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Overview

• The talk concerns sets in Rn with differing Hausdorff and
box-counting dimensions.

• Hausdorff and box-counting dimensions can be regarded as
particular cases of a spectrum of ‘intermediate’ dimensions
dimθF (0 ≤ θ ≤ 1) with

dim0F = dimHF and dim1F = dimBF

• Intermediate dimensions give an idea of the range of sizes of
covering sets needed to get good estimates for Hausdorff
dimension.

• Potential theoretic methods enable us to study geometric
properties of these dimensions such as the effect of orthogonal
projection.
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Hausdorff and box dimension - alternative definitions

Recall that Hausdorff dimension may be defined without
introducing Hausdorff measures: for E ⊂ Rn

dimH E = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of E

such that
∑
|Ui |s ≤ ε

}
.

The lower/upper box-counting dimensions of a non-empty compact
E ⊂ Rn are

dimBE = lim inf
r→0

logNr (E )

− log r
, dimBE = lim

r→0

logNr (E )

− log r

where Nr (E ) is the least number of sets of diameter r covering E .
Equivalently dimB may be defined

dimBE = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of E

such that |Ui | = |Uj | for all i , j and
∑
|Ui |s ≤ ε

}
.
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Intermediate dimensions

Let E ⊂ Rn be non-empty and bounded. For 0 ≤ θ ≤ 1 define the lower
θ-intermediate dimension of E by

dim θE = inf
{
s ≥ 0 : for all ε > 0 there exist arbitrarily small δ > 0 s.t.

and {Ui} covering E s.t. δ1/θ ≤ |Ui | ≤ δ and
∑
|Ui |s ≤ ε

}
.

Similarly, define the upper θ-intermediate dimension of E by

dim θE = inf
{
s ≥ 0 : for all ε > 0 and all sufficiently small δ > 0

there is a cover {Ui} of E s.t. δ1/θ ≤ |Ui | ≤ δ and
∑
|Ui |s ≤ ε

}
.

Then

dim0E = dim0E = dimHE , dim1E = dimBE and dim1E = dimBE .

Moreover, for bounded E and θ ∈ [0, 1],

dimHE ≤ dim θE ≤ dim θE ≤ dimBE and dim θE ≤ dimBE .
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SImple properties

• dim θ is finitely stable, that is
dim θ(E1 ∪ E2) = max{dim θE1, dim θE2}.

• For θ ∈ (0, 1], both dim θE and dim θE are unchanged on
replacing E by its closure.

• For E ,F ⊆ Rn be non-empty and bounded and θ ∈ [0, 1],

dim θE + dim θF ≤ dim θ(E ×F ) ≤ dimθ(E ×F ) ≤ dimθE + dimBF .

• For θ ∈ [0, 1], dim θ and dim θ are bi-Lipschitz invariant.
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Continuity and monotonicity

Proposition Let E ⊂ Rn and let 0 ≤ θ < φ ≤ 1. Then

dim θE ≤ dimφE ≤ dim θE +
(

1− θ

φ

)
(n − dim θE ),

similarly for upper dimensions.

In particular, θ 7→ dim θE and θ 7→ dim θE are continuous for
θ ∈ (0, 1] and (not necessarily strictly) increasing.
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Intermediate dimensions and Assouad dimension

The Assouad dimension of E ⊆ Rn is defined by

dimA E = inf

{
s ≥ 0 : there exists C > 0 such that for all x ∈ E ,

and for all 0 < r < R, Nr (E ∩ B(x ,R)) ≤ C

(
R

r

)s }
where Nr (A) denotes the smallest number of sets of diameter at most r
required to cover a set A. In general dimBE ≤ dimBE ≤ dimA E ≤ n,

Proposition For non-empty bounded E ⊆ Rn and θ ∈ (0, 1],

dim θE ≥ dimA E − dimA E − dimBE

θ
,

with a similar conclusion using dim θ and dimB.
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Example

For p > 0 let

Ep =
{

0,
1

1p
,

1

2p
,

1

3p
, . . .

}
.

E1:

Since Ep is countable, dimHEp = 0.

It is well-known that dimBEp = 1/(p + 1).

For p > 0 and 0 ≤ θ ≤ 1,

dim θEp = dimθEp =
θ

p + θ
.
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Examples

Elog =
{

0, 1/ log 2, 1/ log 3, . . .
}

E1 ∪ E where
dimHE = dimBE = 1/3
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Examples

E1 ∪ E where E1 × Elog

dimBE = dimA E = 1/4
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Bedford-McMullen carpets

3× 4 Bedford-McMullen self-affine carpet
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Bedford-McMullen carpets

2× 3 and 3× 5 Bedford-McMullen self-affine carpets
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Bedford-McMullen carpets

p × q carpet, p < q (Bedford 1984, McMullen 1984)

dimH E =
1

log p
log
( p∑

j=1

N
log p/ log q
j

)
dimB E =

logN

log p
+

log 1
N

∑p
j=1Nj

log q

Nj rectangles selected in jth column, N non-empty columns.
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Bedford-McMullen carpets

Proposition Let E be the Bedford-McMullen carpet as above.
Then for 0 < θ < 1

4(log p/ log q)2,

dimθE ≤ dimHE +

(
2 log(log p/ log q) log(maxj Nj)

log q

)
1

− log θ
.

