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A random matrix

Start with a n ⇥ n Hermitian matrix M as “random” as possible: mean zero and
mean-square one entries, all independent save for the presumed symmetry.

The “right” n ! 1 scaling is to further take 1p
n
M.

Now with �1,�2, . . . ,�n that spectrum, the typical eigenvalue distributes itself
according to:

1

n

nX

k=1

��k (�) !
1

2⇡

p
4� �2 d�.

This is the Wigner semi circle law. It’s both a law of large numbers, and an
example of a global statistic.

We’ll be interested in local fluctuations.

For example, it is clear that in the bulk an individual eigenvalue should experience
O(1/n) fluctuations. But I’ll not talk about the bulk at all...
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The Tracy-Widom law(s)

With slightly stronger assumptions on the matrix entries one has �max ! 2 and
�min ! �2 with probability one.

A local fluctuation at the edge would be to ask weather there is exponent � such
that for some random variable ⇣, one has

n�
⇣
�max � 2

⌘
) ⇣

in distribution?

In the mid-90’s Craig Tracy and Harold Widom showed, in the complex Gaussian
case (“GUE”):

lim
n!1

P
⇣
n2/3(�max � 2)  t

⌘
= exp

✓
�

Z 1

t
(s � t)u2(s)ds

◆
,

where u solves u00(t) = tu(t) + 2u3(t) (Painlevé II) with u(t) ⇠ Ai(t) at +1.
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Determinantal structure

The essential fact in the business is that GUE is “exactly solvable”.

In particular, the joint density of eigenvalues of GUE is proportional to:

nY

k=1

e�
1

2
n�2

k ⇥

Y

j<k

|�j � �k |
2
/ det

⇣
Kn(�i ,�j)

⌘

1i,jn

where Kn is the kernel of the projection operator onto the span of the (first n)
Hermite polynomials.

In fact, all finite dimensional correlations have the same structure:
Z

Rn�k

det
⇣
Kn(�i ,�j)

⌘

1i,jn
d�k+1 · · · d�n = Cn,k det

⇣
Kn(�i ,�j)

⌘

1i,jk
.

(GUE is your favorite determinantal process).
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Gaps

Any such determinantal process possesses a closed “gap formula”. In particular,
for a point process on R with correlations

Pn(�1, . . . ,�k) / det
⇣
Kn(�i ,�j)

⌘

1i,j,k

with Kn nonnegative, symmetric, trace class, it holds: for any B ⇢ R

P
⇣
no points in B

⌘
= detL2(B) (I � Kn).

This is a Fredholm determinant on the right.

In particular,

detL2(B)(I � Kn)

:= 1�

Z

B
Kn(�,�) +

1

2

Z

B

Z

B
det

✓
Kn(�,�) Kn(µ,�)
Kn(�, µ) Kn(µ, µ)

◆
d�dµ� · · ·

In the case of n < 1 points (like we have here) this truncates. That is to say you
can treat the right hand side as a definition.
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Airy kernel and process

A first form of the (soft-edge) Tracy-Widom law is then

F2(t) := lim
n!1

P
⇣
n2/3(�max � 2)  t

⌘
= detL2[t,1)(I � KAiry ).

Here

KAiry (x , y) =
Ai(x)Ai 0(y)� Ai(y)Ai 0(x)

x � y
,

with Ai the Airy function from before.

This follows from passing the limit

lim
n!1

n�2/3Kn(2 + n�2/3�, 2 + n�2/3µ) = KAiry (x , y)

under the determinant. Along the way you get convergence of the “soft edge”
point process (at least in sense of finite dimensional distributions) to the Airy
point process.

Painlevé formulas for the largest (and next largest...) point distributions come
after.
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Outside the complex case

If we go back to the start and replace the complex Gaussian entries with real or
quaternion Gaussians, the eigenvalue density is changed as in:

Y

j<k

|�j � �k |
2 is replaced

Y

j<k

|�j � �k |
1 or

Y

j<k

|�j � �k |
4.

Speak of the � = 1, 2, or 4 ensembles (or G{O,U,S}E).

When � = 1, 4, the eigenvalue processes are Pfa�an (not determinantal), but still
exist closed formulas for the correlation functions in terms of OPs.

And there exist limit laws F1 and F4 for �max in terms of Painlevé II:

F1(t) = exp
⇣
�
1

2

Z 1

t
u(s)ds

⌘
F 1/2
2

(t),

F4(t) = cosh
⇣1
2

Z 1

p
2t
u(s)ds

⌘
F 1/2
2

(
p

2t),

for the record
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General beta ensembles

For any � > 0, introduce the law Pn,� on n real points with density:

/

nY

k=1

e�
�
4
n�2

k ⇥

Y

j<k

|�j � �k |
�

= exp

2

4��

0

@n
nX

k=1

�2k
4

�

X

j<k

log |�j � �k |

1

A

3

5.

For � = 1, 2, 4 these are the eigenvalue densities for G{O,U,S}E.

More broadly P� is referred to as the “beta-Hermite” ensemble.

Interpreted as a 1-d caricature of a Coulomb gas, which happens to be solvable at
three special values of the “charge”.

Is there a one-parameter family of Tracy-Widom laws?
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Stochastic Airy Operator

Theorem (Raḿırez, R., Virág)

For x 7! b(x) a standard Brownian motion, and any � > 0 define

H� = �
d2

dx2
+ x +

2
p
�
b0(x).

Let ⇤0  ⇤1  · · · denote the eigenvalues of H� acting on L2[0,1) with Dirichlet
conditions at the origin. Then, with �1 > �2 > · · · the ordered points under Pn,�

it holds that n
n2/3(2� �`)

o

`=1,k
)

n
⇤`
o

`=0,k�1

for any fixed k as n ! 1.

As b0(x) is a random distribution (Brownian motion is almost everywhere
non-di↵erentiable), some work is required to make sense of H�
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General beta Tracy-Widom

The limiting largest point of the Hermite �-ensemble then converges to the
(negative) ground state eigenvalue of H� . In particular,

�TW� = inf
f2L

⇢Z 1

0

⇥
(f 0(x))2 + xf 2(x)

⇤
dx +

2
p
�

Z 1

0

f 2(x)db(x)

�

for

L =

⇢
f : f (0) = 0,

Z 1

0

f 2(x)dx = 1,

Z 1

0

⇥
(f 0(x))2 + xf 2(x)

⇤
dx < 1

�
.

Form is densely defined, and tempting to get a lower bound via
����
Z 1

0

f
2
db

���� = 2

���
Z 1

0

f
0
(x)f (x)b(x)dx

���  c

Z 1

0

(f
0
)
2
(x)dx + c

0
Z 1

0

b
2
(x)f

2
(x)dx ,

but the law of the iterated log shows you have to be a bit more clever (even for
large beta).
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Where does this come from?

For all � > 0 there is a simple tridiagonal matrix model for P� .

