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Overview

e The talk concerns sets in R” with differing Hausdorff and
box-counting dimensions.

e Hausdorff and box-counting dimensions can be regarded as
particular cases of a spectrum of ‘intermediate’ dimensions
dimgF (0 < 6 < 1) with

dimgF =dimyF and dim;F =dimgF

e Intermediate dimensions give an idea of the range of sizes of
covering sets needed to get good estimates for Hausdorff
dimension.

e Potential theoretic methods enable us to study geometric
properties of these dimensions such as the effect of orthogonal
projection.

Kenneth Falconer Intermediate Dimensions, Capacities and Projections



Hausdorff and box dimension - alternative definitions

Recall that Hausdorff dimension may be defined without
introducing Hausdorff measures: for £ C R”

dimy E = inf {s > 0: for all € > 0 there exists a cover {U;} of E
such that Y |Uj|* < €}.
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Hausdorff and box dimension - alternative definitions

Recall that Hausdorff dimension may be defined without
introducing Hausdorff measures: for £ C R”

dimy E = inf {s > 0: for all € > 0 there exists a cover {U;} of E
such that > |Uj[* < €}.
The lower/upper box-counting dimensions of a non-empty compact
E CR" are
log N, (E)

— log N,.(E
dimgE = liminf—=—-"=2 dimgE = lim log N (E)
r—0 —logr r—0 —logr

where N,(E) is the least number of sets of diameter r covering E.

Kenneth Falconer Intermediate Dimensions, Capacities and Projections



Hausdorff and box dimension - alternative definitions

Recall that Hausdorff dimension may be defined without
introducing Hausdorff measures: for £ C R”

dimy E = inf {s > 0: for all € > 0 there exists a cover {U;} of E
such that > |Uj[* < €}.
The lower/upper box-counting dimensions of a non-empty compact
E CR" are
log N, (E)

— log N,.(E
dimgE = liminf—=—-"=2 dimgE = lim log N (E)
r—0 —logr r—0 —logr

where N,(E) is the least number of sets of diameter r covering E.
Equivalently dimg may be defined

dimgE = inf {s > 0: for all € > 0 there exists a cover {U;} of E
such that [U;| = |Uj] for all i,j and > |Uj|* < €}.
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Intermediate dimensions

Let E C R" be non-empty and bounded. For 0 < 6§ < 1 define the lower
f-intermediate dimension of E by

dimyE = inf {s > 0: for all € > 0 there exist arbitrarily small § > 0 s.t.
and {U;} covering E s.t. 6¥/9 < |U;| < & and 3 |U;[* < €}.
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Intermediate dimensions

Let E C R" be non-empty and bounded. For 0 < 6§ < 1 define the lower
f-intermediate dimension of E by

dimyE = inf {s > 0: for all € > 0 there exist arbitrarily small § > 0 s.t.
and {U;} covering E s.t. 6¥/9 < |U;| < & and 3 |U;[* < €}.

Similarly, define the upper #-intermediate dimension of E by

dimgE = inf {s > 0: for all e > 0 and all sufficiently small § > 0
there is a cover {U;} of E s.t. 6/ < |Uj| <6 and Y |Uj|* < €}.
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Intermediate dimensions

Let E C R" be non-empty and bounded. For 0 < 6§ < 1 define the lower
f-intermediate dimension of E by

dimyE = inf {s > 0: for all € > 0 there exist arbitrarily small § > 0 s.t.
and {U;} covering E s.t. 6¥/9 < |U;| < & and 3 |U;[* < €}.

Similarly, define the upper #-intermediate dimension of E by

dimgE = inf {s > 0: for all e > 0 and all sufficiently small § > 0
there is a cover {U;} of E s.t. 6/ < |Uj| <6 and Y |Uj|* < €}.

