Entropic Regularization

Sinkhorn Divergences

Conclusion

# Bridging the gap between Optimal Transport and MMD with Sinkhorn Divergences

Aude Genevay

MIT CSAIL

CIRM Workshop - March 2020

Joint work with Gabriel Peyré, Marco Cuturi, Francis Bach, Lénaïc Chizat

Entropic Regularization

Sinkhorn Divergences

Conclusion

### Comparing Probability Measures



Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete Setting (Quantization)



Figure 
$$1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$$

Entropic Regularization

Sinkhorn Divergences

Conclusion

### Discrete Setting (Quantization)



Figure  $1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete Setting (Quantization)



Figure 
$$1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$$

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete Setting (Quantization)



Figure 
$$1 - \min_{(x_1, \dots, x_k)} \mathcal{D}(\frac{1}{k} \sum_{i=1}^k \delta x_i, \frac{1}{n} \sum_{i=1}^n \delta y_i)$$

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Semi-discrete Setting (Density Fitting)



Figure 2 – min<sub> $\theta$ </sub>  $\mathcal{D}(\alpha_{\theta}, \beta)$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Semi-discrete Setting (Density Fitting)



Figure 2 –  $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Semi-discrete Setting (Density Fitting)



Figure 2 –  $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Semi-discrete Setting (Density Fitting)



Figure 2 –  $\min_{\theta} \mathcal{D}(\alpha_{\theta}, \beta)$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

#### 1 Notions of Distance between Measures

- 2 Entropic Regularization of Optimal Transport
- Sinkhorn Divergences : Interpolation between OT and MMD

**4** Conclusion

Entropic Regularization

Sinkhorn Divergences

Conclusion

# $\varphi$ -divergences (Czisar '63)

#### Definition ( $\varphi$ -divergence)

Let  $\varphi$  convex l.s.c. function such that  $\varphi(1) = 0$ , the  $\varphi$ -divergence  $D_{\varphi}$  between two measures  $\alpha$  and  $\beta$  is defined by :

$$D_{arphi}(oldsymbol{lpha}|oldsymbol{eta}) \stackrel{ ext{def.}}{=} \int_{\mathcal{X}} arphi\Big(rac{\mathrm{d} lpha(x)}{\mathrm{d} eta(x)}\Big) \mathrm{d} eta(x).$$

Example (Kullback Leibler Divergence)

$$D_{\mathcal{K}L}(lpha|eta) = \int_{\mathcal{X}} \log\left(rac{\mathrm{d}lpha}{\mathrm{d}eta}(x)
ight) \mathrm{d}lpha(x) \quad \leftrightarrow \quad arphi(x) = x\log(x)$$

Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

### Weak Convergence of measures

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{KL}(\alpha_n | \alpha) = +\infty$ .



Distances

Sinkhorn Divergences

Conclusion

#### Weak Convergence of measures

Example

On 
$$\mathbb{R}$$
,  $\alpha = \delta_0$  and  $\alpha_n = \delta_{1/n} : D_{\mathcal{KL}}(\alpha_n | \alpha) = +\infty$ .



#### Definition (Weak Convergence)

 $\begin{array}{l} \alpha_n \text{ weakly converges to } \alpha, \ ( \text{ denoted } \alpha_n \rightharpoonup \alpha) \\ \Leftrightarrow \int f(x) \mathrm{d}\alpha_n(x) \rightarrow \int f(x) \mathrm{d}\alpha(x) \ \forall f \in \mathcal{C}_b(\mathcal{X}). \\ \text{Let } \mathcal{D} \text{ distance between measures }, \ \mathcal{D} \text{ metrises weak} \\ \text{convergence } \mathsf{IFF}\Big(\mathcal{D}(\alpha_n, \alpha) \rightarrow 0 \Leftrightarrow \alpha_n \rightharpoonup \alpha\Big). \end{array}$ 

Entropic Regularization

Sinkhorn Divergences

# Maximum Mean Discrepancies (Gretton '06)

#### Definition (RKHS)

Let  $\mathcal{H}$  a Hilbert space with kernel k, then  $\mathcal{H}$  is a Reproducing Kernel Hilbert Space (RKHS) IFF :