Theorem (Dumitriu-Edelman)

Let g1, g2, . . . , gn be independent N(0, 2) and ��n,��(n�1), . . . ,�� be
independent “chi” variables of the indicated parameter. Then the joint
distribution of eigenvalues of the random Jacobi matrix

Hn,� =
1

p
n�

2

666664

g1 �(n�1)�

�(n�1)� g2 �(n�2)�

. . .
. . .

. . .
�2� gn�1 ��

�� gn

3

777775

is given by Pn,� .

(A �r has density / x
r�1

e
�x2/2

, otherwise referred to as a certain � variable),
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Tridiagonals for the classical ensembles

Any Hermitian matrix can be brought into tridiagonal form (while keeping the
eigenvalues fixed) by a suitable sequence of Householder transformations.

With M = Mn = [mij ]1i,jn, mij = mji write

M =


mii m†

m Mn�1

�

and build a (n � 1)⇥ (n � 1) unitary U = [u1 . . .un�1] with m†u1 = kmk. Then


1 0†

0 U†

�
M


1 0†

0 U

�
=

2

4
mii (kmk, 0 · · · 0)†

(kmk, 0 · · · 0) U†Mn�1U

3

5,

repeat.

Exercise: Convince yourself that when you carry out the above for GOE or GUE you get

the advertised � = 1 or � = 2 tridiagonal. Note: (i) Gaussian vectors are rotation

invariant, (ii) the squared norm of a d-dim Gaussian vector is a �2

d .
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Reverse engineering the Jacobian

Instructive to view the Dumitriu-Edelman matrix model as placing a measure
down on random tridiagonals.

With T (A,B) = tridiag(B ,A,B) for B = (B1, . . . ,Bn�1) 2 R+

n�1
and A =

(A1, . . . ,An) 2 Rn their result reads:

Distribute (A,B) according to the density

/ e�n �
4
(
Pn

i=1
a2i +2

Pn�1

i=1
b2

i )

n�1Y

i=1

b�(n�i)
i = e

�n �
4
tr
⇣
T 2

(a,b)

⌘
n�1Y

i=1

b�(n�i)
i

then the eigenvalues of T (A,B) have density

/

nY

k=1

e�
�
4
n�2

k ⇥

Y

j<k

|�j � �k |
� .

The map needed is to go from tridiagonal (a, b)-coordinates to eigenvalue and
eigenvector (really norming constant) (�, q)-coordinates.
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Distribute (A,B) according to the density

/ e�n �
4
(
Pn

i=1
a2i +2

Pn�1

i=1
b2

i )

n�1Y

i=1

b�(n�i)
i = e

�n �
4
tr
⇣
T 2

(a,b)

⌘
n�1Y

i=1

b�(n�i)
i

then the eigenvalues of T (A,B) have density

/

nY

k=1

e�
�
4
n�2

k ⇥

Y

j<k

|�j � �k |
� .

The map needed is to go from tridiagonal (a, b)-coordinates to eigenvalue and
eigenvector (really norming constant) (�, q)-coordinates.

Brian Rider (Temple University) Operator limits of random matrices 13 / 20



Stochastic Airy heuristics

Edelman-Sutton had conjectured the Stochastic Airy limit via the natural
continuum limit of the tridiagonals. That is, they suggested that

n2/3(2I � Hn,�) �
d2

dx2
+ x + 2p

�
b0(x)

as operators. (Scaling Hn,� itself like �max in Tracy-Widom.)

The only thing really moving in Hn,� is those o↵ diagonal �s.

Excerise: Make precise the statement that, for fixed k and n ! 1,
1p
�n

��(n�k)

' 1� k
2n + g for g a Gaussian.

This give the leading order n2/3(2I � Hn,�) = n2/3tridiag(�1, 2,�1) + · · · which

has the clear interpretation as � d2

dx2 , discretized on scale (�x) = n�1/3.

Excerise: Convince yourself that the natural continuum interpretation of

n
2/3

(tridiag(1, 0, 1)� Hn,�) as n ! 1 is ⌦(x +
2p
�
b
0
(x)).

Brian Rider (Temple University) Operator limits of random matrices 14 / 20



Stochastic Airy heuristics

Edelman-Sutton had conjectured the Stochastic Airy limit via the natural
continuum limit of the tridiagonals. That is, they suggested that

n2/3(2I � Hn,�) �
d2

dx2
+ x + 2p

�
b0(x)

as operators. (Scaling Hn,� itself like �max in Tracy-Widom.)

The only thing really moving in Hn,� is those o↵ diagonal �s.

Excerise: Make precise the statement that, for fixed k and n ! 1,
1p
�n

��(n�k)

' 1� k
2n + g for g a Gaussian.

This give the leading order n2/3(2I � Hn,�) = n2/3tridiag(�1, 2,�1) + · · · which

has the clear interpretation as � d2

dx2 , discretized on scale (�x) = n�1/3.

Excerise: Convince yourself that the natural continuum interpretation of

n
2/3

(tridiag(1, 0, 1)� Hn,�) as n ! 1 is ⌦(x +
2p
�
b
0
(x)).

Brian Rider (Temple University) Operator limits of random matrices 14 / 20



Stochastic Airy heuristics

Edelman-Sutton had conjectured the Stochastic Airy limit via the natural
continuum limit of the tridiagonals. That is, they suggested that

n2/3(2I � Hn,�) �
d2

dx2
+ x + 2p

�
b0(x)

as operators. (Scaling Hn,� itself like �max in Tracy-Widom.)

The only thing really moving in Hn,� is those o↵ diagonal �s.

Excerise: Make precise the statement that, for fixed k and n ! 1,
1p
�n

��(n�k)

' 1� k
2n + g for g a Gaussian.

This give the leading order n2/3(2I � Hn,�) = n2/3tridiag(�1, 2,�1) + · · · which

has the clear interpretation as � d2

dx2 , discretized on scale (�x) = n�1/3.

Excerise: Convince yourself that the natural continuum interpretation of

n
2/3

(tridiag(1, 0, 1)� Hn,�) as n ! 1 is ⌦(x +
2p
�
b
0
(x)).

Brian Rider (Temple University) Operator limits of random matrices 14 / 20



The Riccati substitution

Consider ⌧ = �
d2

dx2 + q(x) for a nice (deterministic, smooth) potential q and its
Dirichlet eigenvalue problem on [0, L < 1]

⌧ (x) = � (x),  (0) =  (L) = 0.

Sturm’s Oscillation theorem tells you: Consider the corresponding solution
 =  (x ,�) for fixed � to the initial value problem with  (0,�) = 0 and
 0(0,�) = 1. Then it holds that

#
n
eigenvalues  �

o
= #

n
zeros of x 7!  (x ,�) in [0, L]

o
.

The Riccati substitution takes the equation satisfied by p(x) =  0
(x,�)

 (x,�) :

p0(x) = q(x)� �� p2(x).

This starts at p(0) = +1, hits �1 when  hits zero, immediately “reappearing”
at +1.
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The Riccati di↵usion

What this means for q(x) = x + 2p
�
b0(x):

Theorem

Consider the solution pt = p�t to the Itô equation

dpt = 2p
�
dbt + (�+ t � p2t )dt,

started from +1 at time zero, and restarted there after any explosion to �1.
Then

P(TW�  �) = P(+1,0)(p
� never explodes),

with the distribution of the k th largest point being given by the probability of at
most k explosions.

