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History of Stefan problems

Stefan 1889–1891: free boundary problems for the heat

equation.

Physical models of ice formation; evaporation & condensation.

Dormant until Brillouin ’31, Rubinshtein: ≈2500 papers by ’67.

Kamenomostkaja ’61: definitive solution.

Today: supercooled Stefan problem.

Sherman ’70: presence of blow-ups.

For some T <∞: boundary speed →∞.
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Mathematical formulation

Supercooled Stefan problem (1D, one phase):

∂tu =
1

2
∂xxu on {(t, x) ∈ [0,∞)2 : x ≥ Λt},

Λ′t = C∂xu(t,Λt), t ≥ 0,

u(0, x) = f (x), x ≥ 0 and u(t,Λt) = 0, t ≥ 0,

where f ≥ 0, C ≥ 0.

Blow-up: for some T <∞, limt↑T Λ′t =∞.

Classical solution on [0,T ).
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Where is probability?

Probabilistic problem: find a non-decreasing function Λ such that

Y t = Y 0 + Bt − Λt , t ≤ τ , Y t = Y τ , t > τ,

Λt = C P(τ ≤ t).

If Λ′ exists on [0,T ), densities p(t, ·) of Y t solve

∂tp =
1

2
∂xxp + Λ′t∂xp, p(0, ·) = f , p(·, 0) = 0,

Λ′t =
C

2
∂xp(t, 0), t ∈ [0,T ).

=⇒ u(t, x) := p(t, x − Λt) solves supercooled Stefan problem.

Can look for global solutions of both problems!
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Additional motivation

Setting 1: neural networks

Neorons in a part of the brain, e.g. 106 in the human hippocampus.

When the membrane potential of a neuron reaches a critical level

(“spike”), the neuron fires.

This may lead to a spike in surrounding neurons, etc.

Potentially: macroscopic number of spikes → synchronization.

Setting 2: systemic risk

Banking system with banks borrowing from each other.

Banks default → losses to other banks → more banks default → etc.

Mykhaylo Shkolnikov, joint with Sergey Nadtochiy, François Delarue (Princeton University)The supercooled Stefan problem April 12, 2019 6 / 25



Interacting particle system (IPS)

N particles with initial locations Y 1(0),Y 2(0), . . . ,Y N(0) ∈ [0,∞).

Particles move according to indepedent standard Brownian

motions.

When a particle hits 0, it is absorbed.

This leads to immediate downward jumps by other particles,

tuned by C > 0.

If some particles cross 0 due to jumps, these particles are removed,

jump sizes of remaining particles are adjusted, etc.

When cascade resolved: remaining particles continue as BMs, etc.
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IPS: in formulas

Particle locations: Y 1, Y 2, . . . , Y N .

As long as particles on (0,∞):

dY i
t = dB i

t , i = 1, 2, . . . ,N,

B1, B2, . . . , BN independent standard BMs.

Hitting times:

τ i = inf{t > 0 : Y i
t ≤ 0}, i = 1, 2, . . . ,N.

Suppose Y i hits 0 at time t and is removed.
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IPS: cascades, in words

Shift the remaining particles by

C log
(

1− 1

St−

)
,

where St− is the pre-absorption size of the system.

Note: factor ↓ in size St−, ↑ in parameter C .

Update may lead to particles i1, i2, . . . , ik crossing 0, these are

removed, and we adjust the shift to

C log
(

1− k + 1

St−

)
.

May cause more immediate absorptions, in which case repeat

procedure etc., until determine all particles to remove at time t.
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IPS: cascades, in formulas

System size: St :=
∑N

i=1 1{τ i>t}.

Order statistics: Y
(1)
t− ≤ Y

(2)
t− ≤ · · · ≤ Y

(St−)
t− of (Y i

t− : τ i ≥ t).

# of particles removed at time t:

Dt := inf
{
k : Y

(k)
t− + C log

(
1− k−1

St−

)
> 0
}
− 1.

Particle locations:

Y i
t := Y i

0 + B i
t +

∑
u≤t C log

(
1− Du

Su−

)
.
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Large system limit: starting point

To construct global solutions:

take N →∞;

blow-ups ↔ macroscopic cascades.

Crucial observation: sum of jumps∑
u≤t C log

(
1− Du

Su−

)
=
∑

u≤t C log
(

Su
Su−

)
= C log

(
1
N

∑N
j=1 1{τ j>t}

)
.

