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Configuration v = {x1,...,x,} of n points in R (or U)

The energy of the configuration is

Ha() o= 5 3~ log b - x,\+nZV(x,

i#j

with a confining potential V/(x).
We denote by Py, ;5 the Gibbs measure on R" or U" associated to this
energy :

1
2y 4

dPy, 5(x1, .-+, Xa) = e_gH”(Xl"“’X")dxl...dx,,

On R, if V(x) = x?/2 and 3 > 0, we recover the GAE (tridiagonal
model).

(On U, if V =0, we recover the CSE (pentadiagonal model)).
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Valké-Virag and Killip-Stoiciu independently showed existence of a
limit point process for zoomed GSE and CSE respectively. Then
Nakano showed that the two are the same, called Sineg process.

The proofs based on tridiagonal /pentadiagonal matricial model

The description of the process goes through “a coupled family of
stochastic differential equations driven by a two-dimensional
Brownian motion” (Brownian carousel) :

dan(t) = Age*%dt + R((e"®) —1)dZ,), ax(0) =0,

The number of points of Sineg in [0, A] is ay(00)/(27).

Some properties obtained via the SDE description by Valké, Virag,
Holcomb, Paquette...

Valké-Virag recently showed that the process can also be seen as
the spectrum of a random differential operator

Universality with respect to V' obtained
(Bourgade-Erdds-Yau-Lin/Bekerman-Figalli-Guionnet)
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“Physical” description of the Sinejs process ?

We started with

d]P)?/,ﬁ(le cee 7Xn) eiL;H"(Xl""’X")Xm ...dx,

= 7
We look at the rescaled configuration -, := Z7=1 Onx;- As n goes to
infinity, we may expect

> v, — C infinite configuration

> H,(v,) converges to some function H(C)

» the limiting process may satisfy

dSines(C) = %exp(—ﬂ?—l(C))dl'l(C),

with 1 the Poisson process.

This is false! We have to use DLR formalism for Gibbs measures.
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Theorem (Dereudre-Hardy-Leblé-M.)
Given a compact set A and a configuration -y, the law of the
configuration 7 in A knowing - is given by a Gibbs measure with density

dSineg (n|vac, [val) o< exp(—=B(H(n) + M(n,va<))dB), (1),

where H(n) represents the interaction of 1 with itself and M(n, yac) the
interaction of 7 with the exterior configuration and B is the Bernoulli
process (with a fixed number of points).

This has been shown by Bufetov for 8 = 2 (see also Kuijlaars-Mifia-Diaz)
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For any bounded measurable function f on the set of configurations,

[val

ESineg(f):/ /f({Xl,...,X‘,YA‘}U’y/\c)p/\c(xl,...,X‘,YA‘)HdX,' Sineg(d’y),

i=1
where

[l |7l

PAs(X1s -y Xy ) = H |x; — x|? Hw,g Xiy YA )-
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Existence of the Move functions

M(n,a¢) == 2//# — log |x — y|dn(x)dya<(y) = 2/w(y)dw(y)

with
wly) = [ ~loglx— yldn(x) o< ~logly| as ly] - .
x#y
Better option : fix a reference configuration || in A with |ne| = || and
let

M) =2 / / o8 e yldtn — m)(dn(»)

and absorb the shift in the partition function. Now

doly) = / ~loB byl —m)(x) { as |y| - oo.
xy
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The average density of points is 1,

. 1
lim —dy converges.
R=oo JI-R.RI\A Y

We need to compare Yz with the Lebesgue measure : discrepancy
estimates :

Discryo,r)(7) = o,/ — R
Leblé and Serfaty have shown that

Esineg (Discr[O’R] (7)2) < CR.

Putting every thing together, we get that M(n, yac) is well defined.
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DLR for a reference model

We use the CBE as a reference model : can be written as a log-gas on
the unit circle with periodic pairwise interactions

. [ x—y
s.n(zﬂN)‘

Showing DLR is easy for this model and we then use the convergence to
Sineg due to Killip-Stoiciu + Nakano.

We obtain Canonical DLR equations (when both the outside
configuration and the number of points in A are fixed).

—log

10
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Application to (number) rigidity

Let P be a point process, we say that it is number-rigid, if for any
compact set A, there exists a measurable function f5 such that P-almost

surely, [a| = fa(7ac)-
The Poisson process is not number-rigid.

A few examples of (D)PP are known to be rigid. In particular Sine is rigid
(Bufetov) and Sineg also (Chhaibi-Najnudel).

All proofs of rigidity that we know rely on the following result
(Ghosh-Peres) : Assume that for any A and € > 0, there exists a
compactly supported function fy . such that on A, fy . =1 and
Varp(3_ .., fre(x)) < ¢, then P is rigid.

11
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Our approach of number-rigidity

Theorem (Dereudre-Hardy-Leblé-M.)
Any process P satisfying the canonical DLR equation

dP(n|vac, [7a]) o< exp(—=B(H(n) + M(n,7¢)))dBy, ()

is number-rigid. In particular, Sineg is number-rigid (and tolerant).

From there, we get full (grand canonical) DLR equations by getting rid of
the conditioning on the number of points in A.

12
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xE
and one can extend the definition to Cp.
We show that if P satisfies canonical DLR, there exists @ such that
dCh(x,7) = e PN Leb(x) ® Q(dv),
with

h(x,7) = Jim %" (log(|y]) — log |x — y|)

YEY[-R,R]

and the same holds for Cg.

13
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We then show that if P is not number-rigid, there exists n > 1, such that
Qn is absolutely continuous with respect to P (it means that if we remove
n points from ~, the distribution looks like P with different weights.)

Let us assume for simplicity for n = 1. It means that
dCh(x,7) = e~ WM+ Leb(x) @ P(dy)

(GNZ equations)

By writing C3 in two different ways, one can check the compatibility
relation :

Y(yUy) =9(yUx) +log |x| — log |y|.

15
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Thanks for your attention !
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