Note: Can absorb the spectral parameter � into a starting time, or, replace the
probabilities on the right with P(+1,�) for p = p0.

Exercise: Show that pt � 2p
�
bt solves an ODE with random coe�cients - convince

yourself that the process really can be started from 1

Brian Rider (Temple University) Operator limits of random matrices 16 / 20



Application: Tracy-Widom(�) tails
Combining the defining variational principle

�TW� = inf
f2L

Z 1

0

⇥
(f 0x )

2 + xf 2x
⇤
dx +

2
p
�

Z 1

0

f 2x dbx

with the Riccati di↵usion description

P(TW�  �) = P(+1,�)(p never explodes), dpt = 2p
�
dbt + (t � p2t )dt

we can prove:

Theorem (Raḿırez, R., Virág)

For all � > 0 it holds

P(TW� > a) = e�
2

3
�a

3

2 (1+o(1))

and
P(TW� < �a) = e�

�
24
a3(1+o(1))

as a ! 1.
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Proof of left-tail upper bound

Using that �TW� is the ground state eigenvalue of H� one has

P(TW� < �a) = P(⇤0(H�) > a)  P

 R
(f 02x + xf 2x )dx ] +

2p
�

R
f 2x dbxR

f 2x dx
> a

!

for any nice function f 6⌘ 0 vanishing at the origin.

Exercise: For deterministic f it holds
R
f 2x dbx ⇠

qR
f 4x ⇥ g for g ⇠ N(0, 1).

Choose
f (x) = (x

p
a) ^

p
(a� x)+ ^ (a� x)+

and collect:

a

Z
f 2x dx ⇠

a3

2
,

Z
xf 2x dx ⇠

a3

6
,

Z
f 4x dx ⇠

a3

3
,

while
R
f 0(x)2dx = O(a) to finish.

Brian Rider (Temple University) Operator limits of random matrices 18 / 20



Proof of left-tail upper bound

Using that �TW� is the ground state eigenvalue of H� one has

P(TW� < �a) = P(⇤0(H�) > a)  P

 R
(f 02x + xf 2x )dx ] +

2p
�

R
f 2x dbxR

f 2x dx
> a

!

for any nice function f 6⌘ 0 vanishing at the origin.

Exercise: For deterministic f it holds
R
f 2x dbx ⇠

qR
f 4x ⇥ g for g ⇠ N(0, 1).

Choose
f (x) = (x

p
a) ^

p
(a� x)+ ^ (a� x)+

and collect:

a

Z
f 2x dx ⇠

a3

2
,

Z
xf 2x dx ⇠

a3

6
,

Z
f 4x dx ⇠

a3

3
,

while
R
f 0(x)2dx = O(a) to finish.

Brian Rider (Temple University) Operator limits of random matrices 18 / 20



Proof of left-tail upper bound

Using that �TW� is the ground state eigenvalue of H� one has

P(TW� < �a) = P(⇤0(H�) > a)  P

 R
(f 02x + xf 2x )dx ] +

2p
�

R
f 2x dbxR

f 2x dx
> a

!

for any nice function f 6⌘ 0 vanishing at the origin.

Exercise: For deterministic f it holds
R
f 2x dbx ⇠

qR
f 4x ⇥ g for g ⇠ N(0, 1).

Choose
f (x) = (x

p
a) ^

p
(a� x)+ ^ (a� x)+

and collect:

a

Z
f 2x dx ⇠

a3

2
,

Z
xf 2x dx ⇠

a3

6
,

Z
f 4x dx ⇠

a3

3
,

while
R
f 0(x)2dx = O(a) to finish.

Brian Rider (Temple University) Operator limits of random matrices 18 / 20



Proof of left-tail lower bound

We look at the event that the di↵usion dpt = 2p
�
dbt + (t � p2t )dt, started from

position +1 at time �a never explodes (hits �1).

Want to estimate the probability of a “likely path”. Intuitively, p wants to hang
around the origin until it makes it into the safe parabola (where drift can be
positive).

With that

P(TW� < �a) = P(1,�a)(p never explodes )

� P(1,�a)(p never explodes)

� P(1,�a)(pt 2 [0, 2] for all t 2 [�a, 0])P0,0(p never explodes)

What we’ve bought: The second factor has no dependence on a ! 1.
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Left-tail lower bound con’t

Cameron-Martin-Girsanov: Let P denote the measure induced on continuous
paths by the solution of xt =

p
�bt +

R t
· f (xs)ds. Over finite time windows this

will be absolutely continuous to Brownian motion measure with

dP

dBM

���
F [S,T ]

= e
1

�

R T
S f (bt)dbt� 1

2�

R T
S f 2(bt)dt

(assuming nice enough f , both processes started from the same place, etc.)

Applied to pt for which f (pt) = (t � p2t ) over the widow t 2 [�a, 0]:

P(TW� < �a) � c�P(1,�a)

⇣
pt 2 [0, 2] for all t 2 [�a, 0]

⌘

= c�E(1,�a)

h
1A e

�
4

R
0

�a(t�b2

t )dbt�
�
8

R
0

�a(t�bt)
2dt
i

with A = {bt 2 [0, 2], t 2 [�a, 0]}.

Exercise: Granted Itô’s rule f (bt)� f (b0) =
R t
0
f
0
(bt)dbt +

1

2

R t
0
f
00
(bt)dt finish the job.
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Operator limits of random matrices
II. Stochastic Airy: proofs and extensions

Brian Rider

Temple University
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Task for the hour

(1) Show that Stochastic Airy

H� = �
d
2

dx2
+ x +

2
p
�
b
0(x)

(on R+ with Dirichlet boundaries) can be made sensible.

(2) Show the �-Hermite matrix Hn,� , with

g1
p
n�

,
g2

p
n�

, . . . on diagonal

and ��(n�1)
p
n�

,
��(n�2)
p
n�

, . . . on the o↵-diagonals

satisfies
n
2/3(2I � Hn,�) ! H� in some operator sense.

(3) Payo↵s for other beta ensembles.
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Return to the quadratic form

Advertised that �TW� can be defined as the infimum of

hf ,H�f i =

Z 1

0

[(f 0)2(x) + xf
2(x)]dx +

2
p
�

Z 1

0

f
2(x)dbx

over f satisfying f (0) = 0,
R1
0

f
2(x) = 1,

R1
0

[(f 0)2(x) + xf
2(x)]dx < 1 (i.e.,

f 2 L).

To start need a lower bound. Rough idea is that it would be nice to replace b
0
x

with “(�b)x”, and you almost can.

Decompose

bx = b̄x + (bx � b̄x), b̄x =

Z x+1

x
bydy

and then

hf , b0f i =

Z 1

0

f
2(x)b̄0xdx + 2

Z 1

0

f
0(x)f (x)(b̄x � bx)dx .

and least for smooth compactly supported f .
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Key inequality

For any c > 0 there is an almost surely finite C (c , b) with

����
Z 1

0

f
2(x)dbx

����  c

Z 1

0

[(f 0)2(x) + xf
2(x)]dx + C (c , b)

Z 1

0

f
2(x)dx .