=⇒ functional of the empirical measure %N := 1
N

∑N
i=1 δY i .

−→ Interaction of mean-field type :⇐⇒ dynamics of every particle

functional of the empirical measure, own location (process) &

independent random input; same functional across particles.
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Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman ’89):

Classical setting:

Y i
t = Y i

0 +
∫ t

0 b(Y i
s , %

N
s )ds +

∫ t
0 σ(Y i

s , %
N
s ) dB i

s , i = 1, 2, . . . ,N.

Guess: %N
N→∞−→ %, deterministic.

=⇒ for large N, particle locations well-approximated by

Y
i
t = Y

i
0 +

∫ t
0 b(Y

i
s , %s) ds +

∫ t
0 σ(Y

i
s , %s) dB i

s , i = 1, 2, . . . ,N.

=⇒ % = limN→∞ %
N = limN→∞ %

N = L(Y
1
).

Conclusion: in N →∞ limit, Y i converge to unique solution of

Y t = Y 0 +
∫ t

0 b(Y s ,L(Y s))ds +
∫ t

0 σ(Y s ,L(Y s))dBs .
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Large system limit: our setting

McKean-Vlasov heuristics suggests Y i converge to unique sol. of

Y t = Y 0 + Bt + Λt ,

where

Λt := C logP(τ > t), τ := inf{t ≥ 0 : Y t ≤ 0}.

Problems: non-existence, non-uniqueness in C ([0,∞),R).

P(τ > t) or 1
N

∑N
j=1 1{τ j>t} do not specify cascade mechanism.

 Dt := inf{y > 0 : y − Ft(y) > 0}

:= inf

{
y > 0 : y + C log

(
1− P(τ≥t,Y t−∈(0,y))

P(τ≥t)

)
> 0

}
.

Specify Λt = Λt− + Ft(Dt), rcll.

Call solutions with correct cascade mechanism physical solutions.
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A first limit theorem

Theorem (Nadtochiy, S. ’17) Suppose 1
N

∑N
i=1 δYi (0) → ν; ν has a

bounded density fν on [0,∞) vanishing in a neighborhood of 0.

Then:

The sequence 1
N

∑N
i=1 δY i , N ∈ N is tight and any limit point is supported

on physical solutions Y with Y 0
d
= ν.

Technical point: Skorokhod M1 topology on rcll paths (key observation

of Delarue, Inglis, Rubenthaler, Tanré ’15).
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Analysis of physical solutions: questions

By the theorem, a physical solution Y with rcll paths exists.

How do the jumps in Y arise? ←→ leaps of the solid-liquid

frontier.

E.g., what can one say about

t∆ := inf{t ≥ 0 : ∆Y t 6= 0}

and the particle density L(Y t∆−) right before t∆?

Structure of blow-ups? Uniqueness of physical solutions?
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Main theorem I: regular interval

Theorem (Nadtochiy, S. ’17) Suppose Y 0
d
= ν has a density

fν ∈W 1
2 ([0,∞)) and fν(0) = 0.

Then: there exists treg > 0 such that on [0, treg ) all physical solutions are

indistinguishable and satisfy

Y t = Y 0 + Bt +

∫ t

0
λs ds, t ∈ [0, τ ∧ treg ),

λt = C ∂t logP(τ > t), t ∈ [0, treg ).

Moreover, treg = inf{t > 0 : ‖λ‖L2([0,t]) =∞}.
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Regular interval: some ideas from proof

As long as Λ̇t = λt ∈ L2, density p(t, y) of Y t 1{τ>t} solves

∂tp = −λt ∂yp +
1

2
∂2
yp, p(0, y) = fν(y), p(t, 0) = 0.

More precisely: p coincides with W 1,2
2 ([0,T ]× [0,∞)) solution.

Fixed-point constraint:

λt = C ∂t logP(τ > t) = C
∂tP(Y t > 0)

P(Y t > 0)
= C

∂t
∫∞

0 p(t, y) dy∫∞
0 p(t, y)dy

= −C

2

∂yp(t, 0)∫∞
0 p(t, y)dy

.
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Regular interval: some ideas from proof, cont.

PDE fixed-point problem: given λ ∈ L2([0,T ]), solve

∂tp = −λt ∂yp +
1

2
∂2
yp, p(0, y) = fν(y), p(t, 0) = 0

in W 1,2
2 ([0,T ]× [0,∞)).

Want:

−C

2

∂yp(t, 0)∫∞
0 p(t, y)dy

= λt .

