Localisation of RW in dimensions $d \ge 3$

Nathanaël Berestycki Universität Wien with Raphaël Cerf (ENS)

CIRM, September 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statement of problem

Bolthausen's question

For $N \in \mathbb{N}$, consider

$$d\mathbb{Q} = rac{\exp(-|R_N|)}{Z_N}d\mathbb{P}$$

where $R_N = \{X_1, \dots, X_N\}$ is range. **Q:** What can be said about typical realisation of \mathbb{Q} ?

 Z_N = partition function estimated by Donsker–Varadhan (1979):

$$Z_N = \exp(-(1+o(1))\chi_d N^{d/(d+2)})$$

for some explicit $\chi_d, d \geq 2$.

Bolthausen's conjecture

Theorem (Bolthausen 1994)

Let d = 2. Then RW localises on $B(x, \rho_2 N^{1/4})$ for some random $x \in \mathbb{Z}^d$ and explicit $\rho_2 > 0$.

Conjecture for $d \ge 3$ (1994):

Localisation in $B(x, \rho_d N^{1/(d+2)})$ for some $\rho_d > 0$.

Part of his analysis is directly written for general $d \ge 2$.

This talk

Solution to Bolthausen's conjecture (joint with Raphaël Cerf, 2018).

Related works

- Independent solution by Ding, Fukishima, Sun, and Xu. See Ryoki's course.
- Sznitman did continuous version of this problem in the 90s, using his enlargement of obstacles method.
- Work by [DFSX] uses (discrete version of) Sznitman's method for upper bound. Plus separate argument for filling a ball.

• Unlike [DSFX] we did not get estimates on the size of the boundary.

Motivation

• One motivation for us is work by B.-Yadin (2015) which considers

$$d\mathbb{Q}=\frac{\exp(-\beta|\partial R_N|)}{Z_N}d\mathbb{P}.$$

- Results show localisation (but no shape theorem) at scale $n = N^{1/(d+1)}$.
- Bolthausen's question is much easier...
- Note: random medium representation not available here.

・ロット (日) (日) (日) (日) (日)

Ideas and heuristics

Why is scale $L = N^{1/(d+2)}$ the correct scale ?

$$\mathbb{P}(R_N \subset B(0,L)) \approx \exp(-N/L^2).$$

Contribution is $\exp(-|R_N|) \approx \exp(-L^d).$
Hence $L^d = N/L^2.$

More precisely, if $U \subset \mathbb{R}^d$, let $\lambda_U =$ principal EV of $-\Delta$ with Dirichlet boundary conditions in U.

$$\mathbb{P}(R_N \subset LU) \approx \exp(-\frac{\lambda_U}{2}L^d).$$

Contributes $\exp(-|U|L^d)$.

Faber-Krahn inequality

Consequently Z_N should be obtained by minimising

$$\inf_{U\subset\mathbb{R}^d}\{\frac{\lambda_U}{2}+|U|\}$$

Faber–Krahn inequality: U is a Euclidean ball. Then problem equivalent to

$$\inf_{r>0} \{ \frac{\lambda}{2r^2} + \omega_d r^d \}$$

with $\lambda = \lambda_{B(0,1)}$ and $\omega_d = |B(0,1)|$. The value is χ_d from Donsker–Varadhan asymptotics. Radius $r = \rho_d$.

Quantitative Faber-Krahn

 \bullet Bolthausen's starting point is quantitative Faber–Krahn (:= qFK).

• To use Large Deviation theory, must be on compact set \implies qFK is needed on a (continuous) torus of large but fixed (O(1)) size.

• Unfortunately, qFK on the torus only known in d = 2. (Even quantitative isoperimetric not known.)

• But known in \mathbb{R}^d by work of Brasco, De Phillipis, Volkachev (2015).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consequence of quantitative Faber-Krahn

Let $\phi_x = 1$ st eigenfunction in $B(x, \rho_d)$, normalised so $\|\phi_x\|_2 = 1$.

Lemma

If $g : \mathbb{R}^d \to \mathbb{R}^+$ is C^{∞} and such that $||g||_2 = 1$, $g \ge 0$, and if

$$\varepsilon = \inf_{x \in \mathbb{R}^d} ||g - \phi_x||_2 > 0$$

is small enough, then

$$\left|\left\{g>0\right\}\right|+\frac{1}{2d}\int_{\mathbb{R}^d}\left|\nabla g\right|^2 dx \geq \chi_d+\varepsilon^{48}$$

LDP in \mathbb{R}^d

For $t \in \mathbb{N}$ and $D \subset \mathbb{R}^d$, let

$$\tau(D,t) = \inf\{k \ge 1 : L(D,k) \ge t\}$$

and

$$L_t^D(x) = \sum_{k=0}^{\tau(D,t)-1} \mathbb{1}_{\{X_k = x\}}$$

Theorem (B.-Cerf 2018)

Let C be closed convex in $\ell^1(D)$. Then for all $t \ge 1$,

$$\inf_{x\in\bar{D}}\mathbb{P}^{x}\left(\frac{1}{t}L_{t}^{D}\in C; \tau(D,t)<\infty\right)\leq \exp\left(-t\inf_{h\in C}\frac{1}{2}\mathcal{E}^{D}(\sqrt{h},\sqrt{h})\right)$$

where \mathcal{E}^{D} is Dirichlet form

$$\mathcal{E}^{D}(f,f) = \frac{1}{2d} \sum_{y,z \in D: |y-z|=1} (f(y) - f(z))^{2}$$

Two parts of proof

Part I: ℓ^1 shape theorem

Local times are close to ϕ_x^2 in ℓ^1 sense for some $x \in \mathbb{R}^d$.

