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Part I. Lyons-Peres completeness
conjecture

joint with Alexander Bufetov and Alexander Shamov



Sets related to Bergman spaces

Let D ⊂ C be the open unit disk,
Hol(D) := {f : D→ C|f holomorphic}.
I Bergman space: Ap(D) := Lp(D,Leb) ∩Hol(D).

I A set X ⊂ D is called Ap(D)-uniqueness set if ANY
f ∈ Ap(D) is uniquely determined by its restriction f �X
(f ∈ Ap(D) and f �X= 0 implies f ≡ 0).

I A set Y ⊂ D is called an Ap(D)-zero set if ∃f ∈ Ap(D) \ {0}
such that Z(f) = Y .

Remark: Ap(D)-uniqueness set ⇐⇒ non-Ap(D)-zero set.
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Gaussian Analytic Function

Consider the random series

FD(z) =

∞∑
n=0

gnz
n,

gn are i.i.d. complex Gaussian random variables with
expectation 0, variance 1.

Elementary fact:

I Almost surely, FD(z) has radius of convergence 1 and
defines a holomorphic function on D.

We want to study the random subset of D by

Z(FD) := {z ∈ D : FD(z) = 0}.

Conjecture (Lyons-Peres conjecture: particular case)

Almost surely, Z(FD) is an A2(D)-uniqueness set.
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Z(FD) is an A2(D)-uniqueness set

Theorem (Bufetov - Q.- Shamov)

Almost surely, Z(FD) is an A2(D)-uniqueness set.



How we solve this conjecture?

I: determinantal structure.
A2(D) is a reproducing kernel Hilbert space with reproducing
kernel

KD(z, w) =
1

π(1− zw̄)2
.

Theorem (Peres-Virág, 2005)

The random subset Z(FD) is a realization of the determinantal
point process on D with correlation kernel given by the Bergman
kernel KD.
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How this conjecture is solved?

II: resolution of a general conjecture.
A set X ⊂ E is called the uniqueness set for a reproducing
kernel Hilbert space H ⊂ L2(E,µ) if any f ∈H vanishing on
X is identically zero.

Theorem (Bufetov - Q.- Shamov, Lyons-Peres
completeness conjecture)

If a random set X is a determinantal point process induced by
the kernel for a reproducing kernel Hilbert space H , then
almost surely, X is a uniqueness set for H .



Key Ingredient: conditional measure of DPP

Theorem (Bufetov-Q.-Shamov)

Given any DPP X on any metric complete separable space E,
with self-adjoint kernel and any subset W ⊂ E, the conditional
measure

L
(
X |W

∣∣∣X |W c

)
describes again a new DPP on W . Moreover, the kernel is
computed explicitly.



Example of conditional measures of DPP

The Fock projection

L2(C, e−|z|
2
dV (z))→ L2

hol(C, e−|z|
2
dV (z))

induces the DPP process X ⊂ C is the famous Ginibre point
process.

Theorem (Bufetov-Q.)

For Ginibre process X , if W is bounded, then the conditional
measure

L
(
X |W

∣∣∣X |W c

)
is an orthogonal polynomial ensemble.



Application of conditional measures of DPP

Let U ⊂ Cd be a connected domain.

H∞(U) :=
{

bounded hol. functions on U
}
.

Theorem (Bufetov-Shilei Fan-Q.)

Suppose that H∞(U) contains a non-constant element. Then
for the DPP X ⊂ U induced by the Bergman projection, if
W ⊂ U is relatively compact, then the conditional measure

L
(
X |W

∣∣∣X |W c

)
is measure equivalent to a Poisson point process on U .



Part II. Patterson-Sullivan construction

joint with Alexander Bufetov



Reconstruction problems

Recall almost surely, Z(FD) is an A2(D)-uniqueness set.

That is,
fix generic realization (in probability sense) X = Z(FD). Then
any f ∈ A2(D) is uniquely determined by its restriction onto X.
Problems:

I How to recover simulataneously and explicitly all functions
f ∈ A2(D) from its restriction onto a fixed generic
realization of Z(FD)?

I How about general random countable subset of D without
accumulation points?