(1)
In particular, dimθE and dimθE are continuous at θ = 0 and so are
continuous on [0, 1].

Proof Put a natural Bernoulli measure µ on E and show that for
all x ∈ E , µ(S(x , p−k)) ≥ (p−k)d+ε for some K ≤ k ≤ K/θ for all
large K , where S(x , p−k) is an ‘approximate square’ of centre x
and side p−k .
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Bedford-McMullen carpets

Proposition Let E be the Bedford-McMullen carpet as above.
Then for 0 ≤ θ ≤ log p/ log q,

dimθE ≥ dimHE + θ
log
∑p

j=1Nj − H(µ)

log p
. (2)

where H(µ) < log
∑p

j=1Nj is the entropy of the Bernoulli measure
on E .
Proof For each K , construct a measure νK on E and show that for
some E0 ⊂ E with νK (E0) ≥ 1

2 , νK (S(x , p−k)) ≤ (p−k)d
′−ε for

all x ∈ E0 and K ≤ k ≤ K/θ.

Kenneth Falconer Intermediate Dimensions, Capacities and Projections



Bedford-McMullen carpets

Lower bound for dimθE , upper bound for dimθE
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Marstrand’s projection theorems

Theorem (Marstrand 1954, Mattila 1975) Let E ⊂ Rn be Borel.
For all α ∈ G (n,m)

dimHprojαE ≤ min{dimHE ,m} ≡ dimm
HE

with equality for almost all α ∈ G (n,m),

[projα is orthogonal projection onto the m-dimensional subspace α]

Think of dimm
HE as ‘the dimension of E when viewed from an

m-dimensional viewpoint’ or the m-dimensional Hausdorff
dimension profile of E .
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Capacities and Hausdorff dimension of projections

That dimHprojαE ≤ min{dimHE ,m} for all α follows since
projection is a Lipschitz map which cannot increase dimension.

The lower bound may be derived from the capacity characterisation
of Hausdorff dimension. Let M(E ) be the set of probability
measures on E . With the capacity C s(E ) of E ⊂ Rn given by

1

C s(E )
= inf

µ∈M(E)

∫ ∫
dµ(x)dµ(y)

|x − y |s
,

then dimHE = sup
{
s : C s(E ) > 0

}
.

Let µα be the projection of µ onto line in direction α. If 0 < s < 1∫ π

0

[ ∫ ∞
−∞

∫ ∞
−∞

dµα(t)dµα(u)

|t − u|s

]
dα =

∫ π

0

[ ∫
E

∫
E

dµ(x)dµ(y)

|x · α− y · α|s

]
dα

≤ c

∫
E

∫
E

dµ(x)dµ(y)

|x − y |s
<∞
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Box-counting dimension

Recall that the box-counting dimensions of a non-empty and
compact E ⊂ Rn are

dimBE = lim inf
r→0

logNr (E )

− log r
and dimBE = lim sup

r→0

logNr (E )

− log r

where Nr (E ) is the least number of sets of diameter r covering E .
Is there a Marstrand-type theorem for box-dimensions of
projections? For E ⊂ Rn, for a.a. α ∈ G (n,m),

dimBE

1 + ( 1
m −

1
n )dimBE

≤ dimBprojαE ≤ min{dimBE ,m} ;

Examples show that these bounds are best possible.

Even so, dimBprojαE and dimBprojαE must be constant for almost
all α; for a messy argument and indirect value see (F & Howroyd,
1996, 2001). Using capacities things become much simpler.
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Box-counting dimension and capacities

Define kernels φsr (x) for s > 0,
x ∈ Rn by

φsr (x) =

{
1 0 ≤ |x | < r(

r
|x |
)s

r ≤ |x |
.

The reason for using this kernel is that (for n = 2,m = 1)

φ1r (x−y) = min
{

1,
( r

|x − y |

)s}
� L{α : |projα(x−y)| ≤ r} (x , y ∈ R2).

The capacity C s
r (E ) of a compact E ⊂ Rn w.r.t. φsr is

1

C s
r (E )

= inf
µ∈M(E)

∫ ∫
φsr (x − y)dµ(x)dµ(y),

where M(E ) are the probability measures on E . The infimum is
attained by some equilibrium measure µ ∈M(E ).
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Box-counting dimensions of projections

Then for E ⊂ Rn, with Nr (E ) the least number of sets of diameter
r that can cover E ,

c1C
s
r (E ) ≤ Nr (E ) ≤

{
c2 log(1/r) C s

r (E ) if s = n
c2 C s

r (E ) if s > n
(1),

(c1, c2 independent of r).

