Determinantal point processes and spaces of holomorphic functions

Yanqi Qiu

AMSS, Chinese Academy of Sciences; CNRS

 $2019~{\rm Apr}~09$

Part I. Lyons-Peres completeness conjecture

joint with Alexander Bufetov and Alexander Shamov

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, Hol $(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{C} | f \text{ holomorphic} \}.$

▶ Bergman space: $A^p(\mathbb{D}) := L^p(\mathbb{D}, \text{Leb}) \cap \text{Hol}(\mathbb{D}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, Hol $(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{C} | f \text{ holomorphic} \}.$

• Bergman space: $A^p(\mathbb{D}) := L^p(\mathbb{D}, \text{Leb}) \cap \text{Hol}(\mathbb{D}).$

▶ A set $X \subset \mathbb{D}$ is called $A^p(\mathbb{D})$ -uniqueness set if ANY $f \in A^p(\mathbb{D})$ is uniquely determined by its restriction $f \upharpoonright_X$

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, Hol $(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{C} | f \text{ holomorphic} \}.$

▶ Bergman space: $A^p(\mathbb{D}) := L^p(\mathbb{D}, \text{Leb}) \cap \text{Hol}(\mathbb{D}).$

▶ A set $X \subset \mathbb{D}$ is called $A^p(\mathbb{D})$ -uniqueness set if ANY $f \in A^p(\mathbb{D})$ is uniquely determined by its restriction $f \upharpoonright_X$ $(f \in A^p(\mathbb{D}) \text{ and } f \upharpoonright_X = 0 \text{ implies } f \equiv 0).$

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, Hol $(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{C} | f \text{ holomorphic} \}.$

• Bergman space: $A^p(\mathbb{D}) := L^p(\mathbb{D}, \operatorname{Leb}) \cap \operatorname{Hol}(\mathbb{D}).$

- A set $X \subset \mathbb{D}$ is called $A^p(\mathbb{D})$ -uniqueness set if ANY $f \in A^p(\mathbb{D})$ is uniquely determined by its restriction $f \upharpoonright_X (f \in A^p(\mathbb{D}) \text{ and } f \upharpoonright_X = 0 \text{ implies } f \equiv 0).$
- ▶ A set $Y \subset \mathbb{D}$ is called an $A^p(\mathbb{D})$ -zero set if $\exists f \in A^p(\mathbb{D}) \setminus \{0\}$ such that Z(f) = Y.

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, Hol $(\mathbb{D}) := \{f : \mathbb{D} \to \mathbb{C} | f \text{ holomorphic} \}.$

▶ Bergman space: $A^p(\mathbb{D}) := L^p(\mathbb{D}, \text{Leb}) \cap \text{Hol}(\mathbb{D}).$

• A set $X \subset \mathbb{D}$ is called $A^p(\mathbb{D})$ -uniqueness set if ANY $f \in A^p(\mathbb{D})$ is uniquely determined by its restriction $f \upharpoonright_X (f \in A^p(\mathbb{D}) \text{ and } f \upharpoonright_X = 0 \text{ implies } f \equiv 0).$

▶ A set $Y \subset \mathbb{D}$ is called an $A^p(\mathbb{D})$ -zero set if $\exists f \in A^p(\mathbb{D}) \setminus \{0\}$ such that Z(f) = Y.

Remark: $A^p(\mathbb{D})$ -uniqueness set \iff non- $A^p(\mathbb{D})$ -zero set.

Consider the random series

$$\mathfrak{F}_{\mathbb{D}}(z) = \sum_{n=0}^{\infty} g_n z^n,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 g_n are i.i.d. complex Gaussian random variables with expectation 0, variance 1.

Consider the random series

$$\mathfrak{F}_{\mathbb{D}}(z) = \sum_{n=0}^{\infty} g_n z^n,$$

 g_n are i.i.d. complex Gaussian random variables with expectation 0, variance 1. **Elementary fact:**

► Almost surely, \$\$\mathcal{F}_D(z)\$ has radius of convergence 1 and defines a holomorphic function on D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the random series

$$\mathfrak{F}_{\mathbb{D}}(z) = \sum_{n=0}^{\infty} g_n z^n,$$

 g_n are i.i.d. complex Gaussian random variables with expectation 0, variance 1. **Elementary fact:**

► Almost surely, \$\$\mathcal{F}_D(z)\$ has radius of convergence 1 and defines a holomorphic function on D.