Recall from above, first for “nice” test functions,
Z 1

0

f
2(x)dbx =

Z 1

0

f
2(x)b̄0xdx + 2

Z 1

0

f
0(x)f (x)(b̄x � bx)dx ,

then note the relative slow growth of the running Brownian increment:

Exercise: There is an C(b) < 1 (almost surely) so that

sup
x>0

sup
0<y1

|bx+y � bx |p
log(1 + x)

 C(b).

It follows that |b̄0
x | and |b̄x � bx | are similarly bounded. (Just uses that bx has

independent homogeneous increments, and a bound on P0(supx<1
|bx | > c)).
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Existence of the groundstate

Let’s introduce the natural norm on L:

kf k
2

⇤ =

Z 1

0

[(f 0)2(x) + (1 + x)f 2(x)]dx .

Then what we have shown can be summarized as: there are constants c
(deterministc) and C ,C 0 (random) such that for all f 2 L

ckf k
2

⇤ � Ckf k
2

2  hf ,H�f i  C
0
kf k

2

⇤.

Now argue the existence of an eigenvalue/eigenvector pair:

• Let fn 2 L be a minimizing sequence, hfn,H�fni ! ⇤̃0

• The (a.s.) uniform bound on kfnk⇤ produces a subsequence fn0 ! f0 occuring:
weakly in H

1, uniformly on compacts, and in L
2.

• From here can conclude hf0,H�f0i = ⇤̃0. (And ⇤̃0 = ⇤0 = �TW� .)
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Higher eigenvalues and more
We can now define ⇤1 < ⇤2 < · · · by Rayleigh-Ritz, for example

⇤̃1 := inf
f2L,f?f0

hf ,H�f i.

The same type of argument will show a pair (⇤̃1, f1) exists. Then can check it is
an eigenvalue/eigenvector (and announce the former = ⇤1).

A couple cute points. With A = �
d2

dx2 + x the usual Airy operator what we have
can yield..

Exercise: For any ✏ > 0 there is a random C so that

�CI + (1� ✏)A  H�  (1 + ✏)A+ CI

in the sense of operators (quadratic forms).

Exercise: Granted the classical asymptotics �k(A) = ( 3
2
⇡k)2/3 + o(1), show that

k�2/3⇤k ! (
3
2
⇡)2/3

with probability one.
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Convergence proof: setup
Bring back the matrix model Hn,� with 1p

�n
gk and 1p

�n
��(n�k) on the

diagonals/o↵diagonals. No controversy to declare:

TW�(n) := min
kvk=1

hv , Ĥn,�vi, Ĥn,� = n
2/3(2I � Hn,�).

Now write:

hv , Ĥn,�vi = n
2/3

nX

k=0

(vk+1 � vk)
2 +

nX

k=0

⌘n,kvkvk+1

+ 2p
�

nX

k=0

y
(1)

n,kv
2

k + y
(2)

n,kvkvk+1

in which v0 = vn+1 = 0 and

⌘n,k = 2p
�
n
1/6(

p
�n � E��(n�k)), y

(1)

n,k = �
1

2
n
1/6

gk

and y
(2)

n,k a centered/scaled ��(n�k).
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Convergence proof: improved heuristics
Want to show

min
kvk=1

hv , Ĥn,�vi ! inf
f2L

hf ,H�f i.

Embed the discrete minimization problem in L
2: any v 2 Rn is identified with a

piecewise constant fv (x) = v(dn1/3xe) for x 2 [0, dn2/3e], fv = 0 otherwise.

With this point of view better to consider

hv , Ĥn,�vi = n
1/3

nX

k=0

(vk+1 � vk)
2 + n

�1/3
nX

k=0

⌘n,kvkvk+1

+ 2p
�
n
�1/3

nX

k=0

y
(1)

n,kv
2

k + y
(2)

n,kvkvk+1

A calculation shows:

n
�1/3

dn1/3xeX

k=1

⌘n,k !
x
2

2
, 2p

�
n
�1/3

dn1/3xeX

k=1

(y (1)

n,k + y
(2)

n,k) )
2p
�
bx .

Brian Rider (Temple University) Operator limits of random matrices 8 / 16



Convergence proof: improved heuristics
Want to show

min
kvk=1
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Convergence proof: An actual estimate

Need to show the discrete quadratic form is bounded below, as n ! 1.

Very much as in the proof that Stochastic Airy is well defined: show the noise
part of the form can be controlled by deterministic part: e.g., for any c > 0,

�����n
�1/3

nX

k=0

y
(1)

n,k v
2

k

�����  ckvkn,⇤ + Cn

nX

k=1

v
2

k n
�1/3

where
Cn = Cn(y

(1), c) is a tight random sequence

and

kvk
2

n,⇤ =
nX

k=0

n
1/3(vk+1 � vk)

2 +
nX

k=0

kn
�2/3

v
2

k

is the analog of our k · k2⇤ norm from before.

And similarly for the y
(2) noise term.
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Convergence proof: Now what?

The bound just described gives (also similar to the continuum):

ckvk
2

n,⇤ � Cnkvk
2

`2  hv , Ĥn,�vi  C
0
nkvk

2

n,⇤

for tight Cn and C
0
n.

• Can select a subsequence of eigenvalue and (normalized) eigenvectors
(�0(n0), vn0) such that you have the convergence

�0(n
0) ! �⇤, vn0 ! f⇤ 2 L

2
\ H

1.

• In fact will have
�0(n

0) = hvn0 , Ĥn0,�vn0i ! hf⇤,H�f⇤i

• Gives at least
�⇤ = hf⇤,H�f⇤i � ⇤0 = �TW�

for any such limit point... (and that limit point is an eigenvalue of H� ...)
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Other ensembles: Wishart matrices

These are the random matrices of form MM
† for M = n ⇥m with iid entries.

In the real, complex, quaternion Gaussian cases the eigenvalue laws are again
determinantal or Pfa�an processes. Well known see Tracy-Widom fluctuations for
the largest eigenvalues (work of Johnstone, Johansson...)

The appropriate general beta version is to take the density on n positive points
with joint density: for � > 0 and  > n � 1

P
�
n,(�1, . . . ,�n) /

Y

j<k

|�j � �k |
�
⇥

nY

k=1

�
�
2
(�n+1)�1

k e
� �

2
n�k .

(When � = 1, 2, 4 and  = m 2 Z this realizes the MM
† real, complex, or

quaternion Gaussian Wishart ensemble.)
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�-Laguerre

There is again a tridiagonal matrix model, due to Dumitriu-Edelman.

Let B = Bn,�, be the random upper bidiagonal

B =
1

p
�n

2

666664

�� ��(n�1)

��(�1) ��(n�2)

. . .
��(�n+2) ��

��(�n+1)

3

777775
,

with all variables independent.

Then the eigenvalues of W = BB
† have joint density P

�
n,.

