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Appetizer: What is a Bonnet-B PVI surface ?

Let PL(x) =
∑L

k=0 akx
k the usual Kac

polynomial with real Gaussian random
coeffs, and N = N (L) the number of its
real roots on [0, 1]. Then for L� 1
E[N ] ∼ 1

2π ln L (Kac 1943, Thm)

What about the full distribution: E[mN ],
with 0 < m < 1 ? My claim: ∃ scaling
function of T ≡ ln L ∈ (0,+∞):

E[mN ]→ exp

(
−1

2

∫ T

0

[
H(`) +

√
H ′(`)

])
H = H(T ;m) the (extrinsic) mean curvature of the above, also the

sole ↗ regular solution on R+ with H(0) = 1−m2

2π ,H ′(0) = H(0)2 of(
1

2

)2

=

(
H ′′

2H ′
+ cothT

)2

+
H2

H ′

[
1−

(
H ′

H
+ cothT

)2
]
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Appetizer (cont’d)

and having a finite limit for large times T :

θ(m) = lim
T→+∞

H(T ;m) =
1

2
[κ1(m) + κ2(m)] (1)

=
1

2

([
2

π
arccos

(
m√

2

)]2
−
[

2

π
arccos

(
1√
2

)]2)
(2)

This recovers — independently and by completely different methods
— a result just obtained (and before . . . ) by Poplavsky & Schehr’:

E[mN (L)] ∝ L−θ(m)/2 ∝ e−θ(m)T/2, T” = ” ln L� 1

Exact persistence exponent for the 2d-diffusion equation and related
Kac polynomials, Phys. Rev. Lett. 2018 (arXiv:1806.11275)
Both answering a famous question by Dembo et al about Random
polynomials having few or no real zeros (J. AMS 2002)

lim
m→0+

E[mN (L)] ∝ L−θ(0)/2,
θ(0)

2
=

3

16
≡ Gauss (intrinsic) curvature
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Appetizer (bonuses)

Yet here bonus: H is a tau-function for a PVI with monodromy
exponents (up to perm./signs) or parameters

{ϑ∞, ϑ0, ϑ1, ϑs} =

{
1

2
,

1

2
, 0, 0

}
, {α, β, γ, δ} =

{
1

8
,−1

8
, 0,

1

2

}
Universal à la Tracy-Widom: it appears in four different model
systems of interest for nonequilibrium statistical physics

Halfway (through quadratic+ Okamoto transformations) between
some other famous PVI: Picard/Hitchin, & Manin

⇒ related to Jimbo-Miwa’s characterization of the diagonal
correlations of the planar equilibrium Ising model at all temperatures

θ(0)

2
=

3

16
=
η + β

2
=

1/4 + 1/8

2
, tanh (T/2) =

(
sinh 2E

sinh 2E ∗

)2

.
The reason for all this: Pfaffian structure with an integrable kernel,
the sech-kernel K (x , y) = 1

2π sech (x − y)/2, on L2(−T/2,T/2)
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Introduction: First-passage properties of a random process

What is the chance for a fluctuating quantity Y to have always
remained up to a certain time above a given level (say 〈Y 〉), or to
first cross it a certain instant ?

Time-honored and basic subject of (applied) probability

Usual playground: {Y (T )}T Gaussian stationary process, thus
A(T2 − T1) = 〈Y (T1)Y (T2)〉 determines everything a priori

P0(T ) = No-crossing proba. at zero level (=〈Y 〉), up to (fixed) T :

P0(T ) ∝ e−θT , θ = decay rate

−dP0(T )/dT = first-passage proba. at time T

Simple pb to state but extremely hard to solve unless for Markovian
(memoryless) processes . . .
The latter have necessarily A(T ) = e−θT ∀T (Slepian’s theorem),
hence Y ≡ rescaled Brownian: P0(T ) = (2/π) arcsinA(T ) ∝ e−θT
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Modern incarnation: persistence in phase-ordering systems

How a local degree of freedom can maintain its initial orientation as
domains of globally aligned spins grow as L(t) ∝ t1/z ?
Simplest situation: quench ± Ising spins from infinite to zero
temperature. Introduce somewhat natural geometric definition:
p0(t) = fraction of spins which have never flipped up to time t:
−dp0(t)/dt = first-passage probability. of a domain wall at a
particular location in space.
For large times algebraic decay p0(t) ∝ t−θ, θ = persistence exponent

GF t .J

a l.