Part II: ball is filled

If local times are close to ϕ_x^2 then all points in $B(x, L\rho_d - L^{1-\kappa})$ are visited.

By Bolthausen (1994) this implies containment and so conjecture.

Coarse-graining, I

• Improved lower bound on partition function already proved by Bolthausen:

$$Z_N \ge \exp(-\chi_d L^d - c L^{d-1})$$

for some $c \in \mathbb{R}$.

• So to show \mathcal{A} is unlikely, it suffices

$$\mathbb{E}(\exp(-|R_N|)\mathbf{1}_{\mathcal{A}}) \leq \exp(-\chi_d L^d - \varepsilon L^{d-\varepsilon}).$$

• To single out the minimiser we would like to use LDP and "sum" over all possible functions.

Coarse-graining, II

- Too much entropy, of course.
- Instead use a coarse-grained version of local time profile.

Key tool for this is the observation that: whp, (i) $|R_N| \leq CL^d$ (ii): if $f_N = \sqrt{L_N}$, $\mathcal{E}(f_N, f_N) \leq CL^d \log L$ by LDP.

Poincaré-Sobolev inequality: this implies

$$\|f_N\|_{2^*} \le C\sqrt{L^d \log L}$$

where $2^* = 2d/(d-2) > 2$.

Controls number of blocks of size L where f_N large (high density) so reduces entropy.

Poincaré-Wirtinger controls L^2 distance to coarse-grained profile.

Putting LDP + Coarse–Graining + qFK together

We obtain shape theorem in ℓ^1 :

set
$$\ell_N = \frac{L^d}{N} L_N(\lfloor Lx \rfloor) =$$
 rescaled local time $\in \ell^1(\mathbb{R}^d)$

Proposition

Let

$$\mathcal{L}_n = \{ f \in \ell^1(\mathbb{R}^d) : \|f\|_1 = 1, \inf_{x \in \mathbb{R}^d} \|\phi_x^2 - f\|_1 \ge L^{-1/800} \}$$

Then

$$\mathbb{E}(e^{-|\mathcal{R}_N|}\mathbf{1}_{\ell_N\in\mathcal{L}_N}) \leq \exp(-\chi_d L^d - L^{d-1/17}).$$

Filling the ball

Suppose ℓ^1 shape theorem holds. Show "all" of ball visited.

Proposition

For κ small enough,

$$\mathbb{E}(e^{-|R_N|} \mathbb{1}_{\{\|\ell_N - \phi_0^2\|_1 \le L^{-s}\}} \mathbb{1}_{\{B(0,
ho L - L^{-\kappa}) ext{not full}\}}) \le Z_N e^{-L^{-\kappa}}$$

Ideas

Pick $x \in B(0, \rho L - L^{1-\kappa})$ and $m = L^{1-2\kappa}$. Show B(x, m) visited.

• By shape thm, walk spends much time in B(x, m).

- Hence many bridges of duration m^2 : [staying in B(x, m), from bulk to bulk. (bulk = B(x, m/2))].
- We want to sum over all $\mathcal{X} \subset B(x, m)$, probability to avoid \mathcal{X} .

Key: can condition on everything that happens outside B(x, m). All bridges are independent!

Avoidance probability

• Need lower bound for

 $\mathbb{P}^{a \to b; m^2}$ (bridge X hits \mathcal{X})

uniformly in *a*, *b* and geometry of \mathcal{X} : depending only on $k = |\mathcal{X}|$.

We will get

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Intuitively: worst case when \mathcal{X} clumped as ball (of radius $k^{1/d}$).
- Ignore boundary effects for now: assume $\mathcal{X} \subset B(x, m/2)$. Change bridge into SRW.
- "First" moment method:

$$\mathbb{P}(\text{visit }\mathcal{X}) = \frac{\mathbb{E}(L_{m^2}(\mathcal{X}))}{\mathbb{E}(L_{m^2}(\mathcal{X})|L_{m^2}(\mathcal{X}) > 0)} \geq \frac{km^2/m^d}{\max_{z \in \mathcal{X}} \mathbb{E}_z(L_{\infty}(\mathcal{X}))}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\mathbb{E}_{z}(L_{\infty}(\mathcal{X})) = \sum_{x \in \mathcal{X}} G(z, x), \ G =$ Green function
- But G(z, x) is essentially monotone in distance.
- So worst indeed when \mathcal{X} is ball! Hence

$$\mathbb{P}(ext{visit }\mathcal{X}) \geq rac{km^{2-d}}{k^{2/d}} = k^{1-2/d}m^{2-d}.$$

This would be enough ...

BUT this ignores boundary effects: walk conditioned to stay in B(x, m).

Isoperimetry for conditioned walks

• What if \mathcal{X} is clumped close to $\partial B(x, m)$?

• Idea: decompose into dyadic annuli at distance $1, \ldots, 2^j, \ldots$ from $\partial B(x, m)$.

• Suppose $\mathcal{X} \subset A_j$ at distance $r = 2^j$. Then Gambler's ruin:

$$\mathbb{E}^{a \to b; m^2}(L_{m^2}(\mathcal{X})) \asymp km^{2-d}(r/m)^2$$

• On the other hand, if $z \in \mathcal{X}$,

$$\mathbb{E}_{z}(L(\mathcal{X})) \leq \mathbb{E}_{z}(L(A_{j})) \leq r^{2}$$

Hence

$$\mathbb{P}^{a \to b; m^2}$$
(visit \mathcal{X}) $\geq km^{-d}$, indep. of r

• If \mathcal{X} not fully contained in an annulus, take the annulus with the biggest number of points. Then $k \to k/\log m$! END OF PROOF!

THANK YOU!

・ロ・・御・・ヨ・・ヨ・

э