I How about more general Banach space B of holomorphic or
harmonic functions on D?
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The reconstruction for a fixed f ∈ A2(D) and z ∈ D

The Poincaré-Lobachevsky hyperbolic metric on D is
given by

dD(x, z) := log
1 +

∣∣∣ z − x
1− x̄z

∣∣∣
1−

∣∣∣ z − x
1− x̄z

∣∣∣ for x, z ∈ D.

Let µD be the hyperbolic area (up to a multiplicative
constant)

dµD =
dLeb

(1− |x|2)2
.
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The reconstruction for a fixed f ∈ A2(D) and z ∈ D

For any s ∈ R, set Ws(x) := e−sdD(x,0) (which is radial). Then

W z
s (x) := Ws

( z − x
1− x̄z

)
= e−sdD(x,z).

Proposition (Alexander I. Bufetov- Q.)

Fix f ∈ A2(D), z ∈ D, then ∃C > 0 such that ∀s > 1, we have

E



∣∣∣∣∣∣∣∣∣∣∣∣∣

∞∑
k=0

∑
x∈Z(FD)

k≤dD(z,x)<k+1

W z
s (x)f(x)

E
∑

x∈Z(FD)

W z
s (x)

− f(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

2
≤ C · (s− 1)2.
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The reconstruction for a fixed f ∈ A2(D) and z ∈ D

Corollary

Fix f ∈ A2(D), z ∈ D, (sn)n≥1 with
∑∞

n=1(sn − 1)2 <∞ and
sn > 1. Then for almost every realization X = Z(FD), we have

f(z) = lim
n→∞

∞∑
k=0

∑
x∈X

k≤dD(z,x)<k+1

W z
sn(x)f(x)

∑
x∈X

W z
sn(x)

.

Remark: The double summation is needed! In general, for s
close to 1, we do not know whether or not we have∑

x∈X
e−sdD(z,x)|f(x)| <∞.
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We can do a little bit more

A holomorphic can be replaced by harmonic

B f : D→ C can be replaced by Hilbert-space-vector valued
function.

C Less trivial generalization is: f ∈ A2(D) can be
replaced by

f ∈
⋂
ε>0

A2
ε(D) and ‖f‖A2

ε
= o

(
1

ε

)
,

where

A2
ε(D) =

{
f : D→ C

∣∣∣ ∫
D
|f(z)|2(1−|z|2)εdLeb(z) <∞

}
∩Hol(D).



We can do a little bit more

A holomorphic can be replaced by harmonic

B f : D→ C can be replaced by Hilbert-space-vector valued
function.

C Less trivial generalization is: f ∈ A2(D) can be
replaced by

f ∈
⋂
ε>0

A2
ε(D) and ‖f‖A2

ε
= o

(
1

ε

)
,

where

A2
ε(D) =

{
f : D→ C

∣∣∣ ∫
D
|f(z)|2(1−|z|2)εdLeb(z) <∞

}
∩Hol(D).



Impossibility of simultaneous reconstruction of A2(D)

Proposition (Bufetov- Q.)

For any z ∈ D, there exists a universal constant cz > 0, such
that for any compactly supported radial weight W , we have

E
(

sup
f∈A2(D):‖f‖≤1

∣∣∣∣∣∣∣∣∣

∑
x∈Z(FD)

W z(x)f(x)

E
∑

x∈Z(FD)

W z(x)
− f(z)

∣∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
denoted IA2(D)(W, z)

)
≥ cz.



Simultaneous reconstructions: Assumptions on P
Assumption (I) (average conformal invariant) ∃λ > 0
such that

EP

[
#(X ∩B)

]
= λ× hyperbolic area of B.

Assumption (II). ∃C > 0 such that for any f : D→ C,
continuous compactly supported, we have

VarP

(∑
x∈X

f(x)
)
≤ C · EP

(∑
x∈X
|f(x)|2

)
.

(II) is true in many important cases.

1. Poisson point processes

2. determinantal point processes with Hermitian correlation
kernels

3. negatively correlated point processes



Which Banach spaces we are going to reconstruct?