Then
dimyE =dimgE = dimyE, dim; E = dimgE and dimE = dimgE.
Moreover, for bounded E and 6 € [0, 1],

dimyE <dimy,E < dimyE < dimgE and dimy,E < dimgE.
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Slmple properties

e dimy is finitely stable, that is
&_m€(E1 U E2) = max{di_ngl,di_ngz}.

e For 6 € (0,1], both dim»E and dim »yE are unchanged on
replacing E by its closure.

e For E, F C R" be non-empty and bounded and 6 € [0, 1],
dimyE +dim 4 F < dimy(E x F) < dimg(E x F) < dimyE +dimgF.

e For § € [0,1], dim, and dimg are bi-Lipschitz invariant.
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Continuity and monotonicity

Proposition Let E CR" and let 0 < 0 < ¢ < 1. Then

dimgE < dim E <

dim dim dim9E+<1—§)(n—di_m9E),

similarly for upper dimensions.

In particular,  + dim4E and 6 ~ dimgE are continuous for
0 € (0,1] and (not necessarily strictly) increasing.
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Intermediate dimensions and Assouad dimension

The Assouad dimension of E C R” is defined by

dima E = inf {s >0 : there exists C > 0 such that for all x € E,

r

and forall0<r <R, N(ENB(x,R)) < C <E> }

where N,(A) denotes the smallest number of sets of diameter at most r
required to cover a set A. In general dimgE < dimgE < dima E < n,

Proposition For non-empty bounded E C R" and 6 € (0, 1],

dima E — dimgE

dimyE > dimp E — 0 )

with a similar conclusion using dimy and dimg.
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For p > 0 let

1 1 1
Ep:{o,l—p,2—p,3—p,...}.

SRR A A

E: O 1/4

—_

Since E, is countable, dimyE, = 0.
It is well-known that dimgE, =1/(p+1).
Forp>0and 0 <6 <1,

dim,E, = dimgE,
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dimpF dimgF

1/2 o
1/3-4

1 I 1
0 0 1 0 12 ¢ 1

E|og:{0,1/|og2,1/|og3,...} E; U E where
dimpyE = dimgE = 1/3
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dimy F| dimg F|

3/2 /
1/2 / 14
1/4

I
0 13 ¢ 1 0 0 1

E; U E where E1 X Eiog
dimgE =dima E =1/4
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Bedford-McMullen carpets

3 x 4 Bedford-McMullen self-affine carpet
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Bedf: Mullen carpets

2 x 3 and 3 x 5 Bedford-McMullen self-affine carpets
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Bedfo cMullen carpets

p x q carpet, p < q (Bedford 1984, McMullen 1984)

1P

1 2 /1
dimy E = Iog( NIoEP °g")

log p ; J

log N log 271 Nj
log p log q
N; rectangles selected in jth column, N non-empty columns.
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Bedford-McMullen carpets

Proposition Let E be the Bedford-McMullen carpet as above.
Then for 0 < 6 < %(Iog p/log q)?,

dimgE < dimpE + (Q'Og('OgP/ log q) log(max; Nj)) 1

log q —logf’
- (1)
In particular, dimyE and dimgE are continuous at § = 0 and so are
continuous on [0, 1].

Proof Put a natural Bernoulli measure i on E and show that for
all x € E, pu(S(x,p~%)) > (p~%)9+< for some K < k < K /0 for all
large K, where S(x, p~¥) is an ‘approximate square’ of centre x

and side p~*.
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Bedford-McMullen carpets

Proposition Let E be the Bedford-McMullen carpet as above.
Then for 0 <0 <logp/loggq,

log S Nj — H
dimyE > dimyE + 0 ng—lt)g; W) (2)

where H(u) < log ZJ’.’ZI N; is the entropy of the Bernoulli measure
on E.

Proof For each K, construct a measure vk on E and show that for
some Ey C E with vk(Ep) > %, vk (S(x, p~%)) < (p~ )9~ for
all x € Ep and K < k < K /6.
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Bedford-McMullen carpets

dimgE

upper bound

dimgE

i |— Tower bound

0

Lower bound for dim,E, upper bound for dimyE
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Marstrand's projection theorems

Theorem (Marstrand 1954, Mattila 1975) Let E C R” be Borel.
For all & € G(n, m)
dimpproj, E < min{dimyE, m} = dimJE

with equality for almost all « € G(n, m),
[proj, is orthogonal projection onto the m-dimensional subspace «/|

Think of dim{JE as ‘the dimension of E when viewed from an
m-dimensional viewpoint’ or the m-dimensional Hausdorff
dimension profile of E.
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Capacities and Hausdorff dimension of projections

That dimyproj, E < min{dimyE, m} for all « follows since
projection is a Lipschitz map which cannot increase dimension.

