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Discrete Setting (Quantization)
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Semi-discrete Setting (Density Fitting)

!
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ϕ-divergences (Czisar ’63)

Definition (ϕ-divergence)

Let ϕ convex l.s.c. function such that ϕ(1) = 0, the ϕ-divergence
Dϕ between two measures α and β is defined by :

Dϕ(α|β) def.
=

∫

X
ϕ
(dα(x)

dβ(x)

)
dβ(x).

Example (Kullback Leibler Divergence)

DKL(α|β) =
∫

X
log

(
dα
dβ

(x)

)
dα(x) ↔ ϕ(x) = x log(x)
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Weak Convergence of measures
Example

On R, α = δ0 and αn = δ1/n : DKL(αn|α) = +∞.

0 1
n = 1

Definition (Weak Convergence)

αn weakly converges to α, ( denoted αn ⇀ α)
⇔
∫
f (x)dαn(x)→

∫
f (x)dα(x) ∀f ∈ Cb(X ).

Let D distance between measures , D metrises weak
convergence IFF

(
D(αn, α)→ 0⇔ αn ⇀ α

)
.
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Maximum Mean Discrepancies (Gretton
’06)

Definition (RKHS)

Let H a Hilbert space with kernel k , then H is a Reproducing
Kernel Hilbert Space (RKHS) IFF :

1 ∀x ∈ X , k(x , ·) ∈ H,
2 ∀f ∈ H, f (x) = 〈f , k(x , ·)〉H.

Let H a RKHS avec kernel k , the distance MMD between two
probability measures α and β is defined by :

MMD2
k (α, β)

def.
=

(
sup

{f |||f ||H61}
|Eα(f (X ))− Eβ(f (Y ))|

)2

= Eα⊗α[k(X ,X
′)] + Eβ⊗β[k(Y ,Y

′)]

−2Eα⊗β[k(X ,Y )].
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Optimal Transport (Monge 1781,
Kantorovitch ’42)

• c(x , y) : cost of moving a unit of mass from x to y
• π(x , y) (coupling) : how much mass moves from x to y
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The Wasserstein Distance

Minimal cost of moving all the mass from α to β ?

Let α ∈M1
+(X ) and β ∈M1

+(Y),

Wc(α, β) = min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) (P)

For c(x , y) = ||x − y ||p2 , Wc(α, β)
1/p is the p-Wasserstein

distance.
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Optimal Transport vs. MMD

sample complexity

computation

MMD

( 1√
n
)

O(n2)

OT

O(n−1/d)
(curse of dimension)

O(n3 log(n))
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Simple example

min
(x1,...,xn)

D(1
n

n∑

i=1

δxi ,
1
n

n∑

i=1

δyj)
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Discrete gradient flow of MMD
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Discrete gradient flow of OT
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Another example

min
(x1,...,xn)

D(1
n

n∑

i=1

δxi ,
1
n

n∑

i=1

δyj)
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Discrete gradient flow of MMD
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Discrete gradient flow of OT
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Optimal Transport vs. MMD

sample complexity

computation

MMD

( 1√
n
)

O(n2)

OT

O(n−1/d)
(curse of dimension)

O(n3 log(n))

better gradients !

min
(x1,...,xk )

D( 1
k

∑k
i=1 δxi ,

1
n

∑n
i=1 δyj) after 200 steps of grad. descent.
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The basics

Entropic Regularization (Cuturi ’13)

Let α ∈M1
+(X ) and β ∈M1

+(Y),

Wc (α, β)
def.
= min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) (P)

where

H(π|α⊗ β) def.
=

∫

X×Y
log

(
dπ(x , y)

dα(x)dβ(y)

)
dπ(x , y).

relative entropy of the transport plan π with respect to the product
measure α⊗ β.
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Let α ∈M1
+(X ) and β ∈M1

+(Y),

Wc,ε(α, β)
def.
= min
π∈Π(α,β)

∫

X×Y
c(x , y)dπ(x , y) + εH(π|α⊗ β), (Pε)

where

H(π|α⊗ β) def.
=

∫

X×Y
log

(
dπ(x , y)

dα(x)dβ(y)

)
dπ(x , y).

relative entropy of the transport plan π with respect to the product
measure α⊗ β.
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The basics

Entropic Regularization

Figure 3 – Influence of the regularization parameter ε on the transport
plan π.