We want to study the random subset of \mathbb{D} by

$$Z(\mathfrak{F}_{\mathbb{D}}) := \{ z \in \mathbb{D} : \mathfrak{F}_{\mathbb{D}}(z) = 0 \}.$$

A D F A 目 F A E F A E F A Q Q

Consider the random series

$$\mathfrak{F}_{\mathbb{D}}(z) = \sum_{n=0}^{\infty} g_n z^n,$$

 g_n are i.i.d. complex Gaussian random variables with expectation 0, variance 1. **Elementary fact:**

► Almost surely, \$\$\mathcal{F}_D(z)\$ has radius of convergence 1 and defines a holomorphic function on D.

We want to study the random subset of \mathbb{D} by

$$Z(\mathfrak{F}_{\mathbb{D}}) := \{ z \in \mathbb{D} : \mathfrak{F}_{\mathbb{D}}(z) = 0 \}.$$

Conjecture (Lyons-Peres conjecture: particular case) Almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set. $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set

Theorem (Bufetov - Q.- Shamov) Almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How we solve this conjecture?

I: determinantal structure.

 $A^2(\mathbb{D})$ is a reproducing kernel Hilbert space with reproducing kernel

$$K_{\mathbb{D}}(z,w) = \frac{1}{\pi(1-z\bar{w})^2}.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

How we solve this conjecture?

I: determinantal structure.

 $A^2(\mathbb{D})$ is a reproducing kernel Hilbert space with reproducing kernel

$$K_{\mathbb{D}}(z,w) = \frac{1}{\pi(1-z\bar{w})^2}.$$

Theorem (Peres-Virág, 2005)

The random subset $Z(\mathfrak{F}_{\mathbb{D}})$ is a realization of the determinantal point process on \mathbb{D} with correlation kernel given by the Bergman kernel $K_{\mathbb{D}}$.

How this conjecture is solved?

II: resolution of a general conjecture.

A set $\mathscr{X} \subset E$ is called the uniqueness set for a reproducing kernel Hilbert space $\mathscr{H} \subset L^2(E,\mu)$ if any $f \in \mathscr{H}$ vanishing on \mathscr{X} is identically zero.

Theorem (Bufetov - Q.- Shamov, Lyons-Peres completeness conjecture)

If a random set \mathscr{X} is a determinantal point process induced by the kernel for a reproducing kernel Hilbert space \mathscr{H} , then almost surely, \mathscr{X} is a **uniqueness set** for \mathscr{H} .

Key Ingredient: conditional measure of DPP

Theorem (Bufetov-Q.-Shamov)

Given any DPP \mathscr{X} on any metric complete separable space E, with self-adjoint kernel and any subset $W \subset E$, the conditional measure

$$\mathcal{L}\left(\mathscr{X}|_{W} \middle| \mathscr{X}|_{W^{c}}
ight)$$

A D F A 目 F A E F A E F A Q Q

describes again a new DPP on W. Moreover, the kernel is computed explicitly.

Example of conditional measures of DPP

The Fock projection

$$L^2(\mathbb{C},e^{-|z|^2}dV(z))\to L^2_{hol}(\mathbb{C},e^{-|z|^2}dV(z))$$

induces the DPP process $\mathscr{X} \subset \mathbb{C}$ is the famous Ginibre point process.

Theorem (Bufetov-Q.)

For Ginibre process \mathscr{X} , if W is bounded, then the conditional measure

$$\mathcal{L}\left(\mathscr{X}|_{W} \middle| \mathscr{X}|_{W^{c}}
ight)$$

うして ふゆ く は く は く む く し く

is an orthogonal polynomial ensemble.

Application of conditional measures of DPP

Let $U \subset \mathbb{C}^d$ be a connected domain.

$$H^{\infty}(U) := \left\{ \text{bounded hol. functions on } U \right\}.$$

Theorem (Bufetov-Shilei Fan-Q.)

Suppose that $H^{\infty}(U)$ contains a non-constant element. Then for the DPP $\mathscr{X} \subset U$ induced by the Bergman projection, if $W \subset U$ is relatively compact, then the conditional measure

$$\mathcal{L}\left(\mathscr{X}|_{W}\middle|\mathscr{X}|_{W^{c}}
ight)$$

is measure equivalent to a Poisson point process on U.

Part II. Patterson-Sullivan construction joint with Alexander Bufetov

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Recall almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set.