^-

PI

I
FIc. 2.1 - Paysage des d,omaines d,ans le modèle d,'Ising 2d, éaoluant selon la
d,ynamique de Glauber àT -- 0, pour d,es temps t - 2b6,r024,40g6 d,ans un
système d'e N : (512)2 sites (aaec des condit,ions aur li.mit,es péri,od,íques).
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Two early climaxes in the physical literature circa 1995

Simple diffusion equation ∂tφ(r , t) = ∇2
rφ(r , t), with φ(r , 0) = white

noise. A popular model of phase ordering because φ(r , t) Gaussian.
Local ”spin” variable (at r = 0 say) sgn[X (t)], X (t) = φ(0, t)

Yet non-trivial θ̃(d) in all space dimensions d !
(Majumdar, Sire, Bray, Cornell & Derrida, Hakim, Zeitak, PRLs ’95)

”Simply” because non-Markovian correlator for the associated process
Y (T ) = X (eT )/[〈X 2(eT )〉]1/2 (normalized and rendered stationary
on the logarithmic timescale T = ln t)

In particular in d = 2, θ̃(2) = 0.1875(10) (num.) with a correlator

A(T ) = 〈Y (0)Y (T )〉 = sech(T/2) (sech = 1/ cosh)

Later realized (Dembo et al., Schehr-Majumdar, Forrester . . . ) that
the very same Gaussian {Y (T )}T also describes the number of real
roots of random Kac’s polynomials or the eigenvalues of truncated
random orthogonal matrices, both Pfaffian point processes
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Second climax: Derrida, Hakim, Pasquier’s tour-de-force

An exact expression for the persistence proba. pPotts
0 (t1, t2; q) that a

q-state Potts spin on a 1d chain with zero-temperature Glauber
dynamics has not flipped between (arbitrary) times t1, t2

After tremendous technicalities, pPotts
0 (t1, t2; q) ∝ (t2/t1)−θ̂(q) with

θ̂(q) = −1

8
+

2

π2

[
arccos

(
2− q√

2 q

)]2
=⇒ θ̂(2) = 3/8 (Ising spins)

Their crucial insight: the pers. proba. for the particular spin located
at the origin of a semi-infinite chain is determined by the Pfaffian
formed by the no-meeting proba. c(s, t) between two random walkers

c(s, t) =
∑

0≤x≤y
[p(x ; s)p(y ; t)− p(x ; t)p(y ; s)] ≈ 1− 4

π
arctan

√
s

t

Enough since pSemiP
0 (t1, t2; q) = [pPotts

0 (t1, t2; q)]1/2 ∝ (t2/t1)−θ̂(q)/2
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Yet . . .

Verbatim from the conclusions of DHP (J.Stat.Phys.’96):
This probably means that there are simpler ways of rewriting our
expression (for pSemiP

0 (t1, t2; q)) where all the cases can be treated in
the same manner. Unfortunately, we did not find these simpler
expressions.
Puzzling numerical proximity

θ̂(q = 2)/2 =
1

2
(3/8) vs. θ̃(d = 2) = 0.1875(10)

But how these two model systems, apparently so dissimilar, and that
do not even live in an ambient space with the same physical
dimension, could possibly be related at the level of a quantity so
sensitive to details as the persistence exponent?
:-( Just proved by M. Poplavskyi & G. Schehr! Exact persistence
exponent for the 2d-diffusion equation and related Kac polynomials,
arXiv:1806.11275 (PRL in press)

sgnXDiff2d(t) ≡ SSemiIsing
0 (t) (as processes)
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What else ? Different and More (if possible. . . )

I had (vague) indications of a Painlevé VI lurking in the background

and my hope was that this could allow to rederive PS’s result ”somehow”
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Angle of attack: SouthWest face ( c©Fig.1 from PS’s PRL)

Bottom-up, pedestrian approach (”alpine style”): no representation theory,
no Riemann-Hilbert, no isomonodromy, no conformal field theory, no
algebraic geometry. Essentially (by now) classical Tracy-Widom + old
school Painlevé VI (with a generous seasoned guide for the latter)
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Hidden in the persistence probas. are new non-trivial and
universal limit distributions for correlated random variables

