PRINCETON UNIVERSITY

The supercooled Stefan problem

Mykhaylo Shkolnikov, joint with Sergey Nadtochiy, François Delarue

Princeton University

April 12, 2019

- 2 Existence via interacting particle systems
- O Physical solutions
- 4 More on the irregular behavior
- 5 Regularity of physical solutions, uniqueness

History of Stefan problems

- Stefan 1889–1891: free boundary problems for the heat equation.
- Physical models of ice formation; evaporation & condensation.
- Dormant until Brillouin '31, Rubinshtein: \approx 2500 papers by '67.
- Kamenomostkaja '61: definitive solution.
- Today: supercooled Stefan problem.
- Sherman '70: presence of blow-ups.
- For some $T < \infty$: **boundary speed** $\rightarrow \infty$.

Mathematical formulation

• Supercooled Stefan problem (1D, one phase):

$$\partial_t u = \frac{1}{2} \partial_{xx} u \quad \text{on} \quad \{(t, x) \in [0, \infty)^2 : x \ge \Lambda_t\},$$
$$\Lambda'_t = C \partial_x u(t, \Lambda_t), \quad t \ge 0,$$
$$u(0, x) = f(x), \quad x \ge 0 \quad \text{and} \quad u(t, \Lambda_t) = 0, \quad t \ge 0,$$

where $f \ge 0$, $C \ge 0$.

- Blow-up: for some $T < \infty$, $\lim_{t \uparrow T} \Lambda'_t = \infty$.
- Classical solution on [0, T).

Where is probability?

• Probabilistic problem: find a non-decreasing function A such that

$$\overline{Y}_t = \overline{Y}_0 + B_t - \Lambda_t, \quad t \le \overline{\tau}, \quad \overline{Y}_t = \overline{Y}_{\overline{\tau}}, \quad t > \overline{\tau},$$
$$\Lambda_t = C \mathbb{P}(\overline{\tau} \le t).$$

• If Λ' exists on [0, T), densities $p(t, \cdot)$ of \overline{Y}_t solve

$$\partial_t p = \frac{1}{2} \partial_{xx} p + \Lambda'_t \partial_x p, \quad p(0, \cdot) = f, \quad p(\cdot, 0) = 0,$$

 $\Lambda'_t = \frac{C}{2} \partial_x p(t, 0), \quad t \in [0, T).$

 $\implies u(t,x) := p(t,x - \Lambda_t)$ solves supercooled Stefan problem.

• Can look for global solutions of both problems!

Additional motivation

Setting 1: neural networks

- Neorons in a part of the brain, e.g. 10^6 in the human hippocampus.
- When the membrane potential of a neuron reaches a critical level ("spike"), the neuron fires.
- This may lead to a spike in surrounding neurons, etc.
- Potentially: macroscopic number of spikes \rightarrow synchronization.

Setting 2: systemic risk

- Banking system with banks borrowing from each other.
- $\bullet~{\sf Banks}~{\sf default} \to {\sf losses}$ to other ${\sf banks} \to {\sf more}~{\sf banks}~{\sf default} \to {\sf etc}.$

Interacting particle system (IPS)

- N particles with initial locations $Y^1(0), Y^2(0), \ldots, Y^N(0) \in [0, \infty)$.
- Particles move according to indepedent standard Brownian motions.
- When a particle hits 0, it is **absorbed**.
- This leads to immediate downward jumps by other particles, tuned by C > 0.
- If some particles cross 0 due to jumps, these particles are **removed**, jump sizes of remaining particles are **adjusted**, etc.
- When cascade resolved: remaining particles continue as BMs, etc.

IPS: in formulas

- Particle locations: Y^1, Y^2, \ldots, Y^N .
- As long as particles on $(0,\infty)$:

$$\mathrm{d}Y_t^i = \mathrm{d}B_t^i, \quad i = 1, 2, \dots, N,$$

 B^1, B^2, \ldots, B^N independent standard BMs.

Hitting times:

$$\tau^{i} = \inf\{t > 0: Y_{t}^{i} \leq 0\}, \quad i = 1, 2, \dots, N.$$

• Suppose Y^i hits 0 at time t and is **removed**.

IPS: cascades, in words

• Shift the remaining particles by

$$C \log \left(1 - \frac{1}{S_{t-}}\right),$$

where S_{t-} is the pre-absorption size of the system.

- **Note**: factor \downarrow in size S_{t-} , \uparrow in parameter C.
- Update may lead to particles i₁, i₂, ..., i_k crossing 0, these are removed, and we adjust the shift to

$$C\log\Big(1-rac{k+1}{S_{t-}}\Big).$$

• May cause **more immediate absorptions**, in which case **repeat** procedure etc., until determine all particles to remove at time *t*.