Intuition : the entropic penalty ‘smoothes’ the problem and avoids
over fitting (think of ridge regression for least squares)
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The basics

Dual Formulation

Contrary to standard OT, no constraint on the dual problem :

Wc (α, β) = max
u∈C(X )
v∈C(Y)

∫

X
u(x)dα(x) +

∫

Y
v(y)dβ(y) (D)

such that {u(x) + v(y) 6 c(x , y) ∀ (x , y) ∈ X × Y}
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Contrary to standard OT, no constraint on the dual problem :

Wc,ε(α, β) = max
u∈C(X )
v∈C(Y)

∫

X
u(x)dα(x) +

∫

Y
v(y)dβ(y)

− ε
∫

X×Y
e

u(x)+v(y)−c(x,y)
ε dα(x)dβ(y) + ε.
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The basics

Sinkhorn’s Algorithm

Iterative algorithm : alternate between optimizing over u with fixed
v and optimizing over v with fixed u.

Sinkhorn’s Algorithm

Let Kij = e−
c(xi ,yj )

ε , a = e
u
ε ,b = e

v
ε .

a(`+1) =
1

K(b(`) � β)
; b(`+1) =

1
KT (a(`+1) �α)

Complexity of each iteration : O(n2),
Linear convergence, constant degrades when ε→ 0.
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A magic regularizing tool !

Differentiable approximation of OT

Bonus : Sinkhorn procedure is fully differentiable with
auto-diff tools (e.g TensorFlow) ⇒ yields a differentiable
approximation of OT !

Some applications :
• Differentiable sorting (Cuturi et al ’19)
• Differentiable (or ’soft’ ) assignments
• Differentiable clustering (G. et al ’19)
• Learning with a regularized Wasserstein loss
(→ more on that later...)
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Sample Complexity

The ‘sample complexity’
Informal Definition
Given a distance between measures , its sample complexity
corresponds to the error made when approximating this distance
with samples of the measures.

→ Bad sample complexity implies bad generalization (over-fitting).

Known cases :
• OT : E|W (α, β)−W (α̂n, β̂n)| = O(n−1/d)
⇒ curse of dimension (Dudley ’84, Weed and Bach ’18)

• MMD : E|MMD(α, β)−MMD(α̂n, β̂n)| = O( 1√
n
)

⇒ independent of dimension (Gretton ’06)

What about E|Wε(α, β)−Wε(α̂n, β̂n)| ?
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Sample Complexity

‘Sample Complexity’ of Wε.

Theorem (G., Chizat, Bach, Cuturi, Peyré ’19) (Mena, Weed
’19)

Let X ,Y ⊂ Rd bounded , and c ∈ C∞ L-Lipschitz. Then

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
1√
n

(
1+

1
εbd/2c

))
,

where constants depend on |X |, |Y|, d , and
∥∥c(k)

∥∥
∞ pour

k = 0 . . . bd/2c+ 1.
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Sample Complexity

‘Sample Complexity’ of Wε.

We get the following asymptotic behavior

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
1

εbd/2c
√
n

)
when ε→ 0

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
1√
n

)
when ε→ +∞.

→ A large enough regularization breaks the curse of dimension.
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Discrete gradient flow of Wε, ε = 1
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The effect of entropy

Entropic Transport is Maximum Likelihood under Gaussian
noise (Rigollet Weed ’18)

Consider a sample (x1, . . . , xn) ∼ X from the model

X = Y + ζ where Y ∼ αθ, ζ ∼ N (0, ε).