≡ The exact analog for the sech-kernel and a PVI transcendent of the
famous Tracy-Widom PII distributions for the Airy kernel (G-U/O-E at the
edge), or the Jimbo-Miwa-Mori-Satô PV found for the Gaudin-Mehta sine
kernel (GOE in the bulk).
Ex.: KPZ universal interface growth (Takeuchi et al., 2010)
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Results 0/4 (preparatory notations)

Best expressed for the persistence probability(ies) on the log.
timescale T = ln t2 − ln t1 AND by trading q-state Potts spins for ±
Ising spins on an arbitrarily m-magnetized half-space chain:

P+
0 (T = T2 − T1;m) =

1

q
pHalfP
0 (eT1 , eT2 ; q)| 1

q
= 1+m

2

B sum-rule ∀T ,m (reversing globally the initial condition):

PHalfI
0 (T ;m) = P+

0 (T ;m) + P−0 (T ;m), P−0 (T ;m) = P+
0 (T ;−m)

Consider the even-difference sech-kernel

K (x , y) = K (x − y) =
1

2π
sech [(x − y)/2] (= ρ0A

2Diff(x − y)),

(ρ0 = 1/(2π) also density of zero-crossings for the 2d diffusing field)
On log. scale s = ex , t = ey , the no-meeting proba. c(s, t) is:

C (x , y) = c(ex , ey ) =
2

π

∫ e(y−x)/2

e(x−y)/2

du

1 + u2
u=ev/2

=

∫ y−x

x−y
dv K (v)
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Results 1/4

Consider the solutions 1 > λ0(T ) > λ1(T ) > · · · > 0 of the
eigenvalue integral equation for KT = K

∣∣
[−T/2,T/2]:∫ T/2

−T/2
dy K (x − y)φ(y) = λφ(x)

and the associated Fredholm determinants generating functions
De,o(T ; ξ) =

∏
k even/odd [1−ξλk(T )] for the even/odd part of K .

P±0 (T ;m) =
De(T ; ξ)±mDo(T ; ξ)

2

∣∣∣
ξ=1−m2

, P±0 (0;m) =
1±m

2
.

The pers. proba. is a Fredholm Pfaffian gap probability gen. function:

PHalfI
0 (T ;m) = De(T , ξ) = exp

{
−
∫ T/2

0
dx [R(x , x)+R(x ,−x)]

}
with R(x , y) = 〈x |R|y〉 the matrix elements of the resolvent operator
R for ξKT , i.e. 1 + R = (1− ξKT )−1, (and δ(x − y) = 〈x |1|y〉)
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Proof: recast DHP in the framework of TW-GOSE

Start from the central result of DHP:

PSemiP
0 (t1, t2; q) =

(√
1− µc̃(t2, t2)− λ

√
−µc̃(t2, t2)

)
e

1
2
TrLogM

where λ = q − 1, µ = (1− q)/q, and M, c̃ = cM−1 are two operators
defined in terms of c(s, t) = 1− (4/π)arctan

√
s/t:

M(s, t)dt =

[
δ(s − t) +

2(1− q)

q

dc

ds

]
dt = [1− (1−m2)K (x − y)]dy

after s = ex , t = ey , 1/q = (1 +m)/2. This gives the (easy) 1st piece:

e
1
2
TrLogM =

√
det (1− ξKT ) = e−

1
2

∫ T/2
0 dx[R(x ,x)+R(−x ,−x)]

For the ominous-looking ”amplitude”, c̃ = −C(1− ξKT )−1 with C
the antisymmetric operator with matrix elements C (x , y) = c(ex , ey )

C = −2εK , ε = D−1 ≡ 1

2
sgn(x − y) (sgn′(x) = 2δ(x))

Intrinsic computation valid for any even difference kernel on a
symmetric interval: just relies on the Pfaffian structure
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Time for a (first) old Reminder

SUR LA LOI LIMITE DE L'ESPACDMENT DES VALEURS PROPRES
. D'UNE MATRICE ALÉATOIRE

MICHEL GAUDIN
Ceilrc d'Étades Nucléai¡es de Soclag, Gil-sur-YaaUe (5. ec O.l, Fta¡cc