IPS: cascades, in formulas

- System size: $S_t := \sum_{i=1}^N \mathbf{1}_{\{\tau^i > t\}}$.
- Order statistics: $Y_{t-}^{(1)} \leq Y_{t-}^{(2)} \leq \cdots \leq Y_{t-}^{(S_{t-})}$ of $(Y_{t-}^i : \tau^i \geq t)$.
- # of particles removed at time t: $D_t := \inf \{k : Y_{t-}^{(k)} + C \log (1 - \frac{k-1}{S_{t-}}) > 0\} - 1.$
- Particle locations:

$$Y_t^i := Y_0^i + B_t^i + \sum_{u \le t} C \log \left(1 - \frac{D_u}{S_{u-}}\right).$$

Large system limit: starting point

To construct global solutions:

• take $N \to \infty$;

blow-ups ↔ macroscopic cascades.

Crucial observation: sum of jumps

$$\begin{split} \sum_{u \leq t} C \log \left(1 - \frac{D_u}{S_{u-}} \right) &= \sum_{u \leq t} C \log \left(\frac{S_u}{S_{u-}} \right) = C \log \left(\frac{1}{N} \sum_{j=1}^N \mathbf{1}_{\{\tau^j > t\}} \right). \\ &\implies \text{functional of the empirical measure } \varrho^N &:= \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{Y}^i}. \end{split}$$

 \rightarrow Interaction of mean-field type : \iff dynamics of every particle functional of the empirical measure, own location (process) & independent random input; same functional across particles.

Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman '89):

• Classical setting:

 $Y_t^i = Y_0^i + \int_0^t b(Y_s^i, \varrho_s^N) \,\mathrm{d}s + \int_0^t \sigma(Y_s^i, \varrho_s^N) \,\mathrm{d}B_s^i, \ i = 1, 2, \dots, N.$

• Guess: $\varrho^N \xrightarrow{N \to \infty} \varrho$, deterministic.

- Conclusion: in $N \to \infty$ limit, Y^i converge to unique solution of $\overline{Y}_t = \overline{Y}_0 + \int_0^t b(\overline{Y}_s, \mathcal{L}(\overline{Y}_s)) \, \mathrm{d}s + \int_0^t \sigma(\overline{Y}_s, \mathcal{L}(\overline{Y}_s)) \, \mathrm{d}B_s.$

Large system limit: our setting

• McKean-Vlasov heuristics suggests Yⁱ converge to unique sol. of

$$\overline{Y}_t = \overline{Y}_0 + B_t + \Lambda_t,$$

where

$$\Lambda_t := C \log \mathbb{P}(\overline{\tau} > t), \quad \overline{\tau} := \inf\{t \ge 0 : \ \overline{Y}_t \le 0\}.$$

- Problems: non-existence, non-uniqueness in $C([0,\infty),\mathbb{R})$.
- $\mathbb{P}(\overline{\tau} > t)$ or $\frac{1}{N} \sum_{j=1}^{N} \mathbf{1}_{\{\tau^{j} > t\}}$ do not specify **cascade mechanism**. • $\rightsquigarrow D_{t} := \inf\{y > 0 : y - F_{t}(y) > 0\}$ $:= \inf\left\{y > 0 : y + C\log\left(1 - \frac{\mathbb{P}(\overline{\tau} \ge t, \overline{Y}_{t-} \in (0, y))}{\mathbb{P}(\overline{\tau} \ge t)}\right) > 0\right\}.$ • **Specify** $\Lambda_{t} = \Lambda_{t-} + F_{t}(D_{t})$, rcll.
- Call solutions with correct cascade mechanism physical solutions.

A first limit theorem

<u>Theorem</u> (Nadtochiy, S. '17) Suppose $\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_i(0)} \rightarrow \nu$; ν has a bounded density f_{ν} on $[0, \infty)$ vanishing in a neighborhood of 0.

Then:

The sequence $\frac{1}{N} \sum_{i=1}^{N} \delta_{Y^{i}}$, $N \in \mathbb{N}$ is tight and any limit point is supported on physical solutions \overline{Y} with $\overline{Y}_{0} \stackrel{d}{=} \nu$.

Technical point: Skorokhod M1 topology on rcll paths (key observation of **Delarue, Inglis, Rubenthaler, Tanré '15**).

Analysis of physical solutions: questions

- By the theorem, a physical solution \overline{Y} with rcll paths exists.
- How do the jumps in *Y* arise? ↔ leaps of the solid-liquid frontier.
- E.g., what can one say about

$$t_{\Delta} := \inf\{t \ge 0 : \Delta \overline{Y}_t \neq 0\}$$

and the particle density $\mathcal{L}(\overline{Y}_{t_{\Delta}-})$ right before t_{Δ} ?