Then,

θ̂MLE = minθWε(αθ,
1
n

n∑

i=1

δxi )
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The effect of entropy

SDc," � " = 102, c = || · ||1.5
2SDc," � " = 1, c = || · ||1.5

2

Wc," � " = 1, c = || · ||1.5
2

EDp � p = 1.5Configuration Initiale
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Definition and properties

Sinkhorn Divergences

Issue of regularized Wass. Distance : Wc,ε(α, α) 6= 0
Proposed Solution : introduce corrective terms to ‘debias’
regularized Wasserstein distance

Definition (Sinkhorn Divergences)

Let α ∈M1
+(X ) and β ∈M1

+(Y),

SDc,ε(α, β)
def.
= Wc,ε(α, β)−

1
2
Wc,ε(α, α)−

1
2
Wc,ε(β, β),
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Definition and properties

Interpolation Property

Theorem (G., Peyré, Cuturi ’18), (Ramdas and al. ’17)

Sinkhorn Divergences have the following asymptotic behavior :

when ε→ 0, SDc,ε(α, β)→Wc(α, β), (1)

when ε→ +∞, SDc,ε(α, β)→
1
2
MMD2

−c(α, β). (2)

Remark : To get an MMD, −c must be positive definite. For
c = || · ||p2 with 0 < p < 2, the MMD is called Energy Distance.
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Definition and properties

Discrete gradient flow of SDε, ε = 1
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Definition and properties

Discrete gradient flow of SDε, ε = 1
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Definition and properties

Summary

SDc," � " = 102, c = || · ||1.5
2SDc," � " = 1, c = || · ||1.5

2

Wc," � " = 1, c = || · ||1.5
2

EDp � p = 1.5Initial Setting

Figure 4 – Goal : Recover the positions of the Diracs with gradient
descent. Orange circles : target distribution β, blue crosses : parametric
model after convergence αθ∗ . Upper right : initial setting αθ0 .
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Learning

Generative Models

!
"g

(y1, . . . , ym) ⇠ �
(y1, . . . , ym) ⇠ �

#" "g= # !
Z

X
N
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Learning

Problem Formulation

• β the unknown measure of the data :
finite number of samples (y1, . . . , yN) ∼ β

• αθ the parametric model of the form αθ
def.
= gθ#ζ :

to sample x ∼ αθ, draw z ∼ ζ and take x = gθ(z).

We are looking for the optimal parameterθ∗ defined by

θ∗ ∈ argmin
θ

SDc,ε(αθ, β)

NB : αθ and β are only known via their samples.
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Learning

The Optimization Procedure

We want to solve by gradient descent

min
θ

SDc,ε(αθ, β)

At each descent step k instead of approximating ∇θSDc,ε(αθ, β) :

• we approximate SDc,ε(αθ(k) , β) by SD
(L)
c,ε (α̂θ(k) , β̂) via

• minibatches : draw n samples from αθ(k) and m in the dataset
(distributed according to β),

• L Sinkhorn iterations : we compute an approximation of the
SD between both samples with a fixed number of iterations

• we compute the gradient ∇θSD(L)
c,ε (α̂θ(k) , β̂) by

backpropagation (with automatic differentiation library)

• we do an update θ(k+1) = θ(k) − Ck∇θSD(L)
c,ε (α̂θ(k) , β̂)
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Learning

Computing the Gradient in Practice

(z1, . . . , zn) ⇠ ⇣

Modèle Génératif

g✓

C

c(xi, yj)i,j

C

= g✓#⇣(x1, . . . , xn) ⇠ ↵✓

zi

Données

Algorithme de Sinkhorn

L  
Sinkhorn steps

a =
1

e�C/"b

b =
1

e�C/"a

yi

c(xi, xj)i,j

c(yi, yj)i,j

SDc,"(↵̂✓, �̂) = Wc,"(↵̂✓, �̂)⇣
Wc,"(↵̂✓, ↵̂✓)+Wc,"(�̂, �̂)

⌘
�1

2

xi
⇡(L) = diag(a(L)) e�C/✏ diag(b(L))

Ŵ (L)
✏ =hC,⇡(L)iW (L)

c," = hC,⇡(L)i

(y1, . . . , ym) ⇠ �

Figure 5 – Scheme of the approximation of the Sinkhorn Divergence from
samples (here, gθ : z 7→ x is represented as a 2-layer NN).
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Learning

Empirical Results

SDc," � " = 1, c = || · ||22Wc," � " = 1, c = || · ||22

Figure 6 – Influence of the ‘debiasing’ of the Sinkhorn Divergence (SDε)
compared to regularized OT (Wε). Data are generated uniformly inside
an ellipse, we want to infer the parameters A, ω (covariance and center).
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Learning