Rcçu le l8 Jaovier l90l

Abotrgct: The dist¡ibution function of the tevel spacings for a random matrix in the limit of
large dimensions is expressed by means of a rapidly converging infinite product which has
been used for a nurneric¿,I calculation. Comparison with lVigner's hypothesis gives a very
good agreement.

inférieure à 0.0066 dans la région s < 3D. La fig. 2 représente les fonciions

þ et þw dont la différence relative est inférieure r 6 o/o Pour s < 2D, et l'écart

moindre que 0.0162.

f lt/
Eßt,f" lt/.

f. [¿/

¡.
I J

Fig. t. La distribution de wigner F.(S) et la fonction exacte -F(5) comprise entre l5.o et Ft'

PU
P. lt/

2I

I

15

Fig. 2. fæs densités de probabilité P(S) et ps(S)

*i.it
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In a ”modern” language
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RELATIONSHIPS BETWEEN τ-FUNCTION AND FREDHOLM

DETERMINANT EXPRESSIONS FOR GAP PROBABILITIES IN RANDOM

MATRIX THEORY

PATRICK DESROSIERS AND PETER J. FORRESTER

Abstract. The gap probability at the hard and soft edges of scaled random matrix ensembles

with orthogonal symmetry are known in terms of τ -functions. Extending recent work relating

to the soft edge, it is shown that these τ -functions, and their generalizations to contain a gen-

erating function parameter, can be expressed as Fredholm determinants. These same Fredholm

determinants occur in exact expressions for the same gap probabilities in scaled random matrix

ensembles with unitary and symplectic symmetry.

1. Introduction

In the 1950’s Wigner introduced random real symmetric matrices to model the highly excited

energy levels of heavy nuclei (see [13]). From the experimental data, a natural statistic to

calculate empirically is the distribution of the spacing between consecutive levels, normalized so

that the spacing is unity. For random real symmetric matrices X with independent Gaussian

entries such that the joint probability density function (p.d.f.) for the elements is proportional to

e−Tr(X2)/2 (such matrices are said to form the Gaussian orthogonal ensemble, abbreviated GOE),

Wigner used heuristic reasoning to surmise that the spacing distribution is well approximated

by the functional form

pW
1 (s) :=

πs

2
e−πs2/4. (1.1)

In the limit of infinite matrix size, it was subsequently proved by Gaudin that the exact spacing

distribution is given by

p1(s) =
d2

ds2
det(I − Kbulk,+

(0,s)
), (1.2)

where I stands for the identity operator and where Kbulk,+
(0,s) is the integral operator supported

on (0, s) with kernel
sinπ(x − y)

π(x − y)
(1.3)

restricted to its even eigenfunctions. It was shown that this integral operator commutes with

the differential operator for the so called prolate spherical functions, and from the numerical

determinantion of the corresponding eigenvalues (1.2) was computed and shown to differ from

the approximation (1.1) by no more than a few percent.

Date: April 2006.

2000 Mathematics Subject Classification. 15A52; 34M55; 45B05.

Key words and phrases. Random matrices, Painlevé equations, Fredholm determinants.
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Bilinear representation for an integrable integral operator

For the Airy, Bessel, or sine kernels there exists a representation

K (x , y) =
φ(x)ψ(y)− φ(y)ψ(x)

x − y
=

∫ ∞
0

dz Ω(x + z)Ω(y + z)

Ex.: For the Airy kernel KAiry, φ = Ai, ψ = Ai′, and Ω = Ai itself.

(very) useful for determination of limiting distrib. in RMT: allows to
rewrite KAiry

∣∣
[s,+∞)

(x , y) as the square of Ai(x + y − s), and to find

a differential operator L commuting with K (also WKB techniques)

Sech-kernel self-dual in Fourier space:

K̂ (q) = sech (πq) =
1

π
Γ(1/2 + ıq)Γ(1/2− ıq)

Complement formula for Gamma function ≡ Wiener-Hopf
factorization for the sech-kernel. Allows to derive the asymptotic
decay of PHalfI

0 (T ; ξ), but no obvious L (yet there exists sthg else. . . )
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ID, Pfaffian Persistence, Universal Bonnet-Painlevé VI Probability Distributions, and Ising model Criticalities in 1+1 dimensions, arXiv:1810.06957 (under rev. for J. Stat. Phys.) Robert Conte & ID, Persistence, Painlevé VI, Chazy C.V, and Bonnet Surfaces, in prep. (< 2020) — for a genuine (applied) maths journal 19
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Results 2/4: Compute the Fredholm dets.