1) 
$$\forall x \in \mathcal{X}, \quad k(x, \cdot) \in \mathcal{H},$$

**2** 
$$\forall f \in \mathcal{H}, \quad f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}.$$

Let  $\mathcal{H}$  a RKHS avec kernel k, the distance **MMD** between two probability measures  $\alpha$  and  $\beta$  is defined by :

$$MMD_{k}^{2}(\alpha,\beta) \stackrel{\text{def.}}{=} \left( \sup_{\{f|\|f\|_{\mathcal{H}} \leq 1\}} |\mathbb{E}_{\alpha}(f(X)) - \mathbb{E}_{\beta}(f(Y))| \right)^{2}$$
$$= \mathbb{E}_{\alpha \otimes \alpha}[k(X,X')] + \mathbb{E}_{\beta \otimes \beta}[k(Y,Y')]$$
$$-2\mathbb{E}_{\alpha \otimes \beta}[k(X,Y)].$$

Entropic Regularization

Sinkhorn Divergences

# Optimal Transport (Monge 1781, Kantorovitch '42)

- c(x, y) : cost of moving a unit of mass from x to y
- $\pi(x, y)$  (coupling) : how much mass moves from x to y



Entropic Regularization

Sinkhorn Divergences

Conclusion

### The Wasserstein Distance

#### Minimal cost of moving all the mass from $\alpha$ to $\beta$ ?

Let 
$$\alpha \in \mathcal{M}^{1}_{+}(\mathcal{X})$$
 and  $\beta \in \mathcal{M}^{1}_{+}(\mathcal{Y})$ ,  
 $W_{c}(\alpha, \beta) = \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$  ( $\mathcal{P}$ )  
For  $c(x, y) = ||x - y||_{2}^{p}$ ,  $W_{c}(\alpha, \beta)^{1/p}$  is the p-Wasserstein  
distance.

Entropic Regularization

Sinkhorn Divergences

Conclusion

### Optimal Transport vs. MMD



Entropic Regularization

Sinkhorn Divergences

Conclusion

### Simple example



Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete gradient flow of *MMD*

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete gradient flow of OT

Entropic Regularization

Sinkhorn Divergences

Conclusion

### Another example



Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete gradient flow of *MMD*

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete gradient flow of OT

computation

Entropic Regularization

Sinkhorn Divergences





#### Entropic Regularization

0000

Sinkhorn Divergences

Conclusion

Notions of Distance between Measures

 2 Entropic Regularization of Optimal Transport The basics A magic regularizing tool ! Sample Complexity

3 Sinkhorn Divergences : Interpolation between OT and MMD

4 Conclusion

Entropic Regularization • 000 • 000 • 000 Sinkhorn Divergences

Conclusion

The basics

# Entropic Regularization (Cuturi '13)

Let  $\alpha \in \mathcal{M}^1_+(\mathcal{X})$  and  $eta \in \mathcal{M}^1_+(\mathcal{Y})$ ,

$$W_{c} (\alpha, \beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$
(\mathcal{P})

Entropic Regularization • 000 • 000 • 000 Sinkhorn Divergences

Conclusion

The basics

# Entropic Regularization (Cuturi '13)

Let  $\alpha \in \mathcal{M}^1_+(\mathcal{X})$  and  $\beta \in \mathcal{M}^1_+(\mathcal{Y})$ ,

$$W_{c,\varepsilon}(\alpha,\beta) \stackrel{\text{def.}}{=} \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathrm{d}\pi(x,y) + \varepsilon H(\pi | \alpha \otimes \beta), \quad (\mathcal{P}_{\varepsilon})$$

where

$$H(\pi | \alpha \otimes \beta) \stackrel{ ext{def.}}{=} \int_{\mathcal{X} imes \mathcal{Y}} \log \left( rac{\mathrm{d} \pi(x,y)}{\mathrm{d} lpha(x) \mathrm{d} eta(y)} 
ight) \mathrm{d} \pi(x,y).$$

relative entropy of the transport plan  $\pi$  with respect to the product measure  $\alpha \otimes \beta$ .

Entropic Regularization 0000 000 000 Sinkhorn Divergences

Conclusion

The basics

# Entropic Regularization



Figure 3 – Influence of the regularization parameter  $\varepsilon$  on the transport plan  $\pi.$ 

**Intuition** : the entropic penalty 'smoothes' the problem and avoids over fitting (think of ridge regression for least squares)

Entropic Regularization

Sinkhorn Divergences

Conclusion

The basics

## **Dual Formulation**

Contrary to standard OT, no constraint on the dual problem :

$$W_{c} (\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) d\alpha(x) + \int_{\mathcal{Y}} v(y) d\beta(y) \qquad (\mathcal{D})$$
  
such that  $\{u(x) + v(y) \leq c(x, y) \forall (x, y) \in \mathcal{X} \times \mathcal{Y}\}$ 

Entropic Regularization

Sinkhorn Divergences

Conclusion

The basics

# **Dual Formulation**

Contrary to standard OT, no constraint on the dual problem :

$$egin{aligned} W_{c,arepsilon}(lpha,eta) &= \max_{\substack{u\in\mathcal{C}(\mathcal{X})\ v\in\mathcal{C}(\mathcal{Y})}} \int_{\mathcal{X}} u(x) \mathrm{d}lpha(x) + \int_{\mathcal{Y}} v(y) \mathrm{d}eta(y) \ &- arepsilon \int_{\mathcal{X} imes\mathcal{Y}} e^{rac{u(x)+v(y)-c(x,y)}{arepsilon}} \mathrm{d}lpha(x) \mathrm{d}eta(y) + arepsilon. \end{aligned}$$

Entropic Regularization

Sinkhorn Divergences

Conclusion

The basics

# Sinkhorn's Algorithm

Iterative algorithm : alternate between optimizing over u with fixed v and optimizing over v with fixed u.

Entropic Regularization

Sinkhorn Divergences

Conclusion

The basics

# Sinkhorn's Algorithm

Iterative algorithm : alternate between optimizing over u with fixed v and optimizing over v with fixed u.

Sinkhorn's Algorithm  
Let 
$$K_{ij} = e^{-\frac{c(x_i, y_j)}{\varepsilon}}, \mathbf{a} = e^{\frac{\mathbf{u}}{\varepsilon}}, \mathbf{b} = e^{\frac{\mathbf{v}}{\varepsilon}}.$$
$$\mathbf{a}^{(\ell+1)} = \frac{1}{\mathsf{K}(\mathbf{b}^{(\ell)} \odot \beta)} ; \qquad \mathbf{b}^{(\ell+1)} = \frac{1}{\mathsf{K}^{\mathsf{T}}(\mathbf{a}^{(\ell+1)} \odot \alpha)}$$

Complexity of each iteration :  $O(n^2)$ , Linear convergence, constant degrades when  $\varepsilon \to 0$ .

Entropic Regularization

Sinkhorn Divergences

Conclusion

A magic regularizing tool !

# Differentiable approximation of OT

Bonus : Sinkhorn procedure is fully differentiable with auto-diff tools (e.g TensorFlow)  $\Rightarrow$  yields a differentiable approximation of OT !

Some applications :

- Differentiable sorting (Cuturi et al '19)
- Differentiable (or 'soft' ) assignments
- Differentiable clustering (G. et al '19)
- Learning with a regularized Wasserstein loss
   (→ more on that later...)

Entropic Regularization

Sinkhorn Divergences

Sample Complexity

# The 'sample complexity'

#### Informal Definition

Given a distance between measures , its **sample complexity** corresponds to the error made when approximating this distance with samples of the measures.

 $\rightarrow$  Bad sample complexity implies bad generalization (over-fitting).

Known cases :

- OT :  $\mathbb{E}|W(\alpha,\beta) W(\hat{\alpha}_n,\hat{\beta}_n)| = O(n^{-1/d})$  $\Rightarrow$  curse of dimension (Dudley '84, Weed and Bach '18)
- MMD :  $\mathbb{E}|MMD(\alpha, \beta) MMD(\hat{\alpha}_n, \hat{\beta}_n)| = O(\frac{1}{\sqrt{n}})$  $\Rightarrow$  independent of dimension (Gretton '06)

What about  $\mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_n,\hat{\beta}_n)|$ ?

Entropic Regularization

Sinkhorn Divergences

Sample Complexity

'Sample Complexity' of  $W_{\varepsilon}$ .

Theorem (G., Chizat, Bach, Cuturi, Peyré '19) (Mena, Weed '19)

Let  $\mathcal{X},\mathcal{Y}\subset \mathbb{R}^d$  bounded , and  $c\in\mathcal{C}^\infty$  *L*-Lipschitz. Then

$$\mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_n,\hat{\beta}_n)| = O\left(\frac{1}{\sqrt{n}}\left(1 + \frac{1}{\varepsilon^{\lfloor d/2 \rfloor}}\right)\right),$$

where constants depend on  $|\mathcal{X}|$ ,  $|\mathcal{Y}|$ , d, and  $||c^{(k)}||_{\infty}$  pour  $k = 0 \dots \lfloor d/2 \rfloor + 1$ .

Entropic Regularization

Sinkhorn Divergences

Conclusion

Sample Complexity

'Sample Complexity' of  $W_{\varepsilon}$ .