Space1 Weighted Bergman space A2(D;ω) with rapidly growing
weights: for instance

ω(z) =
1

(1− |z|2) log
(

4
1−|z|2

) [
log
(

log
(

4
1−|z|2

))]1+ε
Space2 reproducing kernel Hilbert space H (K) ⊂ Harm(D) with a

growth condition on K(z, z). For instance,

K(z, w) =
∑
n∈Z

anz
nw̄n with lim

n→∞

a|n|

log(|n|+ 2)
= 0.

Space3 space coming from Poisson integrals: µ any fixed Borel
probability measure on T = ∂D.

h2(µ) = {h = P [fµ] : f ∈ L2(µ)}. µ can be singular!!



Statements of results

Theorem (Bufetov -Q. 2018)

Let P satisfy (I) and (II). Let B ∈ {Space1, Space 2}. Then
∃(sn)n≥1 with sn → 1+ such that, for P-almost every X ⊂ D,
I X is a uniqueness set for B.
I for ALL f ∈ B and all z ∈ D ∩Q2, the limit equality

f(z) = lim
n→∞

∞∑
k=0

∑
x∈X

k≤dD(z,x)<k+1

e−sndD(z,x)f(x)

∑
x∈X

e−sndD(z,x)
.



Statements of results: continued

Theorem (Bufetov -Q. 2018)

Let P satisfy (I) and (II). Let B = h2(µ). Then for P-almost
every X ⊂ D,
I X is a uniqueness set for B.
I for ALL f ∈ B and ALL z ∈ D, the limit equality

f(z) = lim
s→1+

∑
x∈X

e−sdD(z,x)f(x)∑
x∈X

e−sdD(z,x)
.

Corollary A: Under the above assumptions, P-a.e. X ⊂ D,

lim
s→1+

∑
x∈X

e−sdD(z,x)δx∑
x∈X

e−sdD(z,x)
= harmonic measure with repect to point z.
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Relax average conformal invariance

Theorem (Bufetov-Q. 2018)

Let β ≥ 2. Fix (sn)n≥1 with sn > β and
∑∞

n=1(sn−β) <∞. Let
P be a point process on D satisfying Assumption (II) such that

EP

[
#(X ∩B)

]
∝
∫
B

dLeb

(1− |x|2)β+1
.

Then P-almost any X ⊂ D, the limit equality

f(z) = lim
n→∞

∞∑
k=0

∑
x∈X

k≤dD(z,x)<k+1

e−sndD(z,x)
(
|1− xz̄|2

1− |z|2

)β−1
f(x)

∑
x∈X

e−sndD(z,x)
(
|1− xz̄|2

1− |z|2

)β−1
holds simultaneously for all f ∈ A2(D) and all z ∈ D ∩Q2.



Some problems

I Construct deterministic subsets X ⊂ D satisfying the
reconstruction properties.

I Give sufficient conditions or even geometric criteria for
subsets X ⊂ D satisfying the reconstruction properties.



More general situations

Our method works in the following situations as well:

I Real hyperbolic spaces: the unit ball in Rn, equipped with
the Poincaré metric, (we should consider the invariant
harmonic functions)

I Complex hyperbolic spaces: the unit ball in Cn, equipped
with the Bergman metric.

I Quaternion hyperbolic spaces.

I Any locally finite infinite connected graph.



Thank you !



Appendix

I The complex hyperbolic spaces: Let
Dd = {z ∈ Cd : |z| < 1} equipped with the Riemannian
metric (called the Bergman metric on Dd) as follows

ds2B := 4
|dz1|2 + · · ·+ |dzd|2

1− |z|2
+ 4
|z1dz1 + · · ·+ zddzd|2

(1− |z|2)2
.

Bergman Laplacian ∆̃ is given by the formula

∆̃ = (1− |z|2)
∑
i,j

(δij − ziz̄j)
∂2

∂zi∂z̄j
.



I The real hyperbolic spaces: Let m ≥ 2 be a positive integer
and let Bm ⊂ Rm, equipped with the Poincaré metric

ds2h = 4
dx21 + · · ·+ dx2m

(1− |x|2)2
.

The hyperbolic Laplacian ∆h on Bm is:

∆h = (1− |x|2)2
m∑
i=1

∂2

∂x2i
+ 2(m− 2)(1− |x|2)

m∑
i=1

xi
∂

∂xi
.