Would be nice:

λt 7→ −
C

2

∂yp(t, 0)∫∞
0 p(t, y)dy

is a contraction (=⇒ uniqueness of physical solution on [0,T ]).
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Regular interval: some ideas from proof, cont.

Turns out: contraction property holds for truncated fixed-point

problem

∂tp = −λM,T
t ∂yp +

1

2
∂2
yp, p(0, y) = fν(y), p(t, 0) = 0,

−C

2

∂yp(t, 0)∫∞
0 p(t, y) dy

= λt ,

with

λM,T = λ 1{‖λ‖L2([0,T ])≤M} + λ
M

‖λ‖L2([0,T ])
1{‖λ‖L2([0,T ])>M},

when T = T (M) > 0 small enough.
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Regular interval: some ideas from proof, cont.

Given λ, λ̃, get p, p̃, need to control

|∂yp(t, 0)− ∂y p̃(t, 0)| and
∣∣ ∫∞

0 p(t, y)dy −
∫∞

0 p̃(t, y) dy
∣∣.

Write PDE for u := p − p̃

∂tu =
1

2
∂2
yu − λ̃M,T ∂yu + (λ̃M,T − λM,T ) ∂yp,

u(0, y) = 0, u(t, 0) = 0.

Two step approach: a priori estimate on ∂yu, ∂yp, then treat PDE

as heat equation with source to get desired estimates.

Short time mixed-norm of heat kernel small =⇒ contraction.
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Main theorem II: description of jumps

Theorem (Nadtochiy, S. ’17) Consider a physical solution Y .

Then:

(a) the time of the first jump t∆ := inf{t ≥ 0 : ∆Y t 6= 0} is given by

t∆ = inf
{
t ≥ 0 : ∃ η > 0 s.t. P(τ≥t,Y t−∈(0,y))

P(τ≥t) ≥ y
C , y ∈ [0, η]

}
,

and

(b) the size of the jump at t∆ is

sup
{
η ≥ 0 :

P(τ≥t∆,Y t∆−∈(0,y))

P(τ≥t∆) ≥ y
C , y ∈ [0, η]

}
.
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Description of jumps: some ideas from proof

Given t ≥ 0 and η > 0 such that

P(τ ≥ t, Y t− ∈ (0, y))

P(τ ≥ t)
≥ y

C
, y ∈ [0, η],

we claim: ∆Yt ≤ −η.

If not, easy to check:

P(τ > t, Y t ∈ (0, y))

P(τ > t)
≥ y

C
, y ∈ [0, η̃]

for some η̃ > 0.

Will use hierarchical structure of cascades to get a contradiction.
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Description of jumps: some ideas from proof, cont.

t = 0 (wlog). Then, for any tm ↓ 0:

C logP(τ > tm) = C logP
(
Y 0 + inf

s≤tm
(Bs + Λs) > 0

)
≤ C log

(
1− 1

C

∫ η̃

0
P
(
y + inf

s≤tm
(Bs + Λs) ≤ 0

)
dy

)
≤ −

∫ η̃

0
P
(
y + inf

tm+1≤s≤tm
Bs + Λtm+1 ≤ 0

)
dy

. E
[

inf
tm+1≤s≤tm

(Bs − Btm)
]

+ C logP(τ > tm+1)

= −
√

2

π

√
tm − tm+1 + C logP(τ > tm+1).

Iterate and choose tm = 1
m =⇒ contradiction.
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Regularity of physical solutions, uniqueness

For uniqueness, need to understand all regimes.

Case 1: Y t− has a density f ∈ C 1([0,∞)) ∩ Cω((0,∞)), f (0) = 0.

=⇒ Λ̇ = λ is continuous on [t, t + ε) for some ε > 0.

Case 2: Y t− has a density f ∈ Cω((0,∞)), f (0+) ∈ [0, 1/C ).

=⇒ Λ is (1/2 + δ)-Hölder on [t, t + ε), back to Case 1 on (t, t + ε).

Case 3: Y t− has a density f ∈ Cω((0,∞)), f (0+) ≥ 1/C .

=⇒ Λt − Λt− = − inf
{
y ≥ 0 : P(Y t− ∈ (0, y ] < y/C )

}
,

back to Case 1 on (t, t + ε).

Uniqueness follows from this and sandwiching between two maximal

physical solutions.
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THANK YOU
FOR YOUR ATTENTION!
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