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Statement of problem

Bolthausen's question

For N € N, consider

_ exp(—|Rul)

dP
Zy

dQ

where Ry = {Xi,..., Xy} is range.
Q: What can be said about typical realisation of Q?

Zy = partition function estimated by Donsker—Varadhan (1979):
Zy = exp(—(1 + o(1))xgN¥/@*2))

for some explicit xq4,d > 2.



Bolthausen's conjecture

Theorem (Bolthausen 1994)

Let d = 2. Then RW localises on B(x, poN*/*) for some random
x € 79 and explicit p» > 0.

Conjecture for d > 3 (1994):

Localisation in B(x, pgN'/(9+2)) for some pg > 0.

Part of his analysis is directly written for general d > 2.

This talk

Solution to Bolthausen's conjecture (joint with Raphaél Cerf,
2018).



Related works

e Independent solution by Ding, Fukishima, Sun, and Xu. See
Ryoki's course.

e Sznitman did continuous version of this problem in the 90s, using
his enlargement of obstacles method.

e Work by [DFSX] uses (discrete version of) Sznitman’s method
for upper bound. Plus separate argument for filling a ball.

e Unlike [DSFX] we did not get estimates on the size of the
boundary.



Motivation

e One motivation for us is work by B.-Yadin (2015) which considers

_ exp(—Bl9Ru])

dP.
Zn

dQ

e Results show localisation (but no shape theorem) at scale

e Bolthausen's question is much easier...

e Note: random medium representation not available here.



Ideas and heuristics

Why is scale L = NY/(4+2) the correct scale ?

P(Ry C B(0, L)) ~ exp(—N/L?).

Contribution is exp(—|Rn|) ~ exp(—L9).
Hence L9 = N/L2.

More precisely, if U C RY, let Ay = principal EV of —A with
Dirichlet boundary conditions in U.

A
P(Ry C LU) ~ exp(—TULd).

Contributes exp(—|U|L9).



Faber—Krahn inequality

Consequently Zy should be obtained by minimising
: Au
f{—+|U
inf {5 U]}

Faber—Krahn inequality: U is a Euclidean ball. Then problem
equivalent to

A
:!20{ 2r2 +wart}

with A = Ap(0,1) and wg = |B(0,1)|. The value is x4 from
Donsker—Varadhan asymptotics. Radius r = pg.



Quantitative Faber—Krahn

e Bolthausen's starting point is quantitative Faber-Krahn (:=
qFK).

e To use Large Deviation theory, must be on compact set —
qFK is needed on a (continuous) torus of large but fixed (O(1))
size.

e Unfortunately, gFK on the torus only known in d = 2. (Even
quantitative isoperimetric not known.)

e But known in RY by work of Brasco, De Phillipis, Volkachev
(2015).



Consequence of quantitative Faber—Krahn

Let ¢x = 1st eigenfunction in B(x, pg), normalised so ||¢x|l2 = 1.

Lemma
If g : RY — R* is C* and such that ||g|l» =1, g >0, and if

e= inf ||[g—ox|[ >0
xERY

is small enough, then

1
}{g>0}\+2d/Rd\Vg|2dx > xq +e%.



LDP in R?

For t e Nand D C RY, let
T(D,t) =inf{k >1: L(D, k) > t}

and
7(D,t)—1

LP)= Y lpgen

k=0
Theorem (B.-Cerf 2018)
Let C be closed convex in (*(D). Then for all t > 1,

xeD

inf P <1L? € C;7(D,t) < oo) < exp (-thinfc %5%/%, \/E))
€

where EP is Dirichlet form

EO(F A =ns X (FO) ()

y,zeD:|ly—z|=1



Two parts of proof

Part |: ¢* shape theorem

Local times are close to ¢2 in ¢! sense for some x € R¢.

Part Il: ball is filled

If local times are close to ¢2 then all points in B(x, Lpg — L}~*)
are visited.

By Bolthausen (1994) this implies containment and so conjecture.



Coarse—graining, |

e Improved lower bound on partition function already proved by
Bolthausen:
Zy > exp(—xal? — cl97)

for some ¢ € R.

e So to show A is unlikely, it suffices

E(exp(—|Rn|)14) < exp(—Xde - 5Ld*€).

e To single out the minimiser we would like to use LDP and “sum”
over all possible functions.



Coarse-graining, |l

e Too much entropy, of course.
e Instead use a coarse—grained version of local time profile.

Key tool for this is the observation that: whp,
(i) |Ry| < CL9
(ii): if fN =V LN, E(f/\/, fN) < CLd |og L by LDP.

Poincaré-Sobolev inequality: this implies

||fN||2* § C\/ Ld Iog L

where 2* = 2d/(d — 2) > 2.

Controls number of blocks of size L where fy large (high density)
so reduces entropy.

Poincaré-Wirtinger controls L? distance to coarse-grained profile.



Putting LDP + Coarse—Graining + qFK together

We obtain shape theorem in ¢*:

L9
set Uy = NLN(U-XJ) = rescaled local time € /}(R)

Proposition
Let
L,={f¢€ El(Rd) fll =1, infd H¢>2< — fll1 > L71/800}
x€R

Then
E(ef‘RNlleNec,\,) < exp(—xql9 — Ld71/17).



Filling the ball

Suppose ¢! shape theorem holds. Show “all” of ball visited.
Proposition

For x small enough,

E(e™ ™10, g2 <y Lot —L-mpnot fuiy) < Zne ™"




Ideas

Pick x € B(0, pL — L'=%) and m = L172%_ Show B(x, m) visited.
e By shape thm, walk spends much time in B(x, m).

e Hence many bridges of duration m?:

[staying in B(x, m), from bulk to bulk. (bulk = B(x, m/2))].

e We want to sum over all X C B(x, m), probability to avoid X.

Key: can condition on everything that happens outside B(x, m).
All bridges are independent!



Avoidance probability

e Need lower bound for
P27 (bridge X hits X)

uniformly in a, b and geometry of X: depending only on k = |X|.

We will get > (ognymad uniformly.



Isoperimetric ideas

e Intuitively: worst case when X clumped as ball (of radius k/9).

e Ignore boundary effects for now: assume X C B(x, m/2).
Change bridge into SRW.

e “First” moment method:

E(Lm2(X)) - km?/m¢9

P(Visit X) = E(Lm2(-)()|l—m2(X) > O) T omaXzex ]EZ(LOO(X))




o E,(Loo(X)) = > scx G(2,x), G = Green function
e But G(z, x) is essentially monotone in distance.

e So worst indeed when X is balll
Hence

iy km?~¢ _ _
P(visit X') > YR 1-2/d p2—d

This would be enough...

BUT this ignores boundary effects: walk conditioned to stay in
B(x, m).



Isoperimetry for conditioned walks
e What if X is clumped close to 0B(x, m)?

e Idea: decompose into dyadic annuli at distance 1,...,2/, ...
from 0B(x, m).

e Suppose X' C A; at distance r = 2/, Then Gambler's ruin:
E2=2m (L 2(X)) < km?~9(r/m)?

e On the other hand, if z € X,

E.(L(X)) < Eo(L(A)) < P

Hence ,
Pa=bm (visit X) > km™9, indep. of r

e If X not fully contained in an annulus, take the annulus with the
biggest number of points. Then k — k/logm !
END OF PROOF!



e

THANK YOU!