The sech-kernel is an integrable integral operator:

1

cosh [(x−y)/2]
=

2 sinh [(x−y)/2]

sinh [(x−y)]
=

e3x/2ey/2 − ex/2e3y/2

e2x − e2y

the same Christoffel-Darboux like identity as for the finite-N sine
kernel (Circular Unitary Ensemble of RMT),

KN(x , y) =
1

2πN

sin [N(x−y)/2]

sin [(x−y)/2]
,

known to give rise to a PVI, up to x , y → 2ix , 2iy , and N = ±1/2 (!)

Output for the two resolvent functions G (T ) = R(T/2,−T/2) and
H(T ) = R(T/2,T/2): coupled 1st order quadratic non-linear ODEs:

H ′ = G 2 (′= d/dT ,Gaudin′s relation), Θ2 = N2 = 1/4

Θ2(G sinhT )2 + [(H sinhT )′]2 = (H sinhT )2 + [(G sinhT )′]2
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Results 2/4 (cont’d)

Eliminating differentially (without square-root !) G , one obtains a
closed 2nd order 2nd degree nonlinear ODE for H

(H ′′+2H ′ cothT )2−4H ′
[
(H ′+H cothT )2−H2+Θ2H ′

]
= 0

(Local) Cauchy problem at T = 0: H(T ) = h0 + h′0T + . . . , coeffs.
determined through Neumann expansion of the resolvent:
h0 = ρ0ξ = 1−m2

2π , h′0 = h20
=⇒ there should exist a unique regular solution for H on [0,+∞)
connecting a finite limit H(T )→ h∞ to have a pers. exponent

This regular sol. H(T ; (h0, h
′
0)) should be the equivalent of the PII

Hastings-McLeod sol. for the GβE-like tail distribution functions:

det [1−(1−m2)KT ] = E2(T ) =

∫ +∞

T
d` p2(`) = exp

[
−
∫ T

0
d`H(`)

]
PHalfI
0 (T ;m) = E1(T ) = [E2(T )]1/2 exp

[
−1

2

∫ T

0
d`
√
H ′(`)

]
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The explicit PVI and its monodromy exponents

H(T ) = HVI(p, q, s) evaluated on Hamilton’s equations of motion:

H(T ) = −(x − 1)

2

x2y ′2 −Θ2y2

y(y − 1)(y − x)
, y(x) = q(s), x = s = e2T

(Chazy 1911-Jimbo-Miwa-Okamoto form of PVI)
The distribution functions F (T ) or PHalfI

0 (T ;m) are τ -functions, as
for critical scaling correlations of e.g. the 2d Ising model. Here best
viewed as exact Kramers’ formula for an explicitly time-dependent
Hamiltonian, where persistence exponent asymptotic decay rate!
Nice-looking parameters PVI[y(x);α, β, γ, δ] with Θ2 = N2 = 1/4 . . .

y ′′ =
1

2

(
1

y
+

1

y−1
+

1

y−x

)
y ′2−

(
1

y
+

1

y−1
+

1

y−x

)
y ′+

y(y−1)(y−x)

x2(x−1)2
×

×

 0︸︷︷︸
α

×1+ 0︸︷︷︸
β

× x

y2
+

Θ2

2︸︷︷︸
γ=1/8

× x − 1

(y − 1)2
−Θ(Θ + 2)

2︸ ︷︷ ︸
δ=3/8

×x(x − 1)

(y − x)2
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How this ? Ask a local/global expert for indications
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Bonnet 1867/Hazzidakis 1897, found the same 3rd/2nd
order nonlinear ODE for H(T ) in a different context . . .
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Here a particular co-dimension 3 PVI

Monodromy exponents for PVI Bonnet surfaces (up to homographic
transformations):

(ϑ2∞, ϑ
2
0, ϑ

2
1, (ϑx − 1)2) = (0,Θ2,Θ2, 0)