• Structure of blow-ups? Uniqueness of physical solutions?

Main theorem I: regular interval

<u>Theorem</u> (Nadtochiy, S. '17) Suppose $\overline{Y}_0 \stackrel{d}{=} \nu$ has a density $f_{\nu} \in W_2^1([0,\infty))$ and $f_{\nu}(0) = 0$.

Then: there exists $t_{reg} > 0$ such that on $[0, t_{reg})$ all physical solutions are indistinguishable and satisfy

$$\overline{Y}_t = \overline{Y}_0 + B_t + \int_0^t \lambda_s \, \mathrm{d}s, \quad t \in [0, \overline{\tau} \wedge t_{reg}),$$
$$\lambda_t = C \, \partial_t \log \mathbb{P}(\overline{\tau} > t), \quad t \in [0, t_{reg}).$$

Moreover, $t_{reg} = \inf\{t > 0 : \|\lambda\|_{L^2([0,t])} = \infty\}.$

Regular interval: some ideas from proof

• As long as
$$\dot{\Lambda}_t = \lambda_t \in L^2$$
, density $p(t, y)$ of $\overline{Y}_t \mathbf{1}_{\{\overline{\tau} > t\}}$ solves

$$\partial_t p = -\lambda_t \, \partial_y p + \frac{1}{2} \partial_y^2 p, \quad p(0,y) = f_{\nu}(y), \quad p(t,0) = 0.$$

- More precisely: p coincides with $W_2^{1,2}([0,T] \times [0,\infty))$ solution.
- Fixed-point constraint:

$$\begin{split} \lambda_t &= C \,\partial_t \log \mathbb{P}(\overline{\tau} > t) = C \, \frac{\partial_t \mathbb{P}(\overline{Y}_t > 0)}{\mathbb{P}(\overline{Y}_t > 0)} = C \, \frac{\partial_t \int_0^\infty p(t, y) \,\mathrm{d}y}{\int_0^\infty p(t, y) \,\mathrm{d}y} \\ &= -\frac{C}{2} \, \frac{\partial_y p(t, 0)}{\int_0^\infty p(t, y) \,\mathrm{d}y}. \end{split}$$

Regular interval: some ideas from proof, cont.

• PDE fixed-point problem: given $\lambda \in L^2([0, T])$, solve

$$\partial_t p = -\lambda_t \partial_y p + \frac{1}{2} \partial_y^2 p, \quad p(0,y) = f_\nu(y), \quad p(t,0) = 0$$

in $W_2^{1,2}([0, T] \times [0, \infty)).$

Want:

$$-\frac{C}{2}\frac{\partial_{y}\rho(t,0)}{\int_{0}^{\infty}\rho(t,y)\,\mathrm{d}y}=\lambda_{t}.$$

Would be nice:

$$\lambda_t \mapsto -\frac{C}{2} \frac{\partial_y p(t,0)}{\int_0^\infty p(t,y) \, \mathrm{d}y}$$

is a **contraction** (\implies uniqueness of physical solution on [0, T]).

Regular interval: some ideas from proof, cont.

Turns out: **contraction property** holds for **truncated fixed-point problem**

$$\partial_t p = -\lambda_t^{M,T} \partial_y p + \frac{1}{2} \partial_y^2 p, \quad p(0,y) = f_\nu(y), \quad p(t,0) = 0,$$
$$-\frac{C}{2} \frac{\partial_y p(t,0)}{\int_0^\infty p(t,y) \, \mathrm{d}y} = \lambda_t,$$

with

$$\lambda^{M,T} = \lambda \, \mathbf{1}_{\{\|\lambda\|_{L^2([0,T])} \le M\}} + \lambda \, \frac{M}{\|\lambda\|_{L^2([0,T])}} \, \mathbf{1}_{\{\|\lambda\|_{L^2([0,T])} > M\}},$$

when T = T(M) > 0 small enough.

Regular interval: some ideas from proof, cont.

• Given
$$\lambda$$
, $\widetilde{\lambda}$, get p , \widetilde{p} , need to control
 $|\partial_y p(t,0) - \partial_y \widetilde{p}(t,0)|$ and $|\int_0^\infty p(t,y) \, \mathrm{d}y - \int_0^\infty \widetilde{p}(t,y) \, \mathrm{d}y|.$

• Write PDE for $u := p - \widetilde{p}$

$$\partial_t u = \frac{1}{2} \partial_y^2 u - \widetilde{\lambda}^{M,T} \partial_y u + (\widetilde{\lambda}^{M,T} - \lambda^{M,T}) \partial_y p,$$

$$u(0, y) = 0, \quad u(t, 0) = 0.$$

- Two step approach: a priori estimate on $\partial_y u$, $\partial_y p$, then treat PDE as heat equation with source to get desired estimates.
- Short time mixed-norm of heat kernel small \Longrightarrow contraction.