The lower bound may be derived from the capacity characterisation
of Hausdorff dimension. Let M(E) be the set of probability
measures on E. With the capacity C°(E) of E C R" given by

/ / du(x)du(y
CS(E) ueM(E IX—yls

then dimyE = sup{s: C°(E) > 0}.

Kenneth Falconer Intermediate Dimensions, Capacities and Projections



Capacities and Hausdorff dimension of projections

That dimyproj, E < min{dimyE, m} for all « follows since
projection is a Lipschitz map which cannot increase dimension.

The lower bound may be derived from the capacity characterisation
of Hausdorff dimension. Let M(E) be the set of probability
measures on E. With the capacity C°(E) of E C R" given by

1 // du(x)du(y
Cs(E) ueM(E |x —y|5

then dimyE = sup{s: C°(E) > 0}.

Let u, be the projection of i onto line in direction a. If 0 <5 <1

AT o R S TN A
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Box-counting dimension

Recall that the box-counting dimensions of a non-empty and
compact E C R” are

log N, (E - g NA(E
di—mBE = ||m|nfog—() and dlmBE — |Imsup og ( )
r—0 —logr o —logr

where N,(E) is the least number of sets of diameter r covering E.
Is there a Marstrand-type theorem for box-dimensions of
projections? For E C R”, for a.a. a € G(n, m),

dimgE
1+ (% - %)di—mBE

< dimgproj, £ < min{dimgE, m} ;

Examples show that these bounds are best possible.
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Box-counting dimension

Recall that the box-counting dimensions of a non-empty and
compact E C R” are

log N, (E - g NA(E
di—mBE = ||m|nfog—() and dlmBE — |Imsup og ( )
r—0 —logr o —logr

where N,(E) is the least number of sets of diameter r covering E.
Is there a Marstrand-type theorem for box-dimensions of
projections? For E C R”, for a.a. a € G(n, m),

dimgE
1+ (% - %)di—mBE

< dimgproj, £ < min{dimgE, m} ;

Examples show that these bounds are best possible.

Even so, dimgproj, E and dimgproj, E must be constant for almost
all a; for a messy argument and indirect value see (F & Howroyd,
1996, 2001). Using capacities things become much simpler.
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Box-counting dimension and capacities

17 .
Define kernels ¢7(x) for s > 0, P
x € R" by J
1 0<|x|<r
¢S(X) = r _ *
' ()" r<lx
0 T

0o r IxI
The reason for using this kernel is that (for n =2, m = 1)

¢K*ﬂ)=mm{L(§{7ﬂ?>dHaﬂme*vNSrH&yeRﬁ

The capacity C?(E) of a compact E C R" w.r.t. ¢ is
1
= S(x —y)d d
G -t [ [ e ndutaduin.

where M(E) are the probability measures on E. The infimum is
attained by some equilibrium measure © € M(E).
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Box-counting dimensions of projections

Then for E C R”, with N,(E) the least number of sets of diameter
r that can cover E,

log(1/r) CZ(E) ifs=n
S < < C2 g r
aCr(E) < Ni(E) < { ¢ C3(E) if s>n (1),
(c1, 2 independent of r).
In particular for E C R”
n
iminf 98T (E) g 1o N (E) — dimgE.
r—0 —logr r—0 —logr

Similarly for dimg taking lim sup.

Note: Inequalities (1) fail if 0 < s < n.
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Box-counting dimensions of projections

Theorem Let E C R" be non-empty compact.

