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[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (Xi, yi), a model gw

‘Claire B.’

‘Alex A.’

‘Alex G.’

‘Soledad V.’

‘Joseph S.’

XiXi

gwgw

ypred = gw(Xi)ypred = gw(Xi)

LL

yiyi

Goal: Optimize parameters w ∈ Rd of a function gw such that gw(Xi) ≈ yi

min
w

∑
i

L(gw(Xi), yi) .

Workhorse: first-order methods, based on ∇wL(gw(Xi), yi), backpropagation

Problem: What if these models contain nondifferentiable∗ operations?
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Discrete decisions in Machine learning

XX

gwgw

✓✓ y⇤(✓)y⇤(✓)

y⇤y⇤

yy

LL

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

• θ = scores for k products, y∗ = vector of ranks e.g. [5, 2, 4, 3, 1]

• θ = edge costs, y∗ = shortest path between two points

• θ = classification scores for each class, y∗ = one-hot vector
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y ⊆ Rd

F (θ) = max
y∈C
〈y, θ〉 , and y∗(θ) = argmax

y∈C
〈y, θ〉 = ∇θF (θ) .

CC

y⇤(✓)y⇤(✓)
✓✓

Perturbed maximizer: average of solutions for inputs with noise εZ

Fε(θ) = E[max
y∈C
〈y, θ〉] , y∗ε(θ) = E[y∗(θ+εZ)] = E[argmax

y∈C
〈y, θ+εZ〉] = ∇θFε(θ) .
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CC

y⇤(✓)y⇤(✓)

y⇤(✓ + "Z)y⇤(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y⇤
" (✓)y⇤
" (✓)
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Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

Y = argmax
y∈C

〈y, θ + εZ〉

Follows a perturbed model with Y ∼ pθ(y), expectation y∗ε(θ) = Epθ[Y ].

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Features Costs Shortest Path Perturbed Path = 0.5 Perturbed Path = 2.0

Example. Over the unit simplex C = ∆d with Gumbel noise Z, F (θ) = maxi θi.

Fε(θ) = ε log
∑
i∈[d]

e
θi
ε , pθ(ei) ∝ exp(〈θ, ei〉/ε) , [y∗ε(θ)]i =

e
θi
ε∑
e
θj
ε
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Properties

Link with regularization: εΩ =
(
Fε
)∗

is a convex function with domain C

y∗ε(θ) = argmax
y∈C

{
〈y, θ〉 − εΩ(y)

}
.

Consequence of duality and y∗ε(θ) = ∇εFε(θ). Generalization of entropy

ε = 0 tiny ε small ε large ε

Extreme temperatures. When ε→ 0, y∗ε(θ)→ y∗(θ) for unique max.

When ε→∞, y∗ε(θ)→ argminy Ω(y). Nonasymptotic results.
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Properties

Mirror maps: For C with full interior, Z with smooth density µ, full support

Fε strictly convex, gradient Lipschitz. Ω strongly convex, Legendre type.

RdRd CC

✓✓

r✓F"r✓F"

ry⌦ry⌦

y⇤
" (✓)y⇤
" (✓)

Differentiability. Functions are smooth in the inputs. For µ(z) ∝ exp(−ν(z))

y∗ε(θ) = ∇θFε(θ) = E[y∗(θ + εZ)] = E[F (θ + εZ)∇zν(Z)/ε] ,

Jθ y
∗
ε(θ) = ∇2Fε(θ) = E[y∗(θ + εZ)ν(Z)>/ε] .

Perturbed maximizer y∗ε never locally constant in θ. Abernethy et al. (2014)

Q.Berthet - CIRM - 2020 7/17



Properties

Mirror maps: For C with full interior, Z with smooth density µ, full support

Fε strictly convex, gradient Lipschitz. Ω strongly convex, Legendre type.

RdRd CC
✓✓ r✓F"r✓F"

ry⌦ry⌦

y⇤
" (✓)y⇤
" (✓)

Differentiability. Functions are smooth in the inputs. For µ(z) ∝ exp(−ν(z))

y∗ε(θ) = ∇θFε(θ) = E[y∗(θ + εZ)] = E[F (θ + εZ)∇zν(Z)/ε] ,

Jθ y
∗
ε(θ) = ∇2Fε(θ) = E[y∗(θ + εZ)ν(Z)>/ε] .

Perturbed maximizer y∗ε never locally constant in θ. Abernethy et al. (2014)

Q.Berthet - CIRM - 2020 7/17



Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs θ = gw(X)

XX

gwgw

✓✓ y⇤(✓)y⇤(✓)

y⇤y⇤

yy

LL

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

Small modification of the model: end-to-end differentiable
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Why? and How?