Exercise: For M an m ⇥ n matrix of independent real/complex Gaussians show there are
U and V unitary with UMV = the advertised B.
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Tracy-Widom(�) for �-Laguerre

Previous procedure gives:

Theorem (Raḿırez, R, Virág)

Let �1 � �2 . . . denote the ordered �-Laguerre eigenvalues and set

µn, = (
p
n +

p
)2, and �n, =

(
p
n)1/3

(
p
n +

p
)4/3

.

Then for any k , as n ! 1 with arbitrary  = n > n � 1 we have

⇣
�n,(µn, � �`)

⌘

`=1,...,k
)

⇣
⇤0,⇤1, . . . ,⇤k�1

⌘
,

the ordered eigenvalues for Stochastic Airy.
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An application: Spikes

Johnstone raised the question: What happens to Tracy-Widom for non-null
Wishart ensembles?

Or, what is �max for M⌃M† for “general” ⌃ 6= I? Even in the “spiked” case:
⌃ = ⌃r � In�r , for ⌃r = diag(c1, . . . , cr ).

In 2005 Baik, Ben Arous, and Péché, found a phase transition (in the complex
case), here for r = 1:

If c < c: P
⇣
�n(�max � µn)  t

⌘
! F2(t).

If c > c: P
⇣
�0
n(�max � µ0

n)  t

⌘
!

R t
�1 e

�x2/2 dxp
2⇡
.

If c = c� wn
�1/3: P

⇣
�n(�max � µn)  t

⌘
! F (t,w) = F2(t)f (t,w) where f can

again be described in terms of Painlevé II.

That � = 2 is absolutely critical to the analysis.
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In 2005 Baik, Ben Arous, and Péché, found a phase transition (in the complex
case), here for r = 1:

If c < c: P
⇣
�n(�max � µn)  t

⌘
! F2(t).

If c > c: P
⇣
�0
n(�max � µ0

n)  t

⌘
!

R t
�1 e

�x2/2 dxp
2⇡
.

If c = c� wn
�1/3: P

⇣
�n(�max � µn)  t

⌘
! F (t,w) = F2(t)f (t,w) where f can

again be described in terms of Painlevé II.
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Spiked beta ensemble

Can still tri-diagonalize. Get the same product of random bidiagonal B matrices,
but with a multiplicative shift by

p
c in the (1, 1) entry. (Exercise?)

Theorem (Bloemendal-Virág)

At criticality, the appropriately scaled BcB
†
c with c = c� wn

�1/3
, converges in the

now familiar operator sense to

H� = �
d
2

dx2
+ x +

2
p
�
b
0(x),

but subject now to f
0(0) = wf (0) at the origin.

So have a “general beta spiked” Tracy-Widom law TW �,w , with TW� = TW�,1
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PDE for TW�,w distributions

Can again use the Riccati trick.

The Robin boundary condition means that any x 7!  (x ,�) satisfying H� = � 

is subject to ( (0,�), 0(0,�)) = (1,w), or p(0,�) =  0
(0,�)

 (0,�) = w .

The upshot is:
P(TW�,w  �) = P�,w (p never explodes),

with p our friend from before: dpt = 2p
�
dbt + (t � p

2
t )dt, now begun at place w

at time �.

Now view F (�,w) = F�(�,w) = P(TW�,w  �) as a hitting distribution for the
“space-time” Markov process (pt , t). By general theory any such function is killed
by the generator:

@F

@�
+

2

�

@2F

@2w
+ (�� w

2)
@F

@w
= 0.

This PDE has been used by Rumanov to find the first Painlevé formulas for TW�

outside of � = 1, 2, 4 - for � = 6!
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Operator limits of random matrices
III. Hard edge

Brian Rider

Temple University
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Back to complex Wishart

Have n ⇥m matrices M of independent complex Gaussians and form the
appropriately scaled 1

nMM†.

The Marchenko-Pastur law replaces the semi-circle: if say m
n ! � � 1,

1

n

nX

k=1

��k (�) !
p

(�� `)(r � �)
d�

2⇡�

where ` = (1�p
�)2 and r = (1 +

p
�)2

When � > 1 both edges are “soft”, and see Tracy-Widom fluctuations.

When � = 1, then ` = 0 and eigenvalues feel the “hard edge” of the origin.

In fact, if m = n + a as n " 1 there is a one-parameter family of limit laws for
�min (also due Tracy-Widom).
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Hard edge kernel/process

Using the determinantal structure: with m � n ⌘ a as n ! 1 it holds,

P
⇣
n2�min � t

⌘
! detL2[0,t)(I � KBessel)

where

KBessel(x , y) =
Ja(

p
x)
p
yJ 0a(

p
y)� Ja(

p
y)
p
xJ 0a(

p
x)

x � y
,

and Ja is the Bessel function of first kind. (The Fredholm determinant itself can
be expressed in terms of Painlevé V).

Defines the “hard-edge” process for each a.

As a ! 1 recover the soft edge:

a4/3KBessel(a
2 � a4/3�, a2 � a4/3µ) ! KAiry (�, µ),

with similar statement at the point distribution (Painlevé) level.
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General beta

Tuned for the hard edge (and in a slightly di↵erent form then before), define:

B =
1p
n�

2

666664

�(n+a)� ��(n�1)�

�(n+a�1)� ��(n�2)�

. . .
. . .

�(a+2)� ���

�(a+1)�

3

777775

here a > �1, � > 0 and all entries are independent.

Then, the eigenvalues of W = BB† have joint density

P�,a /
nY

k=1

�
�
2
(a+1)�1

k e�
�
2
n�k ·

Y

j<k

|�j � �k |� .
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Hard edge operator

Here’s a version of the result:

Theorem (Raḿırez, R.)

For all � > 0, a > �1 and x 7! bx a standard Brownian motion define

⌧ = ⌧�,a = �ex
✓

d2

dx2
� (a+ 2p

�
b0x)

d

dx

◆
.

Acting on functions supported on R+ which vanish at the origin ⌧ has eigenvalues
0 < ⇤0(�, a) < ⇤1(�, a) < · · ·. Also, as n ! 1 and for any fixed k

{n2�i}i=1,...,k ) {⇤0(�, a), . . . ,⇤k�1(�, a)}

for {�i}i=1,2,... the ordered points of P�,a.
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Other formulations of ⌧�,a

While it is suggestive to write ⌧ as the (negative of the) generator for a
“Brownian motion with white noise drift”, perhaps better to note

�⌧ =
1

m(x)

d

dx

1

s(x)

d

dx

with m(x) = e
�(a+1)x� 2p

�
b(x)

and s(x) = e
ax+ 2p

�
b(x)

.

Then the eigenvalue problem �⌧ f = �f can be written as a system:

f 0(x) = s(x)g(x), g 0(x) = �m(x)f (x), (f (0), g(0)) = (0, 1)

and g(x) = s(x)�1f 0(x) can be solved for in C 1.

In other words, ⌧ is really a “classical” Sturm-Louiville operator.
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The integral operator ⌧�1
�,a

Better still:

(⌧�1f )(x) =

Z 1

0

✓Z x^y

0

s(z)dz

◆
f (y)m(y)dy

is (a.s.) non-negative and compact in L2[R+,m(dx)].

Exericise: Check that. In fact, it is a.s. “trace class”:
R1
0

R x
0
s(z)m(x)dzdx < 1.

Further ⌧�1 = † with

(f )(x) = ex/2
Z 1

x
e

a+1

2
(x�y)+ 1p

�
(by�bx )f (y)dy .

This kernel satisfies
R1
0

R1
0

|(x , y)|2dm(x)dm(y) < 1 (so ⌧�1 is product
Hilbert-Schmidt).

Noting the matrix model W = BB† has the same structure, we actually pin down
the integral operator limit of (nB)�1.
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Embedding

A = aij 2 Rn⇥n can be embedded into L2[0, 1] without changing the spectrum: for
xi = i/n for i = 0, 1, . . . , n and f 2 L2[0, 1],

(Af )(x) :=
nX

j=1

aijn

Z xj

xj�1

f (x)dx , when xi�1  x < xi .

By the inversion formula for bidiagonal matrices we can view (nB)�1 as an
(L2[0, 1] 7! L2[0, 1]) integral operator with the discrete upper-triangular kernel

kn(x , y) =

p
�n

��(n+a�i)

jY

k=i+1

��(n�k)

��(n+a�k)
1�ij ,

in which �ij = {0  x  y  1 : x 2 (xi�1, xi ], y 2 (yj�1, yj ]}.
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Pointwise limit of the kernel

A bit more streamlined:

kn(x , y) '
p
�n

��([n(1�x)]+a)
exp

2

4
[ny ]X

k=[nx]

log
e��(n�k)

��(n+a�k)

3

5 1x<y .

The most complicated bit here is a sum of independent variables.

Exercise: For fixed x 2 [0, 1)

p
�n

��(n+a�bnxc)
) 1p

1� x
,

[nx]X

k=1

log
��(n�k)

��(n+a�k)
) N

✓
(1� x)a/2,

1
�
log

1
(1� x)

◆

in law.

The process version of this produces kn(x , y) ! k�,a(x , y) where

k�,a(x , y) := (1� x)�
1+a
2 exp

"Z y

x

dbzp
�(1� z)

#
(1� y)a/2 1x<y .

and bz is a Brownian motion.
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Putting it together

The inverse of the full matrix model should then converge to the integral operator
with kernel (kTk)(x , y) =

(1� x)a/2e
�

R x
0

dbtp
�(1�t)

0

@
Z x^y

0

e
2
R z
0

dbtp
�(1�t)

(1� z)a+1
dz

1

A (1� y)a/2e
�

R y
0

dbtp
�(1�t)

on L2[0, 1].

Get the advertised limit by a change of variable:

(kTk)(1� e�x , 1� e�y )e�x/2e�y/2 =

✓Z x^y

0

s(z)dz

◆
[m(x)m(y)]

1

2 ,

on L2[0,1).

You’ll recall: ⌧�1(x , y) =
�R x^y

0
s(z)dz

�
m(y) on L2[[0,1),m] and that

s(x) = e
ax+

2p
�
bx , m(x) = e

�(a+1)x� 2p
�
bx .
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What actually gets proved
Let K�,a be the integral operator on L2[0, 1] with kernel

k�,a(x , y) = (1� x)�
1+a
2 e

R y
x

dbzp
�(1�z) (1� y)a/21x<y

and Kn the integral operator derived form the embedded bidiagonal random
matrix (nB)�1, with kernel

kn(x , y) '
p
�n

��([n(1�x)]+a)
exp

2

4
[ny ]X

k=[nx]

log
e��(n�k)

��(n+a�k)

3

5 1x<y

also acting in L2[0, 1].

Theorem (Raḿırez, R.)

For any sequence of the operators Kn, there is a subsequence n0 ! 1 and
suitable probability space on which

P

✓
lim

n0!1

Z 1

0

Z 1

0

���kn0(x , y)� k�,a(x , y)
���
2

dxdy = 0

◆
= 1.
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Fun Fact

Return to the �-Laguerre density:

cn,�
Y

i 6=j

|�i � �j |�
nY

i=1

w(�i ), w(�) = �
�
2
(a+1)�1e�

�
2
n�.

When �
2
(a+ 1) = 1 (e.g, � = 2 and a = 0) immediate that

P(�min > t) = cn,�

Z 1

t

· · ·
Z 1

t

Y

i 6=j

|�i � �j |�e�� n
2

Pn
k=1

�kd�1 . . . d�n = e�� n2

2
t ,

i.e., a simple exponential.

This means for example that:

inf
f 6⌘0,f (0)=0

R1
0

(f 0x )
2e

2p
�
bx� 2

� x
dx

R1
0

(fx)2e
2p
�
bx� 2

� x
dx

⇠ exp(�/2),

but I have no direct proof of this.
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Riccati at the hard edge

Write out  (t) = �⌧�1 (t):

 (t) = �

Z 1

0

✓Z t^s

0

e
au+ 2p

�
bu du

◆
 (s)e

�(a+1)s� 2p
�
bs ds.

Read o↵ that  (0) = 0.

Taking one derivative throughout, followed by an Itô di↵erential gives the system:

d 0
t=

2p
�
 0
tdbt +

⇣
(a+ 2

� ) 
0
t � �e�t t

⌘
dt,

d t=  0
tdt,

And q =  
0

 solves:

dqt = 2p
�
qtdbt + ((a+ 2

� )qt � q2t � �e�t)dt.

Passages of this process (started at +1) will count eigenvalues of ⌧ .
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Riccati at the hard edge - more precise

Theorem (Raḿırez, R.)

Take the law induced by q defined by

dqt = 2p
�
qtdbt + ((a+ 2

� )qt � q2t � �e�t)dt.

started at +1, and restarted at +1 after any passage to = �1. Then,

P(⇤0(⌧�,a) > �)= P(+1,0)(q never hits 0),

P(⇤k(⌧�,a) < �)= P(+1,0)(p hits 0 at least k + 1 times).

If a � 0 can replace hits to the origin with hits to �1.

The deal is that ⌧�,a has a Neumann condition “at infinity”, while for a � 0 can
take either Dirichlet or Neumann there.

An easier observation: When a � 0 the process q will hit �1 with probability one
once it hits zero.
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General hard to soft transition

We indicated earlier how (at � = 2) Bessel(a) point process converges to the Airy
point process as a ! 1.

In fact it holds that:

Theorem (Raḿırez, R.)

For all � > 0,
a2 � ⇤0(⌧�,2a)

a4/3
) TW�

as a ! 1.

Have a proof via Riccati - haven’t succeeded in showing this directly through the
operators.
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Proof for the transition (sketch)

On one hand, P(TW�  �) is the probability that

dpt = 2p
�
dbt + (t + �� p2t )dt

never hits �1 (started from +1). And for a � 1, P(⇤0(⌧�,2a) > µ) is the
probability that

dqt = 2p
�
qtdbt + ((2a+ 2

� )qt � q2t � µe�t)dt

never hits �1 (started from +1).