Then log C( E
dimg proj, E < IimsupOg—r() Eﬁg’E
r—0  —logr

with equality for almost all « € G(n, m),
Similarly for dimg taking lim inf.
We call

S log CF(E
dimsBE = IimsupOg—'()

E CR"),
r—0 —Iogr ( )

using capacity with respect to the kernels ¢$(x) = min {1, (|7r|)5}
the (upper)s-box-dimension profile of E, which should be thought
of as the 'box-dimension of E when regarded from an
s-dimensional viewpoint'.
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Box-counting dimensions of projections

Lower bound proof (n=2, m=1): Let F C R be compact, v a probability
measure on F, and Z,(F) the intervals [ir, (i + 1)r), (i € Z) that intersect

F.
L=( Y v’ <N(F) Y vip <
I€T,(F) 1€Z,(F)
N,(F)Z(I/xy){(w,z) eIxI} < N(F)(vxv){(w,z):|lw—z <r}. (1)

1€Z,(F)
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Box-counting dimensions of projections

Lower bound proof (n=2, m=1): Let F C R be compact, v a probability
measure on F, and Z,(F) the intervals [ir, (i + 1)r), (i € Z) that intersect

F.
L=( Y v’ <N(F) Y vip <
I€T,(F) 1€Z,(F)
N,(F)Z(I/xy){(w,z) eIxI} < N(F)(vxv){(w,z):|lw—z <r}. (1)

1€Z,(F)

Let u be an equilibrium measure for ¢! on E C R?, and let u, be the
projection of y onto the line in direction a.

/(ua X pa){(w, 2):|w—z| < r}da =/(u><u){(x, y):lprojox—proj,y| < rida

CHE)

— [[eteslbroiatxy)] < )duGOduty) < ef [6hx-y)dut)dnty) =
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Box-counting dimensions of projections

Lower bound proof (n=2, m=1): Let F C R be compact, v a probability
measure on F, and Z,(F) the intervals [ir, (i + 1)r), (i € Z) that intersect

F.
L=( Y v’ <N(F) Y vip <
I€T,(F) 1€Z,(F)
N,(F)Z(I/xy){(w,z) eIxI} < N(F)(vxv){(w,z):|lw—z <r}. (1)

1€Z,(F)

Let u be an equilibrium measure for ¢! on E C R?, and let u, be the
projection of y onto the line in direction a.

/(ua X pa){(w, 2):lw—2z| < r}da =/(u><u){(xa ¥):lprojox—proj,y| < r}da

CHE)

- ///_’,{a:|proja(x—y)| < rydu(x)du(y) < c//sb}(x—y)du(X)du(y) =

Hence taking v = po and F = proj, E in (1) and integrating w.r.t. o

/ do < c
N, (proj,E) = CHE)
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Box-counting dimensions of projections

As above

/ da < ¢

Nr(proj, E) — CHE)

If >, 25"C1 «(E)™! < 00 then there are M, < oo for a.a. a such
that

2sk
L <M, (forall keN),
N2—k(pFO_jaE) ( )

50, Np-i(proj, E) > 2% 4.
Hence if mlB(E) > s then dimg(proj, E) > s for almost all a.
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Box-counting dimensions of projections

Upper bound proof (n=2, m=1): Recall that for F C R,
aCHF) < N,(F) < colog(1/r)CHF).

With p the equilibrium measure on E C R2, for all x € E,

Cl( £) / ¢r(x —y)duly / 7 (projox — proj,y)du(y)

— [ 6}z ~ wdpa(w)

for all z € proj,E.
This is enough to imply that

N,(proj,E) < Iog(l/r)C,l(E).
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Intermediate dimensions and capacities

Now define kernels ¢} g" for [ o
0<s<m,r>0forxeR"by
1 0<|x|<r potmyss
S m
brg (x) = (|>r<|) r<|xf<rf &
e <
0 T

0 r
Again the capacity C7"(E) of E C R" is given by

1
= inf —y)d d
e = e | [ G,
For E C R" define for 1 < m < n,
log C"(E)

—logr

=2

dimy"E = qthe unique s € [0, n] such that liminf
0 r—0

Similarly for dimy E. Then for E C R"
dimyE = dimJE and dimgE = dimyE.
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Intermediate dimensions of projections

\\\\\

Theorem Let E C R? be a non-empty bounded Borel set and
6 €[0,1]. Then
dimyproj, E < dim} F with equality for almost all o € [0, 7),

dimgproj, E < W;F with equality for almost all « € [0, 7),

Similarly for projections in higher dimensions.
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Thank you!

Kenneth Falc:



