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[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (X;,y;), a model g,

‘Claire B.’

‘Soledad V.
‘Joseph S.’

Goal: Optimize parameters w € R? of a function g,, such that g, (X;) ~ y;

Workhorse: first-order methods, based on V,,L(g.,(X;),y;), backpropagation

muijnz L(gw(X3), y:) -

Problem: What if these models contain nondifferentiable* operations?

Q.Berthet - CIRM - 2020

1/17



Discrete decisions in Machine learning

X
\ 0 y*(0) Y

g'w y*—> SR >

/

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

e 0 = scores for k products, y* = vector of ranks e.g. [5,2,4,3,1]
e 0 = edge costs, y* = shortest path between two points

e 0 = classification scores for each class, y* = one-hot vector
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y C R?

F(0) = max(y,0), and y*(0)=argmax(y,0) = VeF(0).
yel yel

y*(0)
Perturbed maximizer: average of solutions for inputs with noise €7
F.(0) = Elmax(y.0)], y:(0) = Ely*(0+¢2)] = E[argmax(y, 0-+¢2)] = V4F.(0).

yeC yeCl
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of Y C R?

Perturbed maximizer: average of solutions for inputs with noise €7

F.(0) = E[fggg@, 0), y(0) =E[y"(0+c2)] = E[argéncaxwa 0+eZ)] = Vol:(0).
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Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

Y = argmax(y, 0 + ¢Z)
yel

Follows a perturbed model with Y ~ pg(y), expectation yZ(0) = E, [Y].

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Features Costs Shortest Path Perturbed Path €e=0.5 Perturbed Path e =2.0
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Example. Over the unit simplex C = A¢ with Gumbel noise Z, F'(0) = max; 0;.

>

F0)=clog Y €%, pole) ocexp({f,e/e),  I(O))i= —
i€[d] > ew
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Properties

Link with regularization: ¢ Q = (F.)" is a convex function with domain C

yz(0) = argmax {(y,0) — eQ(y) } .

yeC

Consequence of duality and y*(0) = V.F.(6). Generalization of entropy

e=20 tiny ¢ small ¢ large ¢

Extreme temperatures. When ¢ — 0, y*(0) — y*(0) for unique max.

When € — oo, yZ(#) — argmin, 2(y). Nonasymptotic results.
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Properties

Mirror maps: For C with full interior, Z with smooth density p, full support

F. strictly convex, gradient Lipschitz. €2 strongly convex, Legendre type.

R¢ A C
Vo F.

 JES

yz (0)

V\W/

Differentiability. Functions are smooth in the inputs. For u(z) o exp(—v(z))

ye(0) = VoF(0) = Ely" (0 +e2)] = E|[F(0 +c2)V.v(Z) /],
JoyX(0) = V2E.(0) = Ely* (0 +e2)v(2)" /e].

Perturbed maximizer yZ never locally constant in 6. Abernethy et al. (2014)

Q.Berthet - CIRM - 2020 7/17



Properties

Mirror maps: For C with full interior, Z with smooth density p, full support

F. strictly convex, gradient Lipschitz. €2 strongly convex, Legendre type.

Rd A C
Vo F. %®
yz(0)

S

V\W/

Differentiability. Functions are smooth in the inputs. For u(z) o exp(—v(z))

ye(0) = VoF(0) = Ely" (0 +e2)] = E|[F(0 +c2)V.v(Z) /],
JoyX(0) = V2E.(0) = Ely* (0 +e2)v(2)" /e].

Perturbed maximizer yZ never locally constant in 6. Abernethy et al. (2014)

Q.Berthet - CIRM - 2020 7/17



Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs 6 = g,,(X)

X

I

Jw

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

/

Small modification of the model: end-to-end differentiable
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Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs 6 = g,,(X)

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)
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Why? and How?

Learning problems:

Features X;, model output 0, = g,(X;), prediction Ypred = yZ(04), loss L

F(w) = L(y:(0w).y:), gradients require Jyy2(6y).

