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History of Stefan problems

o Stefan 1889-1891: free boundary problems for the heat

equation.
@ Physical models of ice formation; evaporation & condensation.
@ Dormant until Brillouin '31, Rubinshtein: ~2500 papers by '67.
o Kamenomostkaja '61: definitive solution.
o Today: supercooled Stefan problem.
@ Sherman ’70: presence of blow-ups.

@ For some T < co: boundary speed — cc.



Mathematical formulation

e Supercooled Stefan problem (1D, one phase):

Oru = %&(Xu on {(t,x) e [O,oo)2 Dx > Ny
N, = Coxu(t,\), t>0,
u(0,x) =f(x), x>0 and u(t,A;)=0, t>0,
where f >0, C > 0.
@ Blow-up: for some T < oo, limg7 A} = o0.

e Classical solution on [0, T).



Where is probability?

@ Probabilistic problem: find a non-decreasing function A such that

Vt:VO_’_Bt_At? tSF, ?t:Y?7 t>?’

e If \ exists on [0, T), densities p(t,-) of Y; solve

1
Otp = §8xxp + A,taxpa p(O, ) =f, P(', 0) =0,

C
Ne= 5 0xp(t.0), t€[0. 7).

= u(t,x) := p(t,x — A¢) solves supercooled Stefan problem.

@ Can look for global solutions of both problems!



Additional motivation

Setting 1: neural networks
@ Neorons in a part of the brain, e.g. 10° in the human hippocampus.

@ When the membrane potential of a neuron reaches a critical level

(“spike™), the neuron fires.
@ This may lead to a spike in surrounding neurons, etc.
@ Potentially: macroscopic number of spikes — synchronization.
Setting 2: systemic risk
@ Banking system with banks borrowing from each other.

@ Banks default — losses to other banks — more banks default — etc.



Interacting particle system (IPS)

N particles with initial locations Y1(0), Y2(0),..., YN(0) € [0, c0).
@ Particles move according to indepedent standard Brownian
motions.

When a particle hits 0, it is absorbed.

@ This leads to immediate downward jumps by other particles,

tuned by C > 0.

If some particles cross 0 due to jumps, these particles are removed,

jump sizes of remaining particles are adjusted, etc.

@ When cascade resolved: remaining particles continue as BMs, etc.



IPS: in formulas

e Particle locations: Y!, Y2 ... YN

As long as particles on (0, c0):
dYi=dBi, i=1,2,... N,

B!, B2, ..., BN independent standard BMs.

Hitting times:
i =inf{t>0:Y/ <0}, i=12... N.

Suppose Y/ hits 0 at time t and is removed.



IPS: cascades, in words

@ Shift the remaining particles by

Clog (1—51_),

where S;_ is the pre-absorption size of the system.
@ Note: factor | in size S;_, 1 in parameter C.
o Update may lead to particles i1, fp, . .., ix crossing 0, these are

removed, and we adjust the shift to

k
5 )

o May cause more immediate absorptions, in which case repeat

Clog (1 —

procedure etc., until determine all particles to remove at time t.



IPS: cascades, in formulas

e System size: S; (= Efvzl i ise
o Order statistics: Y < Y® <... < YD) of (Y[ : 71 > ¢).
@ # of particles removed at time t:
D; =inf {k: Y + Clog (1 - &1) > 0} — 1.
o Particle locations:

Y/ =Y+ B{+ >, Clog(1- S%J_)



Large system limit: starting point

To construct global solutions:
o take N — oc;
@ blow-ups <> macroscopic cascades.

Crucial observation: sum of jumps

> u<t Clog (1 — S%) = u<: Clog (i—‘i) = Clog (% ZJN:1 1{7j>t}).
= functional of the empirical measure oV := Zf\lzl Oyi.

— Interaction of mean-field type :<—=- dynamics of every particle
functional of the empirical measure, own location (process) &

independent random input; same functional across particles.



Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman ’89):
o Classical setting:
Yi=Yi+ [y b(Yi0M)ds + [y o(Yi,0M)dBL, i=1,2,...,N.
o Guess: gN —3° o, deterministic.
e — for large N, particle locations well-approximated by
Y= Yo+ [Eb(Yi, 05)ds + [fo(Ve,0)dBL, i=1,2,...,N.
0 — p=limy_o 0V = limy_oe 0" = E(V ).
e Conclusion: in N — oo limit, Y’ converge to unique solution of

Ye=Yo+ f§b(Ys, £(Ys))ds + [{ o(Vs, £(Ys)) dBs.



Large system limit: our setting

e McKean-Vlasov heuristics suggests Y’ converge to unique sol. of
Y:=Yo+ B+ As,
where
At :=ClogP(7 > t), 7:=inf{t>0: Y, <0}
e Problems: non-existence, non-uniqueness in C([0,0),R).
o P(T>t)or g Zszl 1(,j~¢ do not specify cascade mechanism.
o ~» Dy:i=inf{y >0: y— F(y) >0}
::inf{y>0: y—i—CIog(l—W) >O}.
e Specify Ay = At— + F(Dy), rcll.

o Call solutions with correct cascade mechanism physical solutions.



A first limit theorem

Theorem (Nadtochiy, S. "17) Suppose +; Ef\lzl dy,(0) — Vv v has a
bounded density £, on [0, c0) vanishing in a neighborhood of 0.