Should be enough to show there is the convergence
⇣
t 7! q2a,µt , µ = a2 � a4/3�

⌘
)

⇣
t 7! p�t

⌘
,

as measures on paths (started from +1).
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Proof for the transition (sketch con’t)

Given q = q2a,a
2�a4/3� satisfies:

dqt = 2p
�
qtdbt +

⇣
(2a+ 2

� )qt � q2t � (a2 � a4/3�)e�t
⌘
dt

make the change of variables

⌘(t) = a�2/3q(a�2/3t)� a1/3,

noting ⌘0 = +1 and ⌘t hits �1 if and only if q does.

Then:

d⌘t = 2p
�

h
1 + a�1/3⌘t

i
dbt

+
h
�e�a�2/3t + a2/3(1� e�a�2/3t)� ⌘2t +

2

� (a
�1/3 + a�2/3⌘t)

i
dt

⇠ 2p
�
dbt + [�+ t � ⌘2t ]dt,

for bounded sets of time and space. And this is just the equation for the TW�

Riccati di↵usion.
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Operator limits of random matrices
IV. Universality and exotic limits

Brian Rider

Temple University
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Universality

Back in the measure on matrices worldview, the natural form of universality would
be to ask whether replacing say

GUE : e
�n

1

2
trM2

dM

(where dM = Lebesgue measure on the space of n ⇥ n Hermitian matrices) with

e
�ntrV (M)

dM,

alters local statistics.

Importantly, these ensembles maintain the same analytic structure at the
eigenvalue density level:

/ e
�n

P
n

k=1
V (�i )

Y

i<j

|�i � �j |
2 = det

⇣
K

V

n
(�i ,�j)

⌘

with K
V

n
the projection kernel onto the span of the first n OPs for weight e�nV (�)

on R.
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RHPs and � = 1, 2, 4

Sticking with � = 2 for a moment, the universality of any local statistic is passed
onto the universality of the appropriately scaled K

V

n
.

This in turn is passed onto asymptotics for the family of OPs with nonclassical
weight(s) e�nV (�), and the mighty hammer that is the RHP method has basically
settled the matter: universality holds at regular points of the non-universal
equilibrium measure:

µV= lim
n"1

1

n

nX

i=1

��V

i

= argminµ

✓Z
V (�)µ(d�)� 2

Z Z
log |�� �|µ(d�)µ(d�)

◆
.

With more tears, � = 1 and � = 4 can be pushed through.
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Both general V and �

The random operator approach is in principle available, as one can still write down
a tridiagonal matrix model.

Again denote
T (A,B) = tridiag(B ,A,B),

for (A1, . . . ,An) real coordinates and (B1, . . . ,Bn�1) all positive.

Then if you draw (A,B) according to the law with density

/ exp
⇣
�n�trV (T (a, b))

⌘ n�1Y

k=1

b
�(n�k)�1

k
,

the random Jacobi matrix T (A,B) has joint eigenvalue density

P�,V /

Y

i<j

|�i � �j |
�
e
��n

P
n

k=1
V (�k ).

Note if V (�) = 1

4
�2 get the �-Hermite ensemble of Dumitriu-Edelman. The proof

is the same.
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A metatheorem (for Stochastic Airy Universality)

The idea is that if there is a centering (E) scaling rate (�n ! 1) after which top
the eigenvalues of Tn = Tn(A,B) approach those of the Stochastic Airy operator,
the game is the following.

Write

�n(E I � Tn(A,B)) = m
2

n
tridiag(�1, 2,�1) + tridiag(Ã, B̃ , Ã),

and, interpreting the Ãs and B̃s as combining to a potential on discretization
scale m

�1
n

: show that,

[tmn]X

k=1

(Ãk + 2B̃k) )
t
2

2
+

2
p
�
b(t)

for b a Brownian motion. Along with su�cient compactness should mean

�max

⇣
�n(E I � Tn(A,B)

⌘
) TW� .
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What compactness?

Re-notate on/o↵ diagonals of already centered/scaled tridiagonal matrix as in

2m2

n
+mn(Xn,k � Xn,k�1), �m

2

n
+mn(Yn,k � Yn,k�1).

With Xn(t) = Xn,[mnt]
, etc., in addition to Xn(t) + 2Yn(t) )

1

2
t
2 + 2p

�
b(t)

require...

There are decompositions:

Xn,k =
1

mn

kX

`=1

⌘X
n,` + w

X

n,k , Yn,k =
1

mn

kX

`=1

⌘Y
n,` + w

Y

n,k ,

such that
t/Cn � Cn  ⌘X

n
(t) + ⌘Y

n
(t)  Cnt + Cn,

and
|w

X

n
(t)� w

X

n
(s)|2 + |w

Y

n
(t)� w

Y

n
(s))|2  Cn(1 + t/�(t)).

for all n and t, s 2 [0, n/mn] with |t � s|  1 with tight Cn and some �(t) ! 1.

Brian Rider (Temple University) Operator limits of random matrices 6 / 17



Universality of Stochastic Airy

Theorem (Krishnapur, R., Virág)

Let V be a strictly convex polynomial. There exists a coupling of the random

matrices Tn realizing P�,V on the same probability space and constants � and E

depending only on V so that: almost surely,

�n2/3(E I � Tn) ! �
d
2

dx2
+ x +

2
p
�
b
0(x)

The indicated convergence is such: for every k , the bottom kth eigenvalue

converges and the corresponding eigenvector converges in norm.

Note similar to before we view E I � Tn acting on Rn
⇢ L

2(R+) with coordinate
vectors

ej = (#n)1/61[j�1,j ](#n)�1/3 ,

with # yet another constant depending on V .

Brian Rider (Temple University) Operator limits of random matrices 7 / 17



Full disclosure - there are better universality results

Around the same time two separate groups proved stronger forms of soft-edge
universality:

• Bekerman-Figalli-Guionnet by transportation of measure.

• Bourgade-Erdös-Yau by their relaxation of Dyson Brownian motion approach.

Both groups require only some number of derivatives of V , along with µV having
one band of support and being regular.

Aside: Convexity of V is the only simple geometric condition that produces one
band plus regularity of µV .

Both these alternate methods are “by comparison”. The philosophical advantage
of the operator approach is that it (re)identifies the limit.
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The set-up

One has a Gibbsian type law on tridiagonal (A,B): e�n�H(a,b)
dadb for

Hamiltonian

H = tr(V (Tn(a, b)))�
n�1X

k=1

(1�
k

n
�

1

n�
) log(bk).

The good:

Convexity of V yields convexity of H.

Polynomial V gives a Markov field property: the (A,B) variables in past/future
are independent given a block of length d = 1

2
deg(V )� 1.

The bad:

Want to use convexity of H to show the variables fluctuate in a small window
about the minimizer (a⇤, b⇤). You’re not actually going to compute the
minimizer...
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Rough idea

Proceed in blocks. Consider a stretch of coordinates (Ak ,Bk) with k 2 I and
|I| = n

↵ with ↵ “small”.