We get the following asymptotic behavior

$$\begin{split} \mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})| &= O\left(\frac{1}{\varepsilon^{\lfloor d/2 \rfloor}\sqrt{n}}\right) & \text{when } \varepsilon \to 0\\ \mathbb{E}|W_{\varepsilon}(\alpha,\beta) - W_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})| &= O\left(\frac{1}{\sqrt{n}}\right) & \text{when } \varepsilon \to +\infty. \end{split}$$

 $\rightarrow\,$  A large enough regularization breaks the curse of dimension.

Entropic Regularization

Sinkhorn Divergences

Conclusion

Notions of Distance between Measures

2 Entropic Regularization of Optimal Transport

Sinkhorn Divergences : Interpolation between OT and MMD Definition and properties Learning with Sinkhorn Divergences

4 Conclusion

Entropic Regularization

Sinkhorn Divergences

Conclusion

# Discrete gradient flow of $W_{\varepsilon}$ , $\varepsilon = 1$

Entropic Regularization

Sinkhorn Divergences

Conclusion

# The effect of entropy

Entropic Transport is Maximum Likelihood under Gaussian noise (Rigollet Weed '18)

Consider a sample  $(x_1, \ldots, x_n) \sim X$  from the model

$$X = Y + \zeta$$
 where  $Y \sim \alpha_{\theta}, \ \zeta \sim \mathcal{N}(0, \varepsilon)$ .

Then,

$$\hat{\theta}^{MLE} = \min_{\theta} W_{\varepsilon}(\alpha_{\theta}, \frac{1}{n} \sum_{i=1}^{n} \delta x_{i})$$

Entropic Regularization

Sinkhorn Divergences

Conclusion

# The effect of entropy



Entropic Regularization 0000 000 Sinkhorn Divergences

Conclusion

#### Definition and properties

# Sinkhorn Divergences

Issue of regularized Wass. Distance :  $W_{c,\varepsilon}(\alpha, \alpha) \neq 0$ Proposed Solution : introduce corrective terms to 'debias' regularized Wasserstein distance

Definition (Sinkhorn Divergences) Let  $\alpha \in \mathcal{M}^1_+(\mathcal{X})$  and  $\beta \in \mathcal{M}^1_+(\mathcal{Y})$ ,  $SD_{c,\varepsilon}(\alpha,\beta) \stackrel{\text{def.}}{=} W_{c,\varepsilon}(\alpha,\beta) - \frac{1}{2}W_{c,\varepsilon}(\alpha,\alpha) - \frac{1}{2}W_{c,\varepsilon}(\beta,\beta)$ ,

Entropic Regularization

Sinkhorn Divergences

#### Definition and properties

# Interpolation Property

Theorem (G., Peyré, Cuturi '18), (Ramdas and al. '17)

Sinkhorn Divergences have the following asymptotic behavior :

when 
$$\varepsilon \to 0$$
,  $SD_{c,\varepsilon}(\alpha, \beta) \to W_c(\alpha, \beta)$ , (1)

when 
$$\varepsilon \to +\infty$$
,  $SD_{c,\varepsilon}(\alpha,\beta) \to \frac{1}{2}MMD^2_{-c}(\alpha,\beta)$ . (2)

Remark : To get an MMD, -c must be positive definite. For  $c = \|\cdot\|_2^p$  with 0 , the MMD is called Energy Distance.

Entropic Regularization

Sinkhorn Divergences

Conclusion

#### Definition and properties

# Discrete gradient flow of $SD_{\varepsilon}$ , $\varepsilon = 1$

Entropic Regularization

Sinkhorn Divergences

Conclusion

#### Definition and properties

### Discrete gradient flow of $SD_{\varepsilon}$ , $\varepsilon = 1$

Definition and properties

Entropic Regularization

Sinkhorn Divergences

### Summary



Figure 4 – Goal : Recover the positions of the Diracs with gradient descent. Orange circles : target distribution  $\beta$ , blue crosses : parametric model after convergence  $\alpha_{\theta^*}$ . Upper right : initial setting  $\alpha_{\theta_0}$ .

Entropic Regularization

Sinkhorn Divergences

Generative Models

Conclusion

#### Learning



Entropic Regularization

Sinkhorn Divergences

Conclusion

Learning

# **Problem Formulation**

- $\beta$  the **unknown** measure of the data : finite number of samples  $(y_1, \dots, y_N) \sim \beta$
- $\alpha_{\theta}$  the parametric model of the form  $\alpha_{\theta} \stackrel{\text{def.}}{=} g_{\theta \#} \zeta$ : to sample  $x \sim \alpha_{\theta}$ , draw  $z \sim \zeta$  and take  $x = g_{\theta}(z)$ .

