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Statement of problem

Bolthausen’s question

For N ∈ N, consider

dQ =
exp(−|RN |)

ZN
dP

where RN = {X1, . . . ,XN} is range.
Q: What can be said about typical realisation of Q?

ZN = partition function estimated by Donsker–Varadhan (1979):

ZN = exp(−(1 + o(1))χdN
d/(d+2))

for some explicit χd , d ≥ 2.



Bolthausen’s conjecture

Theorem (Bolthausen 1994)

Let d = 2. Then RW localises on B(x , ρ2N
1/4) for some random

x ∈ Zd and explicit ρ2 > 0.

Conjecture for d ≥ 3 (1994):

Localisation in B(x , ρdN
1/(d+2)) for some ρd > 0.

Part of his analysis is directly written for general d ≥ 2.

This talk

Solution to Bolthausen’s conjecture (joint with Raphaël Cerf,
2018).



Related works

• Independent solution by Ding, Fukishima, Sun, and Xu. See
Ryoki’s course.

• Sznitman did continuous version of this problem in the 90s, using
his enlargement of obstacles method.

• Work by [DFSX] uses (discrete version of) Sznitman’s method
for upper bound. Plus separate argument for filling a ball.

• Unlike [DSFX] we did not get estimates on the size of the
boundary.



Motivation

• One motivation for us is work by B.-Yadin (2015) which considers

dQ =
exp(−β|∂RN |)

ZN
dP.

• Results show localisation (but no shape theorem) at scale
n = N1/(d+1).

• Bolthausen’s question is much easier...

• Note: random medium representation not available here.



Ideas and heuristics

Why is scale L = N1/(d+2) the correct scale ?

P(RN ⊂ B(0, L)) ≈ exp(−N/L2).

Contribution is exp(−|RN |) ≈ exp(−Ld).
Hence Ld = N/L2.

More precisely, if U ⊂ Rd , let λU = principal EV of −∆ with
Dirichlet boundary conditions in U.

P(RN ⊂ LU) ≈ exp(−λU
2
Ld).

Contributes exp(−|U|Ld).



Faber–Krahn inequality

Consequently ZN should be obtained by minimising

inf
U⊂Rd

{λU
2

+ |U|}

Faber–Krahn inequality: U is a Euclidean ball. Then problem
equivalent to

inf
r>0
{ λ

2r2
+ ωd r

d}

with λ = λB(0,1) and ωd = |B(0, 1)|. The value is χd from
Donsker–Varadhan asymptotics. Radius r = ρd .



Quantitative Faber–Krahn

• Bolthausen’s starting point is quantitative Faber–Krahn (:=
qFK).

• To use Large Deviation theory, must be on compact set =⇒
qFK is needed on a (continuous) torus of large but fixed (O(1))
size.

• Unfortunately, qFK on the torus only known in d = 2. (Even
quantitative isoperimetric not known.)

• But known in Rd by work of Brasco, De Phillipis, Volkachev
(2015).



Consequence of quantitative Faber–Krahn

Let φx = 1st eigenfunction in B(x , ρd), normalised so ‖φx‖2 = 1.

Lemma

If g : Rd → R+ is C∞ and such that ||g ||2 = 1, g ≥ 0, and if

ε = inf
x∈Rd

||g − φx ||2 > 0

is small enough, then∣∣{ g > 0 }
∣∣+

1

2d

∫
Rd

∣∣∇g ∣∣2 dx ≥ χd + ε48 .



LDP in Rd

For t ∈ N and D ⊂ Rd , let

τ(D, t) = inf{k ≥ 1 : L(D, k) ≥ t}
and

LDt (x) =

τ(D,t)−1∑
k=0

1{Xk=x}

Theorem (B.-Cerf 2018)

Let C be closed convex in `1(D). Then for all t ≥ 1,

inf
x∈D̄

Px

(
1

t
LDt ∈ C ; τ(D, t) <∞

)
≤ exp

(
−t inf

h∈C

1

2
ED(
√
h,
√
h)

)

where ED is Dirichlet form

ED(f , f ) =
1

2d

∑
y ,z∈D:|y−z|=1

(f (y)− f (z))2



Two parts of proof

Part I: `1 shape theorem

Local times are close to φ2
x in `1 sense for some x ∈ Rd .

