Learning with Differentiable Perturbed Optimizers

Quentin Berthet

Optimization for ML - CIRM - 2020

Q. Berthet

M.Blondel

O.Teboul

M. Cuturi

J-P. Vert

 $\mathsf{F}.\mathsf{Bach}$

• Learning with Differentiable Perturbed Optimizers

Preprint: arXiv:2002.08676

[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (X_i, y_i) , a model g_w

Goal: Optimize parameters $w \in \mathbf{R}^d$ of a function g_w such that $g_w(X_i) \approx y_i$

$$\min_{w} \sum_{i} L(g_w(X_i), y_i) \, .$$

Workhorse: first-order methods, based on $\nabla_w L(g_w(X_i), y_i)$, backpropagation **Problem**: What if these models contain **nondifferentiable**^{*} operations?

Discrete decisions in Machine learning

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

- $\theta =$ scores for k products, $y^* =$ vector of ranks e.g. [5, 2, 4, 3, 1]
- $\theta = \text{edge costs}$, $y^* = \text{shortest path between two points}$
- $\theta = \text{classification scores for each class}, y^* = \text{one-hot vector}$

Discrete decisions in Machine learning

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

- $\theta = \text{scores for } k \text{ products, } y^* = \text{vector of ranks e.g. } [5, 2, 4, 3, 1]$
- $\theta = \text{edge costs}$, $y^* = \text{shortest path between two points}$
- $\theta = \text{classification scores for each class}, y^* = \text{one-hot vector}$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

$$F(\theta) = \max_{y \in \mathcal{C}} \langle y, \theta \rangle, \quad \text{and} \quad y^*(\theta) = \underset{y \in \mathcal{C}}{\operatorname{argmax}} \langle y, \theta \rangle = \nabla_{\theta} F(\theta) \,.$$

Perturbed maximizer: average of solutions for inputs with noise εZ

$$F_{\varepsilon}(\theta) = \mathbf{E}[\max_{y \in \mathcal{C}} \langle y, \theta \rangle], \quad y_{\varepsilon}^{*}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[\operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle] = \nabla_{\theta} F_{\varepsilon}(\theta).$$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

Perturbed maximizer: average of solutions for inputs with noise εZ

$$F_{\varepsilon}(\theta) = \mathbf{E}[\max_{y \in \mathcal{C}} \langle y, \theta \rangle], \quad y_{\varepsilon}^{*}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[\operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle] = \nabla_{\theta} F_{\varepsilon}(\theta).$$

Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

$$Y = \operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta + \varepsilon Z \rangle$$

Follows a perturbed model with $Y \sim p_{\theta}(y)$, expectation $y_{\varepsilon}^*(\theta) = \mathbf{E}_{p_{\theta}}[Y]$.

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Example. Over the unit simplex $\mathcal{C} = \Delta^d$ with Gumbel noise Z, $F(\theta) = \max_i \theta_i$.

$$F_{\varepsilon}(\theta) = \varepsilon \log \sum_{i \in [d]} e^{\frac{\theta_i}{\varepsilon}}, \qquad p_{\theta}(e_i) \propto \exp(\langle \theta, e_i \rangle / \varepsilon), \qquad [y_{\varepsilon}^*(\theta)]_i = \frac{e^{\frac{\theta_i}{\varepsilon}}}{\sum e^{\frac{\theta_j}{\varepsilon}}}$$

Properties

Link with regularization: $\varepsilon \Omega = (F_{\varepsilon})^*$ is a convex function with domain C

$$y_{\varepsilon}^{*}(heta) = rgmax_{y \in \mathcal{C}} \left\{ \langle y, heta
angle - \varepsilon \Omega(y)
ight\}.$$

Consequence of duality and $y_{\varepsilon}^*(\theta) = \nabla_{\varepsilon} F_{\varepsilon}(\theta)$. Generalization of entropy

Extreme temperatures. When $\varepsilon \to 0$, $y_{\varepsilon}^*(\theta) \to y^*(\theta)$ for unique max.

When $\varepsilon \to \infty$, $y_{\varepsilon}^*(\theta) \to \operatorname{argmin}_y \Omega(y)$. Nonasymptotic results.

Properties

Mirror maps: For C with full interior, Z with smooth density μ , full support F_{ε} strictly convex, gradient Lipschitz. Ω strongly convex, Legendre type.

Differentiability. Functions are smooth in the inputs. For $\mu(z) \propto \exp(-\nu(z))$

$$y_{\varepsilon}^{*}(\theta) = \nabla_{\theta} F_{\varepsilon}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[F(\theta + \varepsilon Z)\nabla_{z}\nu(Z)/\varepsilon],$$
$$J_{\theta} y_{\varepsilon}^{*}(\theta) = \nabla^{2} F_{\varepsilon}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)\nu(Z)^{\top}/\varepsilon].$$

Perturbed maximizer y_{ε}^* never locally constant in θ . Abernethy et al. (2014)

Properties

Mirror maps: For C with full interior, Z with smooth density μ , full support F_{ε} strictly convex, gradient Lipschitz. Ω strongly convex, Legendre type.