That RC had just extrapolated to the full PVI (Gauss-Codazzi moving
frame equations ≡ ”best” Lax pair) . . .
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Generalized Bonnet surfaces and Lax pairs of PVI
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CNRS, Université Paris-Saclay, 61, Avenue du Président Wilson, F–94235 Cachan Cedex,
France and Department of Mathematics, The University of Hong Kong,
Pokfulam Road, Hong Kong

(Received 13 July 2017; accepted 11 October 2017; published online 30 October 2017)

We build analytic surfaces in R3(c) represented by the most general sixth Painlevé
equation PVI in two steps. First, the moving frame of the surfaces built by Bonnet in
1867 is extrapolated to a new, second order, isomonodromic matrix Lax pair of PVI,
whose elements depend rationally on the dependent variable and quadratically on the
monodromy exponents θj. Second, by converting back this Lax pair to a moving frame,
we obtain an extrapolation of Bonnet surfaces to surfaces with two more degrees of
freedom. Finally, we give a rigorous derivation of the quantum correspondence for
PVI. Published by AIP Publishing. https://doi.org/10.1063/1.4995689

I. INTRODUCTION

From the very beginning,36 two representations have coexisted for the PVI equation. The first
one,

d2u

dx2
=

1
2

�
1
u

+
1

u − 1
+

1
u − x

� �
du
dx

�2
−
�

1
x

+
1

x − 1
+

1
u − x

�
du
dx

+
u(u − 1)(u − x)

2x2(x − 1)2

�
θ2
∞ − θ2

0
x

u2
+ θ2

1
x − 1

(u − 1)2
+ (1 − θ2

x )
x(x − 1)

(u − x)2

�
,

(1)

in which the four θ2
j are arbitrary complex constants, displays the main property of this “équation

différentielle curieuse” (as Picard called it after he found it in the particular case θj = 0, j =∞, 0, 1, x):
its general solution u(x) is singlevalued except at three points, conveniently put at x =∞, 0, 1 so that
x is the crossratio (∞, 0, 1, x).

The second representation also originates from Picard. It results from the invertible point trans-
formation (U, X, T ) �→ (u, x, t) (we also give here its extension to the spectral parameter t, to be used
later) defined by36 (p. 298)

U =
1

2ω

� u

∞
du√

u(u − 1)(u − x)
,

X
aX
=Ω= iπ

ω�

ω
, T =

1
2ω

� t

∞
dt√

t(t − 1)(t − x)
(2)

(with aX some normalization constant), whose inverse is

u=
℘(2ωU, g2, g3) − e1

e2 − e1
,
�

u(u − 1)(u − x)=
1
2

(e2 − e1)−3/2℘�(2ωU, g2, g3),

t =
℘(2ωT , g2, g3) − e1

e2 − e1
,
�

t(t − 1)(t − x)=
1
2

(e2 − e1)−3/2℘�(2ωT , g2, g3),

x =
e3 − e1

e2 − e1
·

(3)

a)E-mail: Robert.Conte@cea.fr
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Results 3/4: Αγεωμετητοζ μηδειζ εισιιτω

Bonnet surfaces in conformal coordinates (z , z) uniquely determined
by the 2nd order 2nd degree nonlinear ODE satisfied by their mean
curvature function Hm ≡ a PVI-Hamiltonian (Bobenko & Eitner)

Hm(<z = T ) = −H(T )/2

Reincarnation of the coarsening motto ”motion by mean-curvature” !

Persistence exponent θ(m)(= θ̂(q = 2/(1+m)) simply related to the
asymptotic average curvatures of the underlying Bonnet-B surface:

κ1 + κ2
2

= −θ(m)

2
=

1

4

{[
2

π
arccos

(
1√
2

)]2
−
[

2

π
arccos

(
m√

2

)]2}
(kind of non-linear Buffon’s needle formula, in the spirit of random
geometry of Edelman & Kostlan, How many zeros of a random
polynomial are real?, Bull. Amer. Math. Soc. 32, 1 (1995))

B Expression for θ̂(q) or θ(m) buried somewhere in Jimbo ’82, who
solved completely the connexion problem for PVI (RC & ID, in prep.)
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Results 3/4 cont’d
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Results 3/4 (last but not least) geometric interpretation

Recall that

PHalfI
0 (T ;m) = exp

[
−1

2

∫ T

0
ds[H(s) +

√
H ′(s)]

]
If −H/2 = Hm,

√
H ′ is also some length . . .

