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Simple Random Walk

q p
Lattice Z

* Can make time continuous by giving particle a “random
alarm clock”, I.e. exponential distr. with mean 1.

* This is arguably one of the most important, if

elementary, stochastic processes.

* \Want many particles—to be interesting these particles
must interact.
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Asymmetric Simple Exclusion Process
(ASEP)

A continuous time Markov process

-~ 0o 00 —L¥\ o -0 06—\

Lattice Z

* Particles move on Z according to two rules:

e A particle waits at x an exponential time with parameter
one, and then chooses y with probability p(x,y).

e |f yisvacant at that time it moves to y, while if yis
occupied it remains at x.

e “Simple”refers to the tfact that jumps are allowed only
one step to either the right or left

e “Asymmetric” refers to the case p=q.

3



Transition Probability: Py(x;t)

For one particle the probabillity that the
particle is initially at yis at x at time tis

1
Py(wt) = o /C gru-1et=(0) ¢

where

6(€)=§+QG—1

and C, is a circle of radius r centered at the origin.

This result is elementary but the generalization to more than one
particle is rather subtle
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N-particle ASEP

Initial configuration: Y := {y1,y2,...,yn} with yy <10 < --- < yn.
Final configuration: X := {x1,22,...,xn} with 21 <29 < --- < xN.

Let Gy denote the permutation group and set

Uee) = P

4,6 = 1] U(&’(i)’ga(”), 7€ Gy

1<i<j<N U (glafj)

Theorem (TW, 2008).

ceGN
where C, has radius so small that all the poles of A, lie outside of C,.

Remarks:
o Py (X;t) satisfies Py (X;0) = dxy.

e This is a sum of N! terms with each term an N-dimensional contour
integral.

e We are ultimately interested in N — oo. Not at all clear how to
proceed!



e To extract information from Py(x;t), we start by
looking at marginal distributions; the simplest
are one-point functions:

Py (xn,(t) = o)

Must sum Py (X;t) over all configurations satisfying x,,(t) = x.

For example, for m = 2 we must sum over configurations X

X=Ax—v,z,x+v9,x4+v2+0v3,..., 0+ Vs+v3+ -+ Uy}
where v; =1,2,3, ...

Second Example: ASEP Blocks
mth particle is the left-most one in a contiguous block of L particles

000 —0—00 00— 00—

Tm (1)
block of L =4
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Case m=1, left-most particle

Identity One. For N > L,

D | G el
ceGy 1<i,j<N 75 (1 o 50(L+1) T 'fa(N)) T (1 — fa(N—l)fa(N))(l — fa(N))
— pNWV-1)/2 fr(§)
H’i(l _ fz)
where f(§) are symmetric polynomials in the variables & = (&1,...,&n).

For the definition of f; (&) we first define

<i<n U(21,§) U(22,&5) - - - U215
or(21,...,21;€) = [igien (zL—f) 20, ik H 1

2 (g1 —p) %~ (922 —p) -+ 20 (a2 — D) iy, Ul %)

then f () = p" V2N [ &F / / or(z1, ... 20;€) da - dzr,
i Le I'e

I'¢ consists of simple closed curves enclosing the points ¢; but no other sin-
gularities of the integrand.

For L =1,
fi(§) =1— Hfz

but the complexity of §; increases with L.
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General m
|[dentity Two

Notation:
e S is asubset of {1,2,..., N}
o {5 denotes the variables & with k ¢ S.

e Set 7:=p/q < 1 and recall the 7-binomial coefficients

[n] (=1 k)

k (1—7)--(1—75)
Identity Two: For 0 <m < N — L,

. IN-L
S TIUE£) - fuEs) = g [ ] i1 (6)
. m
|S|=m €3 "
JES
where f1,(£) are the symmetric polynomials from Identity One and
_pHad ¢
&' =<

U(§,¢)
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What do the Identities buy for you?

Notation:

e Pry(x,m,t): probability that at time ¢ the mth particle from the left is the
beginning of a block of length L starting at . —e—0——————0——0—0—0—0—

T (t)
() block of L =4

I(,Y,6) =[] U(%@)H s @] (533 v g(&))

1<i<j<N i i

e S asubset of {1,..., N}, S®complement of S.
o [L(I', Ys,fg) indices lie in S.

e 0(5°) is the sum of the elements in S°.
Theorem (TW, L = 1, 2008; general L, 2017): For ¢ > 0

— _ —_ C S|
P[ v(z,m,t) = (N—m+1)(N—m)/2 (m—1)(N—m/2) E ' 1 m—1—|5¢| | L

|Se|<m

¢ (5°)-N1se| .
8 pcr(Sc) SIS +1)/2 / / Iz, Ys,&s) d™I6

Remarks:

e The proof for general L proceeds exactly the same as for L = 1 given the general L identities
and the fact that f;(£) are polynomials—no new poles introduced in the argument.

e As was the case for L = 1, there is a formula for Py y(x,m,t) but with integrations over
large contours. In this expression one can let N — oo.



Large contour representation

Notation:

e Pry(xz,m,t): probability that at time ¢ the mth particle from the left is the
beginning of a block of length L starting at .

n@Y.9= 1 pee eI (g e
mollig

1<i<j<N i i

e S asubset of {1,..., N}

o [1(x,Ys, &) indices lie in S.

e o(95) is the sum of the elements in S.