Differentiability. Functions are smooth in the inputs. For $\mu(z) \propto \exp(-\nu(z))$

$$y_{\varepsilon}^{*}(\theta) = \nabla_{\theta} F_{\varepsilon}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)] = \mathbf{E}[F(\theta + \varepsilon Z)\nabla_{z}\nu(Z)/\varepsilon],$$
$$J_{\theta} y_{\varepsilon}^{*}(\theta) = \nabla^{2} F_{\varepsilon}(\theta) = \mathbf{E}[y^{*}(\theta + \varepsilon Z)\nu(Z)^{\top}/\varepsilon].$$

Perturbed maximizer y_{ε}^* never locally constant in θ . Abernethy et al. (2014)

Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs $\theta = g_w(X)$

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

Small modification of the model: end-to-end differentiable

Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs $\theta = g_w(X)$

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

Small modification of the model: end-to-end differentiable

Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs $\theta = g_w(X)$

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

Small modification of the model: end-to-end differentiable

Why? and How?

Learning problems:

Features X_i , model output $\theta_w = g_w(X_i)$, prediction $y_{\text{pred}} = y_{\varepsilon}^*(\theta_w)$, loss L

 $F(w) = L(y_{\varepsilon}^{*}(\theta_{w}), y_{i}), \text{ gradients require } J_{\theta} y_{\varepsilon}^{*}(\theta_{w}).$

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For $\theta \in \mathbf{R}^d$, $Z^{(1)}, \ldots, Z^{(M)}$ i.i.d. copies

 $y^{(\ell)} = y^*(\theta + \varepsilon Z^{(\ell)})$

Unbiased estimate of $y_{\varepsilon}^{*}(\theta)$ given by

$$\bar{y}_{\varepsilon,M}(\theta) = \frac{1}{M} \sum_{\ell=1}^{M} y^{(\ell)}$$

Fenchel-Young losses

Natural loss to introduce, directly on θ , motivated by duality. Blondel et al. (2019)

$$L_{\varepsilon}(\theta; y) = F_{\varepsilon}(\theta) + \varepsilon \Omega(y) - \langle \theta, y \rangle.$$

Interesting **properties** in a learning framework:

- Convex in θ , minimized at θ s.t. $y_{\varepsilon}^{*}(\theta) = y$, with value 0.
- Equal to Bregman divergence $D_{\varepsilon\Omega}(y^*_{\varepsilon}(\theta) \mid y)$
- For random Y, $\mathbf{E}[L_{\varepsilon}(\theta;Y)] = L_{\varepsilon}(\theta;\mathbf{E}[Y]) + C$

e.g. for $Y = \operatorname{argmax}_{y \in \mathcal{C}} \langle \theta_0 + \varepsilon Z, y \rangle$

$$\mathbf{E}[L_{\varepsilon}(\theta; Y)] = L_{\varepsilon}(\theta; y_{\varepsilon}^*(\theta_0)) + C,$$

population loss minimized at θ_0 .

• Convenient gradients: $\nabla_{\theta} L_{\varepsilon}(\theta; y) = y_{\varepsilon}^{*}(\theta) - y.$

Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

Population loss minimized at ground truth for perturbed generative model.

Learning with perturbations and F-Y losses

Within the same framework, possible to virtually bypass the optimization block

Easier to implement, no Jacobian of y_{ε}^{\ast}

Population loss minimized at ground truth for perturbed generative model.

Unsupervised learning - parameter estimation

Estimating unknown θ_0

Minimization of empirical loss - related to inference in Gibbs models

$$\bar{L}_{\varepsilon,n}(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(\theta; Y_i) \,, \quad \text{stochastic grad. } \nabla_{\theta} L_{\varepsilon}(\theta, Y_i) = y_{\varepsilon}^*(\theta) - Y_i$$

Equal up to an additive constant to $L_{\varepsilon}(\theta; \bar{Y}_n)$, in expectation to $L_{\varepsilon}(\theta; y_{\varepsilon}^*(\theta_0))$ Asymptotic normality for minimizer $\hat{\theta}_n$ around θ_0

Supervised learning

Motivated by model where $y_i = \operatorname{argmax}_{y \in \mathcal{C}} \langle g_{w_0}(X_i) + \varepsilon Z_i, y \rangle$

Stochastic gradients for empirical loss only require

$$\nabla_{\theta} L(\theta = g_w(X_i); y_i) = y_{\varepsilon}^*(g_w(X_i)) - y_i.$$

Simulated by a doubly stochastic scheme.

Classification: CIFAR-10 dataset of images with 10 classes - Toy comparison

Architecture: vanilla-CNN made of 4 convolutional and 2 fully connected layers.

Training: 600 epochs with minibatches of size 32 - influence of M and ε

Learning from rankings: Created dataset - ranked projection along unknown w_0 .

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise σ before ranking - uncertainty of user.

Learning from rankings: Created dataset - ranked projection along unknown w_0 .

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise σ before ranking - uncertainty of user.

Learning from rankings: Created dataset - ranked projection along unknown w_0 .

From data, predict ranks on future instances (simulated learning to rank).

Robustness to noise σ before ranking - uncertainty of user.

Experiments on 4k instances of 100 vectors to rank, in dimension 9.

Robustness to noise observed for some tolerated variance

Fenchel-Young loss is convex in w: linear model, possible theoretical analysis.

Learning from shortest paths: From 10k examples of Warcraft 96×96 RGB images, representing 12×12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

Train a CNN for 20 epochs, to learn costs recovery of optimal paths.

MERCI