Recall almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set. That is, fix generic realization (in probability sense) $X = Z(\mathfrak{F}_{\mathbb{D}})$. Then any $f \in A^2(\mathbb{D})$ is uniquely determined by its restriction onto X.

Recall almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set. That is, fix generic realization (in probability sense) $X = Z(\mathfrak{F}_{\mathbb{D}})$. Then any $f \in A^2(\mathbb{D})$ is uniquely determined by its restriction onto X. **Problems:**

► How to recover simulataneously and explicitly all functions $f \in A^2(\mathbb{D})$ from its restriction onto a fixed generic realization of $Z(\mathfrak{F}_{\mathbb{D}})$?

Recall almost surely, $Z(\mathfrak{F}_{\mathbb{D}})$ is an $A^2(\mathbb{D})$ -uniqueness set. That is, fix generic realization (in probability sense) $X = Z(\mathfrak{F}_{\mathbb{D}})$. Then any $f \in A^2(\mathbb{D})$ is uniquely determined by its restriction onto X. **Problems:**

- ► How to recover simulataneously and explicitly all functions $f \in A^2(\mathbb{D})$ from its restriction onto a fixed generic realization of $Z(\mathfrak{F}_{\mathbb{D}})$?
- ► How about general random countable subset of D without accumulation points?
- ► How about more general Banach space \mathcal{B} of holomorphic or harmonic functions on \mathbb{D} ?

The Poincaré-Lobachevsky hyperbolic metric on $\mathbb D$ is given by

$$d_{\mathbb{D}}(x,z) := \log \frac{1 + \left| \frac{z - x}{1 - \bar{x}z} \right|}{1 - \left| \frac{z - x}{1 - \bar{x}z} \right|} \quad \text{for } x, z \in \mathbb{D}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

The Poincaré-Lobachevsky hyperbolic metric on $\mathbb D$ is given by

$$d_{\mathbb{D}}(x,z) := \log \frac{1 + \left|\frac{z-x}{1-\bar{x}z}\right|}{1 - \left|\frac{z-x}{1-\bar{x}z}\right|} \quad \text{for } x, z \in \mathbb{D}.$$

Let $\mu_{\mathbb{D}}$ be the **hyperbolic area** (up to a multiplicative constant)

$$d\mu_{\mathbb{D}} = \frac{dLeb}{(1-|x|^2)^2}.$$

For any $s \in \mathbb{R}$, set $W_s(x) := e^{-sd_{\mathbb{D}}(x,0)}$ (which is **radial**). Then

$$W_s^z(x) := W_s\left(\frac{z-x}{1-\bar{x}z}\right) = e^{-sd_{\mathbb{D}}(x,z)}.$$

For any $s \in \mathbb{R}$, set $W_s(x) := e^{-sd_{\mathbb{D}}(x,0)}$ (which is **radial**). Then

$$W_s^z(x) := W_s\left(\frac{z-x}{1-\bar{x}z}\right) = e^{-sd_{\mathbb{D}}(x,z)}.$$

Proposition (Alexander I. Bufetov- Q.) Fix $f \in A^2(\mathbb{D}), z \in \mathbb{D}$, then $\exists C > 0$ such that $\forall s > 1$, we have

$$\mathbb{E}\left(\left|\frac{\sum_{k=0}^{\infty}\sum_{\substack{x\in Z(\mathfrak{F}_{\mathbb{D}})\\k\leq d_{\mathbb{D}}(z,x)< k+1}}W_{s}^{z}(x)f(x)}{\mathbb{E}\sum_{x\in Z(\mathfrak{F}_{\mathbb{D}})}W_{s}^{z}(x)}-f(z)\right|^{2}\right)\leq C\cdot(s-1)^{2}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Corollary

Fix $f \in A^2(\mathbb{D})$, $z \in \mathbb{D}$, $(s_n)_{n\geq 1}$ with $\sum_{n=1}^{\infty} (s_n - 1)^2 < \infty$ and $s_n > 1$. Then for almost every realization $X = Z(\mathfrak{F}_{\mathbb{D}})$, we have

$$f(z) = \lim_{n \to \infty} \frac{\sum_{k=0}^{\infty} \sum_{x \in X \atop k \leq d_{\mathbb{D}}(z,x) < k+1} W_{s_n}^z(x) f(x)}{\sum_{x \in X} W_{s_n}^z(x)}.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Corollary