For Bonnet surfaces, the metric (first fundamental quadratic form of
Gauss) is given by

d`2 = eudzdz =
dzdz

H ′(T ) sinh2 T
, T = <z , 1

sinh2 T
= Hopf factor

Recall that (from DHP), the amplitude of the persistence proba

e−
∫ T
0

√
H′/2 ∝

√
q(2− q) ∝

√
m as q → 2− or m→ 0+ =⇒

singularity in the metric: umbilic point where curvatures coincide

Hm =
√

KGauss = κ = −θ(0)

2
= − 3

16
By Gauss’ Theorema Egregium, KGauss intrinsic: Persistence exponent
has topological content for symmetric Ising spins ?!
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Results 4/4: Universality

Expanding the Pfaffian Fredholm generating function, and using
Matsumoto-Shirai:

∀T ,PHalfI
0 (T ;m = 0) = P2Diff

0 (T |Y (0) = 0) =⇒ θ̃(d = 2) =
3

16

(conditioning due to E2(T ) =
∫ +∞
T d`p2(`): once-conditioned spacing

proba., guaranteed by a choice of the origin on the stationary
timescale)

Conjecture: due to its intrinsic geometric content, and given that

θIsing2d = θModelA = 0.19(1),

θ2Diff = 3/16 could even be the universal critical exponent for
curvature-driven growth of a non-conserved scalar order parameter in
two space dimensions.
If true, needs to understand why autocorrelation exponents are
distinct: λDiff2d = 1/2 while λIsing2d ≈ 5/8 (Fisher-Huse). Large
cancellations in 〈S(0)S(T )〉 =

∑
n(−1)npn(T ) (pn n-flip proba.) ?
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Conclusions

Take-home message: Painlevé transcendents capable of fulfilling, on
the exemplary value of the persistence probability, the Holy Grail of
statistical physics: the exact integration through a local
non-Markovian temporal process of the remaining spatial interacting
degrees of freedom

feasible because of a lot of underlying structure: harmonious interplay
— with PVI at the center — between algebra, geometry, probability,
analysis. stochastic integrability (H. Spohn) or integrable probability
(A. Borodin et al.)

Phenomenon generic for all Painlevé, with a lot of universal
non-trivial limit distributions to discover (cf. RC & ID, The master
PVI heat equation, CRAS Maths. (2014)
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Another example: Phase-noise distribution, imaginary
exponential functional of Brownian Motion, and the
Sine-Gordon PIII transcendent (ID, in prep.)

What is the distribution (in the complex plane) of

Zσ =

∫ +∞

0
ds exp [−s + 2ıσB(s)] ≡ Reıθ, B 1d Brownian ?

Related to the solution w(r) of

d2w

dr2
+

1

r

dw

dr
+

1

2
sin (2w) = 0
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(Broken) m-symmetry: not one but two pers. exponents

Reversing globally the initial condition (leaving unaffected the dual
dynamics of coalescing random walkers):
θ+(m) = θ−(−m) = θ(m) = θ̂(q)|q=2/(1+m), with

θ(m) =
1

2

{[
2

π
arccos

(
m√

2

)]2
−
[

2

π
arccos

(
1√
2

)]2}
B NOT even in m: asymp. behavior of
PHalfI
0 (T ;m) = P+

0 (T ;m) + P−0 (T ;m) dictated by slower decay rate,
i.e. smaller exponent
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Paradox: Just the branch m ≥ 0 of θ(m) observable ?!

Asymptotic expression for PHalfI
0 (T ;m) can be checked (along with

computation of amplitudes: ”Widom’s constant problem”) using
results in the math. literature on truncated Wiener-Hopf+Hankel
Fredholm determinants

Cusp due to the singular behavior of the ”symbol” for the sech-kernel,
whose (self-dual) Fourier transform is F [K ](q) = sech (πq). Hence
largest eigenvalue λ0(T )→ 1 and logarithm of det[1− (1−m2)KT ]
has pbs for T � 1 AND m→ 0. . .

Somewhat spurious: disappears if conditioning P±0 also w.r.t. the
value the Ising spin at the origin had in the ”initial” condition
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