematical model for “nonsmooth automatic differentiation”?
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Outline

1. Conservative set valued field

2. Properties of conservative fields

3. Consequences for deep learning
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What is a derivative?

Linear operator:

derivative : C 1(R) 7→ C 0(R)

f 7→ f ′

Notions of subgradients inherited from calculus of variation follow the “operator” view.

Lebesgue differentiation theorem: If f : R 7→ R is integrable, then

F : x 7→
∫ x

−∞
f (t)dt

is differentiable for almost all x , with F ′(x) = f (x) (F is absolutely continuous).

Linear map versus relation / equivalence class in L1.
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Technical reminder

Absolutely continuous path (AC): γ : [0, 1] 7→ Rp is called absolutely continuous if

γ is differentiable almost everywhere with integrable derivative γ′ : [0, 1] 7→ Rp.

γ(t)− γ(0) =
∫ t

0
γ′(s)ds, for all t ∈ [0, 1].

Set valued field: D : Rp ⇒ Rq is a function from Rp to the set of subsets of Rq.

∂f , the subgradient of a convex function f .

∂c f , the Clarke subgradient of a locally Lipschitz function f

∂c f (x) = conv
{
v ∈ Rp, ∃yk →

k→∞
x with yk ∈ R, vk = ∇f (yk) →

k→∞
v
}
.

where R is the (full measure set) where f is differentiable.

Closed graph: a notion of continuity for D

graphD = {(x , z), x ∈ Rp, z ∈ D(x)} ⊂ Rp+q,

If vk ∈ D(xk) for all k ∈ N, limk→∞ vk ∈ D(limk→∞ xk) (provided limits exist).
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Conservative set valued fields

D : Rp ⇒ Rp, set valued, closed graph, non empty compact values.

Conservative field: For any AC loop γ : [0, 1] 7→ Rp, γ(0) = γ(1),∫ 1

0

max
v∈D(γ(t))

〈γ̇(t), v〉 dt = 0

Lebsegue integral.

Equivalent forms: With min or set valued (Auman) integral.

Links with physics:
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Locally Lipschitz potentials

Potential: D : Rp ⇒ Rp a conservative field. Define f : Rp 7→ R,

f (x) = f (0) +

∫ 1

0

max
v∈D(γ(t))

〈γ̇(t), v〉 dt

where γ : [0, 1] 7→ Rp is any AC path with γ(0) = 0, γ(1) = x .

f is well and uniquely defined up to a constant.

f is a potential for D.

D is a conservative field for f .

Equivalent forms: With min or set valued (Auman) integral.

D is locally bounded (by assumption) and f is locally Lipschitz.

f C 1: {∇f } is conservative for f (not unique).

f convex locally Lipschitz: ∂f is conservative for f .

Not all locally Lipschitz f admit a conservative field.
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An operational chain rule

Lemma: The following are equivalent

D : Rp ⇒ Rp is conservative for f : Rp 7→ R.

For any AC γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = 〈v , γ̇(t)〉 ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1].

Affine span of D(γ(t)) is “orthogonal” to γ̇ for almost all t and any γ.

Theorem: If f is locally Lipschitz and tame then ∂c f is conservative for f .
Davis et. al. 2019. Stochastic subgradient method converges on tame functions. FOCM.

Chain rule is central for Lyapunov analysis of minibatch strategies.
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Outline

1. Conservative set valued field

2. Properties of conservative fields

3. Consequences for deep learning
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Relation to gradients

Let D : Rp ⇒ Rp be a conservative field for f : Rp 7→ R.

Gradient almost everywhere: D = {∇f } Lebesgue almost everywhere.

Consequence: ∂c f is conservative for f , and for all x ∈ Rp,

∂c f (x) ⊂ conv(D(x)).

Fermat rule: 0 ∈ conv(D) for local minima.

Remark: Conservativity is much stronger than “gradient almost everywhere”.

Take f = ‖ · ‖2 and set D = {∇f } and D = {∇f , 0} on a segment [x , y ],
D is compact valued with closed graph, gradient almost everywhere but not conservative.
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Conservative fields and calculus

Informal: Conservative set valued fields are compatible with the compositional rules
of differential calculus.