Then:

The sequence % Z,N:1 dyi, N € N is tight and any limit point is supported

on physical solutions Y with Y 4,

Technical point: Skorokhod M1 topology on rcll paths (key observation

of Delarue, Inglis, Rubenthaler, Tanré '15).



Analysis of physical solutions: questions

By the theorem, a physical solution Y with rcll paths exists.

@ How do the jumps in Y arise? «+— leaps of the solid-liquid

frontier.

E.g., what can one say about
ta == inf{t >0: AY, #0}

and the particle density £(Y;,_) right before tp?

Structure of blow-ups? Uniqueness of physical solutions?



Main theorem I: regular interval

Theorem (Nadtochiy, S. *17) Suppose Yo < v has a density
f, € W}([0,00)) and £,(0) = 0.
Then: there exists trg > 0 such that on [0, t.eg) all physical solutions are
indistinguishable and satisfy
t

Yt:YO+Bt+/ As ds, tG[O,?/\treg),
0

At = COrlogP(T > t), te(0,trg).

Moreover, treg = inf{t > 0: [[A[12(j0,¢) = o0}



Regular interval: some ideas from proof

o As long as Ay = \; € L2, density p(t,y) of Y4 1(7-4) solves
1
Otp = — At 3yP + 58}2/137 p(O,y) = fV(y)v P(t, 0) =0.

o More precisely: p coincides with W, ([0, T] x [0, o0)) solution.
o Fixed-point constraint:

OP(Ye>0) 0O fy pt,y)dy

P(Y:>0) ' p(t,y) dy
C 9yp(t,0)
2 I p(t.y)dy’




Regular interval: some ideas from proof, cont.

o PDE fixed-point problem: given \ € L%([0, T]), solve
Lo
Ocp = =AeOyp + 50,p, p(0,y) = fuly), p(t,0)=0

in Wy2([0, T] x [0, 00)).
e Want:
C  0Oyp(t,0)
2 [p(ty)dy

t-

@ Would be nice:
C  9yp(t,0)

2fo (t,y)dy

is a contraction (= uniqueness of physical solution on [0, T]).

Ap = —



Regular interval: some ideas from proof, cont.

Turns out: contraction property holds for truncated fixed-point

problem

1
op = -N"Tdyp+ S0, p(0.y) = fi(y), p(t,0) =0,
C  9yp(t,0)
2 IS p(t,y )dy o
with

M,T _
AT =\ I{H)‘HLZ wm<My T A 1{||>\||L2([07T])>M}7

Al 20,77
when T = T(M) > 0 small enough.



Regular interval: some ideas from proof, cont.

o Given A\, \, get p, p, need to control
|0y p(t,0) — dyp(t,0)] and | [7° p(t,y)dy — [¢° B(t,y)dy].
o Write PDE for u:=p—p
1 ~ -
Opt = 5a§u ~WMT o u+ (WMT —AMTY o p,
u(0,y) =0, u(t,0)=0.

e Two step approach: a priori estimate on d,u, 9, p, then treat PDE

as heat equation with source to get desired estimates.

@ Short time mixed-norm of heat kernel small = contraction.



Main theorem Il: description of jumps

Theorem (Nadtochiy, S. '17) Consider a physical solution Y.

Then:

(a) the time of the first jump ta :=inf{t > 0: AY, # 0} is given by
tA:inf{tZO: dn >0 s.t. wz%,ye[o,n]},

and

(b) the size of the jump at ta is

P(F>tp, Yen—€(0,
sup {n >0: 2 *t%(?;tj( ) > A [0,71]}-




Description of jumps: some ideas from proof

@ Given t > 0 and 1 > 0 such that

PT>t, Yo €(0,y) _ ¥
> 2
P s 1) > veloa,
we claim: AY; < —n.
@ If not, easy to check:

P(7>t, Y:€(0,y))
P(T > t)

y
>
> y €[0,7

for some 17 > 0.

@ Will use hierarchical structure of cascades to get a contradiction.



Description of jumps: some ideas from proof, cont.

e t =0 (wlog). Then, for any t, | 0:

a%m?>%pmh@{%+@ﬂ&+&pw)
SSTm

1 [
< - — i <
< Clog (1 C/o P(y+sgfm(55+/\s)_o) dy>
7
g—/ P(y+ inf Bs+/\tm+1§0)dy
0

tm+1 SSS tm

< E[ inf  (Bs — Btm)} + ClogP(F > tms1)

tm+1S5§tm
2
- _\/;M—i— ClogP(T > tmy1).

@ lterate and choose t,, = % — contradiction.



Regularity of physical solutions, uniqueness

o For uniqueness, need to understand all regimes.
e Case 1: Y, has a density f € C1([0,00)) N C¥((0,0)), f(0) = 0.
— A = X is continuous on [t, t + ¢) for some ¢ > 0.
e Case 2: Y,_ has a density f € C¥((0,0)), f(0+) €[0,1/C).
= Nis (1/2 + §)-Holder on [t,t + ¢), back to Case 1 on (t,t +¢).
e Case 3: Y, has a density f € C¥((0,0)), f(0+) >1/C.
= At —NAem = —inf{y >0: P(Ye_ € (0,y] <y/C)},
back to Case 1 on (t,t + ¢).
@ Uniqueness follows from this and sandwiching between two maximal

physical solutions.
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