We are looking for the optimal parameter  $\theta^*$  defined by

$$heta^* \in \operatorname*{argmin}_{ heta} \mathcal{SD}_{c,arepsilon}(lpha_{ heta},oldsymbol{eta})$$

NB :  $\alpha_{\theta}$  and  $\beta$  are only known via their samples.

Entropic Regularization 0000 0000 Sinkhorn Divergences

Conclusion

Learning

# The Optimization Procedure

We want to solve by gradient descent

 $\min_{\theta} SD_{c,\varepsilon}(\alpha_{\theta},\beta)$ 

At each descent step k instead of approximating  $abla_{\theta}SD_{c,\varepsilon}(\alpha_{\theta}, \beta)$  :

- we approximate  $SD_{c,\varepsilon}(\alpha_{\theta^{(k)}},\beta)$  by  $SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}},\hat{\beta})$  via
  - minibatches : draw *n* samples from  $\alpha_{\theta^{(k)}}$  and *m* in the dataset (distributed according to  $\beta$ ),
  - *L* Sinkhorn iterations : we compute an approximation of the SD between both samples with a fixed number of iterations
- we compute the gradient  $\nabla_{\theta} SD_{c,\varepsilon}^{(L)}(\hat{\alpha}_{\theta^{(k)}}, \hat{\beta})$  by backpropagation (with automatic differentiation library)
- we do an update  $\theta^{(k+1)} = \theta^{(k)} C_k \nabla_{\theta} SD^{(L)}_{c,\varepsilon}(\hat{\alpha}_{\theta^{(k)}}, \hat{\beta})$

Entropic Regularization 0000 000 Sinkhorn Divergences

Conclusion

Learning

# Computing the Gradient in Practice



Figure 5 – Scheme of the approximation of the Sinkhorn Divergence from samples (here,  $g_{\theta} : z \mapsto x$  is represented as a 2-layer NN).

Entropic Regularization 0000 000 Sinkhorn Divergences

**Empirical Results** 

Conclusion

Learning



Figure 6 – Influence of the 'debiasing' of the Sinkhorn Divergence  $(SD_{\varepsilon})$  compared to regularized OT  $(W_{\varepsilon})$ . Data are generated uniformly inside an ellipse, we want to infer the parameters  $A, \omega$  (covariance and center).

Entropic Regularization

0.63, 1.75, 2.75)

Sinkhorn Divergences 00000000

Conclusion

6 4

(0.94, 1.96, 2.90)

#### Learning



Figure 7 – Comparison of the Sinkhorn Divergence  $(SD_{c,\varepsilon})$  and Energy Distance  $(ED_p)$  on the ellipse fitting task (we retained best parameters 

(1,2,3)

Entropic Regularization 0000 0 000 Sinkhorn Divergences

#### Learning

# Learning the cost function

In high dimension (e.g. images), the Euclidean distance is not relevant  $\rightarrow$  choosing the cost *c* is a complex problem.

Idea : the cost should yield high values for the Sinkhorn Divergence when  $\alpha_{\theta} \neq \beta$  to differenciate between synthetic samples (from  $\alpha_{\theta}$ ) and 'real' data (from  $\beta$ ). (Li and al '18)

We learn a parametric cost of the form :

$$c_{\varphi}(x,y) \stackrel{\text{\tiny def.}}{=} \|f_{\varphi}(x) - f_{\varphi}(y)\|^{p} \quad \text{where} \quad f_{\varphi}: \mathcal{X} \to \mathbb{R}^{d'},$$

The optimization problem becomes a min-max on  $(\theta, \varphi)$ 

$$\min_{\theta} \max_{\varphi} SD_{c_{\varphi},\varepsilon}(\alpha_{\theta},\beta)$$

 $\rightarrow$  GAN-type problem, cost *c* acts as a discriminator.

Entropic Regularization

Sinkhorn Divergences

Conclusion

#### Learning

# Empirical Results - CIFAR10



Table 1 – Inception Scores on CIFAR10 (same setting as MMD-GAN paper (Li et al. '18)).

Entropic Regularization

Sinkhorn Divergences

Conclusion

Notions of Distance between Measures

2 Entropic Regularization of Optimal Transport

#### Sinkhorn Divergences : Interpolation between OT and MMD



Entropic Regularization

Sinkhorn Divergences

Conclusion

Take Home Message

Sinkhorn Divergences are a great notion of distance between measures !

- 'debias' regularized Wasserstein Distance
- interpolate between OT (small  $\varepsilon)$  and MMD (large  $\varepsilon)$  and get the best of both worlds :
  - inherit geometric properties from OT
  - break curse of dimension for  $\varepsilon$  large enough
- fast algorithms for implementation in ML tasks