Main theorem II: description of jumps

<u>Theorem</u> (Nadtochiy, S. '17) Consider a physical solution \overline{Y} . Then:

(a) the time of the first jump $t_{\Delta} := \inf\{t \ge 0 : \Delta \overline{Y}_t \neq 0\}$ is given by $t_{\Delta} = \inf\{t \ge 0 : \exists \eta > 0 \text{ s.t. } \frac{\mathbb{P}(\overline{\tau} \ge t, \overline{Y}_{t-} \in (0, y))}{\mathbb{P}(\overline{\tau} \ge t)} \ge \frac{y}{C}, y \in [0, \eta]\},$ and

(b) the size of the jump at t_{Δ} is $\sup \left\{ \eta \ge 0 : \frac{\mathbb{P}(\overline{\tau} \ge t_{\Delta}, \overline{Y}_{t_{\Delta}} - \in(0, y))}{\mathbb{P}(\overline{\tau} \ge t_{\Delta})} \ge \frac{y}{C}, y \in [0, \eta] \right\}.$

Description of jumps: some ideas from proof

• Given $t \ge 0$ and $\eta > 0$ such that

$$\frac{\mathbb{P}(\overline{\tau} \geq t, \ \overline{Y}_{t-} \in (0, y))}{\mathbb{P}(\overline{\tau} \geq t)} \geq \frac{y}{C}, \quad y \in [0, \eta],$$

we claim: $\Delta Y_t \leq -\eta$.

• If not, easy to check:

$$\frac{\mathbb{P}(\overline{\tau} > t, \ \overline{Y}_t \in (0, y))}{\mathbb{P}(\overline{\tau} > t)} \geq \frac{y}{C}, \quad y \in [0, \widetilde{\eta}]$$

for some $\tilde{\eta} > 0$.

• Will use hierarchical structure of cascades to get a contradiction.

Description of jumps: some ideas from proof, cont.

• t = 0 (wlog). Then, for any $t_m \downarrow 0$:

$$\begin{split} C \log \mathbb{P}(\overline{\tau} > t_m) &= C \log \mathbb{P}\Big(\overline{Y}_0 + \inf_{s \le t_m} (B_s + \Lambda_s) > 0\Big) \\ &\leq C \log \left(1 - \frac{1}{C} \int_0^{\widetilde{\eta}} \mathbb{P}\Big(y + \inf_{s \le t_m} (B_s + \Lambda_s) \le 0\Big) \,\mathrm{d}y\Big) \\ &\leq -\int_0^{\widetilde{\eta}} \mathbb{P}\Big(y + \inf_{t_{m+1} \le s \le t_m} B_s + \Lambda_{t_{m+1}} \le 0\Big) \,\mathrm{d}y \\ &\lesssim \mathbb{E}\Big[\inf_{t_{m+1} \le s \le t_m} (B_s - B_{t_m})\Big] + C \log \mathbb{P}(\overline{\tau} > t_{m+1}) \\ &= -\sqrt{\frac{2}{\pi}} \sqrt{t_m - t_{m+1}} + C \log \mathbb{P}(\overline{\tau} > t_{m+1}). \end{split}$$

• **Iterate** and choose $t_m = \frac{1}{m} \Longrightarrow$ contradiction.

Regularity of physical solutions, uniqueness

- For uniqueness, need to understand all regimes.
- Case 1: \overline{Y}_{t-} has a density $f \in C^1([0,\infty)) \cap C^{\omega}((0,\infty))$, f(0) = 0. $\Longrightarrow \dot{\Lambda} = \lambda$ is continuous on $[t, t + \varepsilon)$ for some $\varepsilon > 0$.
- Case 2: \overline{Y}_{t-} has a density $f \in C^{\omega}((0,\infty))$, $f(0+) \in [0, 1/C)$.
 - $\implies \Lambda \text{ is } (1/2 + \delta) \text{-Hölder on } [t, t + \varepsilon), \text{ back to Case 1 on } (t, t + \varepsilon).$
- Case 3: \overline{Y}_{t-} has a density $f \in C^{\omega}((0,\infty))$, $f(0+) \ge 1/C$. $\implies \Lambda_t - \Lambda_{t-} = -\inf \{ y > 0 : \mathbb{P}(\overline{Y}_{t-} \in (0, y] < y/C) \}$,

back to **Case 1** on $(t, t + \varepsilon)$.

• Uniqueness follows from this and sandwiching between two maximal physical solutions.

THANK YOU FOR YOUR ATTENTION!