Learning problems:

Features Xi, model output θw = gw(Xi), prediction ypred = y∗ε(θw), loss L

F (w) = L
(
y∗ε
(
θw
)
, yi
)
, gradients require Jθ y

∗
ε(θw) .

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For θ ∈ Rd, Z(1), . . . , Z(M) i.i.d. copies

y(`) = y∗(θ + εZ(`))

Unbiased estimate of y∗ε(θ) given by

ȳε,M(θ) =
1

M

M∑
`=1

y(`) .

CC

y⇤(✓)y⇤(✓)

y⇤(✓ + "Z)y⇤(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y⇤
" (✓)y⇤
" (✓)
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Fenchel-Young losses

Natural loss to introduce, directly on θ, motivated by duality. Blondel et al. (2019)

Lε(θ; y) = Fε(θ) + εΩ(y)− 〈θ, y〉 .

Interesting properties in a learning framework:

• Convex in θ, minimized at θ s.t. y∗ε(θ) = y, with value 0.

• Equal to Bregman divergence DεΩ(y∗ε(θ) | y)

• For random Y , E[Lε(θ;Y )] = Lε(θ;E[Y ]) + C

e.g. for Y = argmaxy∈C〈θ0 + εZ, y〉

E[Lε(θ;Y )] = Lε(θ; y
∗
ε(θ0)) + C ,

population loss minimized at θ0.

• Convenient gradients: ∇θLε(θ; y) = y∗ε(θ)− y.
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Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

y⇤
"y
⇤
"

XX

gwgw

✓✓ y⇤
" (✓)y⇤
" (✓) yy

LL

Easier to implement, no Jacobian of y∗ε

Population loss minimized at ground truth for perturbed generative model.
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Unsupervised learning - parameter estimation

Observation: Y1, . . . , Yn i.i.d. copies of

Yi = argmax
y∈C

〈θ0 + εZi, y〉

Estimating unknown θ0

CC

y⇤(✓)y⇤(✓)

y⇤(✓ + "Z)y⇤(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y⇤
" (✓)y⇤
" (✓)

Minimization of empirical loss - related to inference in Gibbs models

L̄ε,n(θ) =
1

n

n∑
i=1

L(θ;Yi) , stochastic grad. ∇θLε(θ, Yi) = y∗ε(θ)− Yi

Equal up to an additive constant to Lε(θ; Ȳn), in expectation to Lε(θ; y
∗
ε(θ0))

Asymptotic normality for minimizer θ̂n around θ0
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Supervised learning

Motivated by model where yi = argmaxy∈C〈gw0(Xi) + εZi, y〉

XX

gwgw

✓✓ yy

L"L"

Stochastic gradients for empirical loss only require

∇θL(θ = gw(Xi); yi) = y∗ε(gw(Xi))− yi .

Simulated by a doubly stochastic scheme.
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Experiments

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison

‘bird’

‘deer’

‘ship’

‘horse’

‘truck’

XiXi

gwgw

✓ = gw(Xi)✓ = gw(Xi)

L"L"

yiyi

Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ε

0 100 200 300 400 500 600
epochs

0.95

0.96

0.97

0.98

0.99

1.00 Train Accuracy

FenchelYoung, M=1
FenchelYoung, M=1000
CrossEntropy

0 100 200 300 400 500 600
epochs

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

0.815 Test Accuracy

FenchelYoung, M=1
FenchelYoung, M=1000
CrossEntropy

10 4 10 2 100 102 1040.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Loss

train M = 1
train M = 1000
test M = 1
test M = 1000
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Experiments

Learning from rankings: Created dataset - ranked projection along unknown w0.

w0w0

11

33

44

55

66

77

88

22

55

44

33

88

11

77

22

66

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise σ before ranking - uncertainty of user.
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Experiments

Experiments on 4k instances of 100 vectors to rank, in dimension 9.

Robustness to noise observed for some tolerated variance

10 6 10 5 10 4 10 3 10 2 10 1 100
0%

20%

40%

60%

80%

100%
Test Accuracies

partial ranks
prefect ranks

Fenchel-Young loss is convex in w: linear model, possible theoretical analysis.
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Experiments

Learning from shortest paths: From 10k examples of Warcraft 96× 96 RGB
images, representing 12×12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

Features Costs Shortest Path Perturbed Path = 0.5 Perturbed Path = 2.0

Train a CNN for 20 epochs, to learn costs recovery of optimal paths.

0 3 6 9 12 15 18 21
1.0

1.2

1.4

1.6

1.8

2.0
Cost Ratio (Test)

=0.01
=0.1
=1.0
=10.0
=100.0
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