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ RY, ZW .. Z(M)iid. copies

y& =y (0 +e2W)

Unbiased estimate of y*(6) given by

e ( Z y.
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Fenchel-Young losses

Natural loss to introduce, directly on 6, motivated by duality. Blondel et al. (2019)

Le(05y) = Fe(0) +eQ(y) — (0, ) -

Interesting properties in a learning framework:

e Convex in #, minimized at 6 s.t. y*(0) =y, with value 0.

e Equal to Bregman divergence D.q(yZ(0) | y)

e For random Y, E[L.(0;Y)] = L. (6;E[Y]) + C
e.g. for Y = argmax (0o +¢Z,y)

E[L.(0;Y)] = L.(0;yZ(0o)) + C,

population loss minimized at 6.

e Convenient gradients: VoL (0;y) = y2(0) —vy.
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Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

X i~

~

~

Jw

Easier to implement, no Jacobian of y

Population loss minimized at ground truth for perturbed generative model.

Q.Berthet - CIRM - 2020

11/17



Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

X

I

Jw

Easier to implement, no Jacobian of y

Population loss minimized at ground truth for perturbed generative model.

Q.Berthet - CIRM - 2020

/

11/17



Unsupervised learning - parameter estimation

Observation: Y7,....Y,, i.i.d. copies of

C
Y; = argmax(0y + €Z;,y)
yeC
Y2
Estimating unknown 6 v (0)

Minimization of empirical loss - related to inference in Gibbs models
_ 1 — . x
Len(0) =— E L(0;Y;), stochastic grad. VoL (0,Y;) = yZ(0) = Y;
n
i=1

Equal up to an additive constant to L.(6;Y,,), in expectation to L.(0;y*(0y))

Asymptotic normality for minimizer §,, around 6,
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Supervised learning

Motivated by model where y; = argmax, ¢ c(guw,(X:) + €23, y)

\ 0 y

gw € - - e e i >

/

Stochastic gradients for empirical loss only require

X

VoL(0 = guw(Xi);yi) = yz(9w(Xi)) — ¥i-
Simulated by a doubly stochastic scheme.
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Experiments

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison

‘ship’

‘bird’

‘horse’

‘truck’

Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ¢
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= CrossEntropy
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Experiments

Learning from rankings: Created dataset - ranked projection along unknown wy.

DI | NP0 W]|&] O

.__23 .

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise o before ranking - uncertainty of user.

Q.Berthet - CIRM - 2020 15/17



Experiments

Learning from rankings: Created dataset - ranked projection along unknown wy.

DI | NP0 W]|&] O

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise o before ranking - uncertainty of user.

Q.Berthet - CIRM - 2020 15/17



Experiments

Learning from rankings: Created dataset - ranked projection along unknown wy.

=~ N || =00 WwWw| ot O

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise o before ranking - uncertainty of user.

Q.Berthet - CIRM - 2020 15/17



Experiments

Experiments on 4k instances of 100 vectors to rank, in dimension 9.

Robustness to noise observed for some tolerated variance

Test Accuracies

100%
80% 1
60% 1
40% A
20%7 | g partial ranks
0% prefect ranks
o
166 165 104 103 162 = 100

0}

Fenchel-Young loss is convex in w: linear model, possible theoretical analysis.

Q.Berthet - CIRM - 2020 16/17



Experiments

Learning from shortest paths: From 10k examples of Warcraft 96 x 96 RGB
images, representing 12 x 12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

~ Features Costs Shortest Path Perturbed Path £ =0.5 Perturbed Path € =2.0

-

Train a CNN for 20 epochs, to learn costs recovery of optimal paths.

Cost Ratio (Test)

2.0 — £=0.01
e £=0.1
— e=1.0
1.8 — £=10.0
e £=100.0
1.6

1.4

1.01
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