Fix the values of (Ak ,Bk) in the blocks of length d to the left/right of I. Denote
these conditional “boundary values” by q

Induced law reads

dPI =
1

Z

Z
e
�n�Hq(a,b)dQ(q).

Convexity/concentration gives

Hq(a, b) ' H̄q +rH̄q · (a� aq, b � bq) +
1
2
(a� aq, b � bq)

†(r2
H̄q)(a� aq, b � bq)

with an error that can be dropped at the exponential level.

Will yield that PI is a mixture of Gaussians - in total variation norm.

Doesn’t look very universal - now have the problem of estimating/computing
these conditional minimizers (aq, bq).
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The local minimizer(s)

To characterize the idea that minimizers should be locally constant, introduce a
“local Hamiltonian”.

Fix t 2 [0, 1]. Consider the index k , k

n
= t, and keep only those terms of H in

which ak and bk appear.

In the resulting function, set all ak and bk to the same quantity. Produces a
Hamiltonian in two variables:

H
(t) = H

(t)(a, b) = W (a, b)� (1� t) log b.

Now define (ât , b̂t), the minimizers of this expression, as your “local minimizers”.

Remark: Let C is the symmetric circulant matrix derived from the tridiag(b, a, b)
matrix. Then

W (a, b) =
1

dimC
trV (C ),

assuming dimC > degV .
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Local minimizers and equilibrium measures

This “local potential” W may also be written as in

W (a, b) = [1]V (a+ b(z + 1/z))

where [1] denotes the coe�cient of the constant term in the Laurent series in z .
See this by counting random walk paths.

Using the integral formula for the Laurent coe�cient, the equations for (ât , b̂t)
are equivalent to

Z
Rt

Lt

sV
0
t
(s) dsp

(s � Lt)(Rt � s)
= 2⇡,

Z
Rt

Lt

V
0
t
(s) dsp

(s � Lt)(Rt � s)
= 0,

where

Vt =
1

1� t
V , Lt = ât � 2b̂t , Rt = ât + 2b̂t .

This identifies (Lt ,Rt) as the left and right endpoints of support for the
equilibrium measure associated with the family of potentials Vt .

Brian Rider (Temple University) Operator limits of random matrices 12 / 17



Local minimizers and equilibrium measures

This “local potential” W may also be written as in

W (a, b) = [1]V (a+ b(z + 1/z))

where [1] denotes the coe�cient of the constant term in the Laurent series in z .
See this by counting random walk paths.

Using the integral formula for the Laurent coe�cient, the equations for (ât , b̂t)
are equivalent to

Z
Rt

Lt

sV
0
t
(s) dsp

(s � Lt)(Rt � s)
= 2⇡,

Z
Rt

Lt

V
0
t
(s) dsp

(s � Lt)(Rt � s)
= 0,

where

Vt =
1

1� t
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Beyond regularity - higher order Tracy-Widom

It is possible to cook up V s where the limiting eigenvalue density vanishes faster
that square root at its right-most edge of support E :

 V (t) ⇠ (E � t)
4k+1

2 , for k = 1, 2, . . ..

Claeys-Its-Krasovsky (2010) showed at � = 2 that

P

⇣
n

2

4k+3 (�max � E)  t

⌘
! Painlevé Stu↵.

Conjecture

Let Tn be a tridiagonal ensemble realizing the k
th

order degeneracy. Then

Hn,k = �n
2

4k+3 (E I � Tn), with a constant � = �V converges to the operator

H�,k = �
d
2

dx2
+ x

1

2k+1 +
2
p
�
x
� k

2k+1 b
0(x).

The problem: cannot produce this sort of behavior with convex potentials.
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A concrete example

Take the quartic:

V (x) =
1

20
x
4
�

4

15
x
3 +

1

5
x
2 +

8

5
x ,

then

 V (x) =
1

10⇡
(x + 2)1/2(2� x)5/2.

The density on tri-diagonal matrix coordinates reads: e�n�H for

H(a, b) =
1

10

X
(b4

k
+ 2b2

k
b
2

k+1)�
X

(1�
k + 1/�

n
) log bk

+
1

20

X✓
a
4

k
�

16

3
a
3

k
+ 4a2

k
+ 32ak

◆

+
1

5

X
b
2

k

⇣
2 + akak+1 + a

2

k
+ a

2

k+1 � 4(ak + ak+1)
⌘
.

Just need to prove a CLT for the running sum of the (a, b)-coordinates!
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The hard and soft edges meet

Claeys-Kuijlaars introduces a Wishart-like model that mimics a vanishing inside
the bulk. With dM = Lebesgue on

Z
�1(detM)ae�ntrV (M)

dM, V (x) =
1

2c
(x � 2)2.

The parameter c can be tuned so that the equilibrium measure:

Has a hard edge at the origin for c > 1.

Is supported away from the origin for c < 1

Has an exact square-root vanishing right at the origin when c = 1

There’s even a double scaling limit around c = 1 + sn
�2/3. At the level of

correlations Claeys-Kuiljaars show that:

lim
n!1

n
�2/3

Kn,s,a(xn
�2/3, yn�2/3) = K (x , y ; a, s).

Another Painlevé object, but get back the Bessel and Airy kernels by taking limits
s ! ±1 afterwards.
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General � hard-meets-soft case

Want a tridiagonal matrix with eigenvalue density:

P�,as =
1
Z

exp

 
� �
4c

n

nX

j=1

(�j � 2)2
!

nY

j=1

�
�
2
(a+1)�1

j

Y

j<k

|�j � �k |� ,

for (�1, . . . ,�n) 2 Rn

+ and c = c(s, n) = 1� sn
�2/3.

Draw (X ,Y ) 2 (Rn

+,Rn�1

+ ) according to density e
��cnH for

H(x , y) =
1
4

nX

k=1

(x2

k + y
2

k ) +
1
2

nX

k=1

xk(yk + yk�1)�
nX

k=1

(xk + yk)

�
nX

k=1

c

2

⇣
1� k

n
+

a+ 1� 2��1

n

⌘
log xk �

nX

k=1

c

2

⇣
1� k

n
� 2��1

n

⌘
log yk .

The matrix model is Wn = Bn(X ,Y )B†
n (X ,Y ) where now B has

p
Xk ’s on diagonal and

�
p
Yk on o↵-diagonal.
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A (forthcoming) theorem

Easier to state in the special case �
2
(a+ 1) = 1.

Theorem (Raḿırez, R.)

Let �1 < �2 < · · ·be the ordered points under the law P�,a,s . Then {n
2/3�k}

converge in the sense of finite dimensional distributions to those of the random

Schrödinger operator

�
d
2

dx2
+ Z

2(x) + Z
0(x)

(with Dirichlet conditions on the positive half line). Here Z (x) = Z (x ;�, s) is
defined at follows. Let x 7! z(x) be the di↵usion

dzx =
2
p
�
dbx + (s + x � z

2

x
)dx , z(0) = 0.

Then Z (x) is z conditioned never to explode.
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