In particular for E ⊂ Rn

lim inf
r→0

logCn
r (E )

− log r
= lim inf

r→0

logNr (E )

− log r
= dimBE .

Similarly for dimB taking lim sup.

Note: Inequalities (1) fail if 0 < s < n.
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Box-counting dimensions of projections

Theorem Let E ⊂ Rn be non-empty compact.
Then

dimB projαE ≤ lim sup
r→0

logCm
r (E )

− log r
≡ dim

m
BE

with equality for almost all α ∈ G (n,m),

Similarly for dimB taking lim inf.

We call

dim
s
BE := lim sup

r→0

logC s
r (E )

− log r
(E ⊂ Rn),

using capacity with respect to the kernels φsr (x) = min
{

1,
(

r
|x |
)s}

,

the (upper)s-box-dimension profile of E , which should be thought
of as the ’box-dimension of E when regarded from an
s-dimensional viewpoint’.
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Box-counting dimensions of projections

Lower bound proof (n=2, m=1): Let F ⊂ R be compact, ν a probability
measure on F , and Ir (F ) the intervals [ir , (i + 1)r), (i ∈ Z) that intersect
F .

1 =
( ∑
I∈Ir (F )

ν(I )
)2 ≤ Nr (F )

∑
I∈Ir (F )

ν(I )2 ≤

Nr (F )
∑

I∈Ir (F )

(ν×ν){(w , z) ∈ I×I} ≤ Nr (F )(ν × ν){(w , z) : |w − z | ≤ r}. (1)

Let µ be an equilibrium measure for φ1r on E ⊂ R2, and let µα be the
projection of µ onto the line in direction α.∫

(µα×µα){(w , z) : |w−z | ≤ r}dα =

∫
(µ×µ){(x , y) : |projαx−projαy | ≤ r}dα

=

∫∫
L{α:|projα(x−y)| ≤ r}dµ(x)dµ(y) ≤ c

∫∫
φ1r (x−y)dµ(x)dµ(y) =

c

C 1
r (E )

.

Hence taking ν = µα and F = projαE in (1) and integrating w.r.t. α:∫
dα

Nr (projαE )
≤ c

C 1
r (E )

.
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Box-counting dimensions of projections

As above ∫
dα

Nr (projαE )
≤ c

C 1
r (E )

.

If
∑

k 2skC 1
2−k (E )−1 <∞ then there are Mα <∞ for a.a. α such

that
2sk

N2−k (projαE )
≤ Mα (for all k ∈ N),

so , N2−k (projαE ) ≥ 2sk 1
Mα

.

Hence if dim
1
B(E ) > s then dimB(projαE ) ≥ s for almost all α.
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Box-counting dimensions of projections

Upper bound proof (n=2, m=1): Recall that for F ⊂ R,

c1C
1
r (F ) ≤ Nr (F ) ≤ c2 log(1/r)C 1

r (F ).

With µ the equilibrium measure on E ⊂ R2, for all x ∈ E ,

1

C 1
r (E )

≤
∫
φ1r (x − y)dµ(y) ≤

∫
φ1r (projαx − projαy)dµ(y)

=

∫
φ1r (z − w)dµα(w)

for all z ∈ projαE .
This is enough to imply that

Nr (projαE ) ≤ c2 log(1/r)C 1
r (E ).
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Intermediate dimensions and capacities

Now define kernels φs,mr ,θ for
0 ≤ s ≤ m, r > 0 for x ∈ Rn by

φs,mr ,θ (x) =


1 0 ≤ |x | < r(

r
|x |
)s

r ≤ |x | < rθ

rθ(m−s)+s

|x |m rθ ≤ |x |

Again the capacity C s,m
r ,θ (E ) of E ⊂ Rn is given by

1

C s,m
r ,θ (E )

= inf
µ∈M(E)

∫ ∫
φs,mr ,θ (x − y)dµ(x)dµ(y).

For E ⊂ Rn define for 1 ≤ m ≤ n,

dimm
θ E =

{
the unique s ∈ [0, n] such that lim inf

r→0

logC s,m
r ,θ (E )

− log r
= s

}
,

Similarly for dim
m
θ E . Then for E ⊂ Rn

dimθE = dimn
θE and dimθE = dim

n
θE .
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Intermediate dimensions of projections

Theorem Let E ⊂ R2 be a non-empty bounded Borel set and
θ ∈ [0, 1]. Then

dimθprojαE ≤ dim1
θF with equality for almost all α ∈ [0, π),

dimθprojαE ≤ dim
1
θF with equality for almost all α ∈ [0, π),

Similarly for projections in higher dimensions.
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Thank you!

Kenneth Falconer Intermediate Dimensions, Capacities and Projections