Empirical Results
SDc," � " = 1, c = || · ||22EDp � p = 1.5

68 CHAPTER 2. LEARNING WITH SINKHORN DIVERGENCES

loss EDp EDp SDc,Á

p, Á 2,- 1.5,- 2,103

Aú
≠0.09 ≠0.04 0.05
0.06 0.03 0.05

≠0.09 ≠0.17 ≠0.11

3.12 1.74 2.08
2.25 2.83 2.09
2.30 1.74 3.07

1.56 2.23 2.69
1.44 2.31 2.72
1.40 2.22 2.86

Êú (0.68, 1.78 , 2.72 ) ( 0.63 , 1.75 , 2.75) (0.74 , 1.81 , 2.76)
loss SDc,Á SDc,Á ground truth
p, Á 1.5,103 2, 1

Aú
2.95 2.08 2.05
2.05 3.17 1.95
2.12 2.15 3.00

2.90 1.96 2.13
2.02 3.03 2.10
2.06 1.95 3.03

3 2 2
2 3 2
2 2 3

Êú (0.73 ,1.83, 2.76) (0.94 , 1.96 , 2.90) (1,2,3)

Table 2.1 – Comparison of the inferred parameters Aú,Êú for the losses displayes in
Figures 2.3 and 2.4, the gound truth A0,Ê0 (parameters used to generate the dataset)
is in bold, on the right.

Gaussian MMD - � = 10 Gaussian MMD - � = 1 Gaussian MMD - � = 10�2

Figure 2.5 – Ellipses after convergence of the stochastic gradient descent, with Gaussian
MMD.

Therefore, our results can not be directly compared to that of clustering algorithms, in
the sense that we do automatically recover, within such ellipses, entire areas of interest
(and not voronoi cells). We assume in this illustration that each ellipse has equal mass
1/K. To recover these ellipses through a push forward, we use a uniform ground density
’ over 3 centered unit balls, translated and dilated for each ellipse using the push-forward
defined by g◊(z) = Akz+Êk if z is in the k-th ball. Note that the model can be adapted
otherwise (density decaying when moving away from the center, mass proportional to
the size of the ellipse) with simple modifications in either the ground density ’ or the
pushforward g◊, but we found this uniform model to be a good fit for this dataset.

4.2.0.1 Numerical Illustration. The ellipse matrices (Ak)k are all initialized with
the identity matrix (which corresponds to the unit ball) and centers (Êk)k are initialized
with the K-means algorithm. We fixed a maximal budget of Sinkhorn iterations L = 5
to be competitive with MMD time-wise, with a minibatch size m = 300 for both algo-
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Learning

Learning the cost function
In high dimension (e.g. images), the Euclidean distance is not
relevant → choosing the cost c is a complex problem.

Idea : the cost should yield high values for the Sinkhorn Divergence
when αθ 6= β to differenciate between synthetic samples (from αθ)
and ‘real’ data (from β). (Li and al ’18)

We learn a parametric cost of the form :

cϕ(x , y)
def.
= ||fϕ(x)− fϕ(y)||p where fϕ : X → Rd ′ ,

The optimization problem becomes a min-max on (θ, ϕ)

min
θ

max
ϕ

SDcϕ,ε(αθ, β)

→ GAN-type problem, cost c acts as a discriminator.
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Learning

Empirical Results - CIFAR10

(a) MMD (b) ε = 100 (c) ε = 1

MMD (Gaussian) ε = 100 ε = 10 ε = 1

4.56± 0.07 4.81± 0.05 4.79± 0.13 4.43± 0.07

Table 1 – Inception Scores on CIFAR10 (same setting as MMD-GAN
paper (Li et al. ’18)).

44/46



Distances Entropic Regularization Sinkhorn Divergences Conclusion

1 Notions of Distance between Measures

2 Entropic Regularization of Optimal Transport

3 Sinkhorn Divergences : Interpolation between OT and MMD

4 Conclusion
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Take Home Message

Sinkhorn Divergences are a great notion of distance between
measures !
• ‘debias’ regularized Wasserstein Distance
• interpolate between OT (small ε) and MMD (large ε) and get
the best of both worlds :

• inherit geometric properties from OT
• break curse of dimension for ε large enough

• fast algorithms for implementation in ML tasks
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