Theorem (TW, L =1, 2008; general L, 2017): For ¢ > 0

_(_1\m+1, m(m=1)/2 (m=1)(8|-my2) | 15| — L
Pry(e,mf) = (~1)™p S [m_l

|S|>m~+L—1

)—m|S]|
5
an<s> SII51+1)/2 / / Iz, ¥s,85)d78
Cr

where R is so large that the poles of the integrand lie inside Cg.

Remarks:

e This theorem extends to infinite systems unbounded on the right. The sum is then
taken over finite subsets of Z™.

e Up to this point the initial configuration Y = {y1,y2,...}, 11 < yo < ---, is completely
general (though bounded below). We now turn to the special case of step initial condition.
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Step Initial Condition

Drift to the left, p < ¢
Particles initially occupy Z™

o f TQQQQQQ..Q>

Remarks:

e In the stochastic growth interpretation of ASEP, the step initial condition corresponds
to the droplet initial condition.

e We are interested in Py z+(z, m,t).

e One starts with the large contour representation of Pr z+(x, m,t), and then first sums
over all S with |S| equal to a fixed k.
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Fredholm Determinant Representation

Notation:
e Denote by K1 .(z) the integral operator acting on functions on Cr with kernel

L
Kio(6,652) = Ko(6,€)[[U(2€), where

J=1
6.’1: es(&)t

pt+qf& —¢§

K.’.E(g’ 6,) =

e 7-Pochhammer symbol, (\;7),, := H;-":_Ol(l — A79).

Theorem (TW, L = 1, 2008; general L, 2017). For p,q > 0,

Prz+ (T, m,t) = (—1)L~1 pLE+D)/2 p—(m-1)(L-1)

y / / 1 1l 1
ro.  Jro, 2 (g2 —p) 27 (a2 — p) - 21 (g2 — p) 125 U255 2)

det(I — p~2g AN KL 210-1(2)) dA
X [/ (A;T)m 3 dZL le :

Remarks:

e The z-iterated integral is interpreted as follows: First take the sum of the residues at z;, =0
and zz, = 7. In the resulting integrand take the sum of the residues at z;_; = 0and 211 = 7;
and so on.

e The M-integration is over a contour enclosing the singularities of the integrand at 77 for
j=0,...,m—1.

e For L =1, evaluating the z;-integral leads to the result

Pos(onlt) <o) = [ LRI D

which is the 2008 result.
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J-Kernel

Proposition 1: Suppose r — C, is a deformation of closed curves and a
kernel H(n,n') is analytic in a neighborhood of C, x C, C C? for each
r. Then the Fredholm det of H acting on C, is independent of 7.

Proposition 2: Suppose Hi(n,n') and Hs(n,n') are two kernels acting on
a simple closed contour I', that H;(n,n’) extends analytically to n inside
" or to 1’ inside I', and Hs(n, n') extends analytically to 7 inside I' and
n' inside I'. Then the Fredholm determinants of Hi(n,n") + Ha(n,n')

and Hi(n,n") are equal.

1—my - 1—7y w; — T

/ o
5_ 1_777 g_l_n,az’b wz—l

After using these two proposition (among other things) we arrive at an
operator J . (w) acting on functions on a circle with center zero and
radius r € (7,1)
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J-Kernel

m—L
Tpem(n,1';w) = Peoll) & “ C/ LTV w)

Poo,z (1)) (1))~ EH

where

¢00,m(77) = (1-n)™"" L+l ei= nt, fp,z) = Z

keZ

The (-integration is over a circle with center zero and radius in the interval

(1,r/7).

L—j = B
Prze(,m,t) = —r-oL2 e I
’ Ty r w]w —TLJ“ w; — TW;

0,7 j=1 1<J

d
X / [(TL,LL; T)oo det (I + puJp zm(w)) ,u—'lz

Here p runs over a circle of radius larger than 7

inside the w;_; contours.
Recall

] dwp, - - - dw.

~L+1 and the w; contours

Pr.z+(x,m,t) = The probability that at time ¢ the mth particle from the left
is the beginning of a block of particles of length L

with step initial condition.
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Asymptotics: KPZ Scaling

m=ot, 0<o<1, y=q—p>0, c; = —14+2V0, c; =01 = /0)?/3

Theorem (TW 2017)
When z = ¢t + cost'/?,t — oo,

Pra+(@,m /) = ¢y a2 Ey ()t 4 o(t™17)

For L. = 1 this reduces to 2008 result.

Corollary 1.

The conditional probability that the mth particle from the left is the begin-
ning of an L-block, given that it is at = at time ¢/, has the limit ¢(*—1)/2,

The conditional probability that there is a block of precisely L particles, and
no more, has the limit ¢*=9/2 — ¢1/2 = o(L=D/2(1 — | /7).
Corollary 2.

The conditional probability that the mth particle from the left is followed by
a gap of GG unoccupied sites, given that it is at x at time /7, has the limit

(1= \/a)°.

The conditional probability that there is a gap of precisely G sites, and no
more, has the limit (1 — /o) /0.

No gap is the same as a block of at least two, so this is consistent with
Corollary 1 with L = 2.
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Thank you for your attention
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