Sum rule: Let f1, . . . , fn be locally Lipschitz continuous functions and D1, . . . ,Dn re-
spective conservative fields. Then D =

∑n
i=1 Di is conservative for f =

∑n
i=1 fi .

Chain rule along AC curves + sum rule for derivatives + union of zero measure sets has
zero measure:

d

dt
(f1(γ(t)) + f2(γ(t))) = 〈v1, γ̇(t)〉+ 〈v2, γ̇(t)〉 = 〈v1 + v2, γ̇(t)〉

∀v1 ∈ D1(γ(t)), v2 ∈ D2(γ(t))

Consequence for AD (informal): A program combines locally Lipschitz elementary
functions in a locally Lipschitz way.

AD with conservative fields in place of gradients, output a conservative field for the
implemented function.
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Deep networks and tamness

Training: Given {(xi , yi )}ni=1 in Rp × RpL and a loss ` : RpL × RpL → R+.

min
θ

J(θ) :=
1

n

n∑
i=1

`(Fθ(xi ), yi ) =
1

n

n∑
i=1

Ji (θ).

Assumption: ` and the activation functions defining Fθ are

Univariate (applied coordinatewise).

Locally Lipschitz.

Defined piecewise (finitely many pieces).

Expressed with, polynomials, quotients, exponential, logarithms.

Tameness: Then J is locally Lipschitz and “tame”, i.e. definable in an o-minimal
structure (contains all semi-algebraic sets and the graph of the exponential function
[Wilkie]).
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Nonsmooth automatic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

Set Di : Rp ⇒ Rp,
AD on Ji using Clarke subgradient in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 Di .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.

25 / 28



Nonsmooth automatic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

Set Di : Rp ⇒ Rp,
AD on Ji using Clarke subgradient in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 Di .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.

25 / 28



Nonsmooth automatic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

Set Di : Rp ⇒ Rp,
AD on Ji using Clarke subgradient in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 Di .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.

25 / 28



Nonsmooth automatic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

Set Di : Rp ⇒ Rp,
AD on Ji using Clarke subgradient in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 Di .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.

25 / 28



Nonsmooth automatic differentiation for deep networks

Nonsmooth backpropagation:

Consider J : Rp 7→ R the empirical loss.

Set Di : Rp ⇒ Rp,
AD on Ji using Clarke subgradient in place of derivatives (relu′(0) = 0).

Set D = 1
n

∑n
i=1 Di .

Set critJ = {θ ∈ Rp, 0 ∈ conv(D(θ))}.

Then:

Conservativity: D is conservative for J.

{J(θ2)− J(θ1)} =

∫ 1

0

〈D((1− t)θ1 + tθ2), θ2 − θ1〉 dt,

Gradient: D = {∇J} except on a finite union of smooth manifolds of dimension < p.

Morse-Sard: The set of critical values is finite.

J(critJ) = {J(θ), 0 ∈ conv(D(θ))}

KL inequality: There is a Kurdyka- Lojasiewicz inequality for D and J.

25 / 28



Tame characterization: stratification, variational projection

Example: Projection formula f (x1, x2) = |x1|+ |x2|.
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Minibatch strategies

Minibatch stochastic approximation: Given (Ik)k∈N iid, uniform on {1, . . . , n}, (αk)k∈N
positive, iterate,

θk+1 ∈ θk − αkDIk (θk)

Convergence:
Assume that

∑
k αk = +∞ and αk = o(1/ log(k)).

Fix any M > 0, condition on the event supk∈N ‖θk‖ ≤ M.
Set, Θ ⊂ Rp, the set of accumulation points of (θk)k∈N.

Then, almost surely, ∅ 6= Θ ⊂ critJ and J is constant on Θ.

Differential inclusion approach [Benaim-Hofbauer-Sorin (2005)].

Conservativity: chain rule along AC curves.

Tameness: Morse-Sard theorem.
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Summary and conclusion: functions, programs and numerics

Smooth: Nonsmooth:

J P

∇J D

diff

num

num

autodiff

J P

∂J D

diff

conservative

num

“⊂”

autodiff

A mathematical model for nonsmooth automatic differentiation.

Algorithms: Nonsmooth AD + minibatching deep nets ∼ smooth case.
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