Part II: ball is filled

If local times are close to φ2
x then all points in B(x , Lρd − L1−κ)

are visited.

By Bolthausen (1994) this implies containment and so conjecture.



Coarse–graining, I

• Improved lower bound on partition function already proved by
Bolthausen:

ZN ≥ exp(−χdL
d − cLd−1)

for some c ∈ R.

• So to show A is unlikely, it suffices

E(exp(−|RN |)1A) ≤ exp(−χdL
d − εLd−ε).

• To single out the minimiser we would like to use LDP and “sum”
over all possible functions.



Coarse-graining, II

• Too much entropy, of course.

• Instead use a coarse–grained version of local time profile.

Key tool for this is the observation that: whp,
(i) |RN | ≤ CLd

(ii): if fN =
√
LN , E(fN , fN) ≤ CLd log L by LDP.

Poincaré-Sobolev inequality: this implies

‖fN‖2∗ ≤ C
√

Ld log L

where 2∗ = 2d/(d − 2) > 2.
Controls number of blocks of size L where fN large (high density)
so reduces entropy.
Poincaré-Wirtinger controls L2 distance to coarse-grained profile.



Putting LDP + Coarse–Graining + qFK together

We obtain shape theorem in `1:

set `N =
Ld

N
LN(bLxc) = rescaled local time ∈ `1(Rd)

Proposition

Let

Ln = {f ∈ `1(Rd) : ‖f ‖1 = 1, inf
x∈Rd

‖φ2
x − f ‖1 ≥ L−1/800}

Then
E(e−|RN |1`N∈LN ) ≤ exp(−χdL

d − Ld−1/17).



Filling the ball
Suppose `1 shape theorem holds. Show “all” of ball visited.

Proposition

For κ small enough,

E(e−|RN |1{‖`N−φ2
0‖1≤L−s}1{B(0,ρL−L−κ)not full}) ≤ ZNe

−L−κ

ρL

ρL− L−κ

RN



Ideas

Pick x ∈ B(0, ρL− L1−κ) and m = L1−2κ. Show B(x ,m) visited.

• By shape thm, walk spends much time in B(x ,m).

• Hence many bridges of duration m2:
[staying in B(x ,m), from bulk to bulk. (bulk = B(x ,m/2))].

• We want to sum over all X ⊂ B(x ,m), probability to avoid X .

Key: can condition on everything that happens outside B(x ,m).
All bridges are independent!



Avoidance probability

• Need lower bound for

Pa→b;m2
(bridge X hits X )

uniformly in a, b and geometry of X : depending only on k = |X |.

m
m/2

a
b

X

We will get ≥ k
(log m)md uniformly.



Isoperimetric ideas

• Intuitively: worst case when X clumped as ball (of radius k1/d).

• Ignore boundary effects for now: assume X ⊂ B(x ,m/2).
Change bridge into SRW.

• “First” moment method:

P(visit X ) =
E(Lm2(X ))

E(Lm2(X )|Lm2(X ) > 0)
≥ km2/md

maxz∈X Ez(L∞(X ))



• Ez(L∞(X )) =
∑

x∈X G (z , x), G = Green function

• But G (z , x) is essentially monotone in distance.

• So worst indeed when X is ball!
Hence

P(visit X ) ≥ km2−d

k2/d
= k1−2/dm2−d .

This would be enough...

BUT this ignores boundary effects: walk conditioned to stay in
B(x ,m).



Isoperimetry for conditioned walks

• What if X is clumped close to ∂B(x ,m)?

• Idea: decompose into dyadic annuli at distance 1, . . . , 2j , . . .
from ∂B(x ,m).

• Suppose X ⊂ Aj at distance r = 2j . Then Gambler’s ruin:

Ea→b;m2
(Lm2(X )) � km2−d(r/m)2

• On the other hand, if z ∈ X ,

Ez(L(X )) ≤ Ez(L(Aj)) ≤ r2

Hence
Pa→b;m2

(visit X ) ≥ km−d , indep. of r

• If X not fully contained in an annulus, take the annulus with the
biggest number of points. Then k → k/ logm !
END OF PROOF!



THANK YOU!