Fix $f \in A^2(\mathbb{D})$, $z \in \mathbb{D}$, $(s_n)_{n\geq 1}$ with $\sum_{n=1}^{\infty} (s_n - 1)^2 < \infty$ and $s_n > 1$. Then for almost every realization $X = Z(\mathfrak{F}_{\mathbb{D}})$, we have

$$f(z) = \lim_{n \to \infty} \frac{\sum_{k=0}^{\infty} \sum_{x \in X \atop k \leq d_{\mathbb{D}}(z,x) < k+1} W_{s_n}^z(x) f(x)}{\sum_{x \in X} W_{s_n}^z(x)}.$$

Remark: The double summation is needed! In general, for s close to 1, we do not know whether or not we have

$$\sum_{x \in X} e^{-sd_{\mathbb{D}}(z,x)} |f(x)| < \infty.$$

We can do a little bit more

- A holomorphic can be replaced by harmonic
- B $\,f:\mathbb{D}\to\mathbb{C}$ can be replaced by Hilbert-space-vector valued function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We can do a little bit more

- A holomorphic can be replaced by harmonic
- B $f: \mathbb{D} \to \mathbb{C}$ can be replaced by Hilbert-space-vector valued function.
- C Less trivial generalization is: $f \in A^2(\mathbb{D})$ can be replaced by

$$f \in \bigcap_{\varepsilon > 0} A_{\varepsilon}^{2}(\mathbb{D}) \text{ and } \|f\|_{A_{\varepsilon}^{2}} = o\left(\frac{1}{\varepsilon}\right),$$

where

$$A_{\varepsilon}^{2}(\mathbb{D}) = \Big\{ f: \mathbb{D} \to \mathbb{C} \Big| \int_{\mathbb{D}} |f(z)|^{2} (1 - |z|^{2})^{\varepsilon} dLeb(z) < \infty \Big\} \cap Hol(\mathbb{D}).$$

Impossibility of simultaneous reconstruction of $A^2(\mathbb{D})$

Proposition (Bufetov- Q.)

For any $z \in \mathbb{D}$, there exists a **universal** constant $c_z > 0$, such that for any **compactly supported** radial weight W, we have

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへつ

Simultaneous reconstructions: Assumptions on $\mathbb P$

Assumption (I) (average conformal invariant) $\exists \lambda > 0$ such that

$$\mathbb{E}_{\mathbb{P}}\Big[\#(X \cap B)\Big] = \lambda \times \text{hyperbolic area of } B.$$

Assumption (II). $\exists C > 0$ such that for any $f : \mathbb{D} \to \mathbb{C}$, continuous compactly supported, we have

$$\operatorname{Var}_{\mathbb{P}}\left(\sum_{x\in X} f(x)\right) \leq C \cdot \mathbb{E}_{\mathbb{P}}\left(\sum_{x\in X} |f(x)|^2\right).$$

(II) is true in many important cases.

- 1. Poisson point processes
- 2. determinantal point processes with Hermitian correlation kernels

3. negatively correlated point processes

Which Banach spaces we are going to reconstruct?

Space1 Weighted Bergman space $A^2(\mathbb{D}; \omega)$ with rapidly growing weights: for instance

$$\omega(z) = \frac{1}{\left(1 - |z|^2\right)\log\left(\frac{4}{1 - |z|^2}\right)\left[\log\left(\log\left(\frac{4}{1 - |z|^2}\right)\right)\right]^{1 + \varepsilon}}$$

Space2 reproducing kernel Hilbert space $\mathscr{H}(K) \subset \operatorname{Harm}(\mathbb{D})$ with a growth condition on K(z, z). For instance,

$$K(z,w) = \sum_{n \in \mathbb{Z}} a_n z^n \bar{w}^n \quad \text{with } \lim_{n \to \infty} \frac{a_{|n|}}{\log(|n|+2)} = 0.$$

Space3 space coming from Poisson integrals: μ any fixed Borel probability measure on $\mathbb{T} = \partial \mathbb{D}$.

$$h^{2}(\mu) = \{h = P[f\mu] : f \in L^{2}(\mu)\}. \quad \mu \text{ can be singular!!}$$

Statements of results

Theorem (Bufetov -Q. 2018)

Let \mathbb{P} satisfy (I) and (II). Let $\mathcal{B} \in \{Space1, Space2\}$. Then $\exists (s_n)_{n\geq 1} \text{ with } s_n \to 1^+ \text{ such that, for } \mathbb{P}\text{-almost every } X \subset \mathbb{D},$ $\blacktriangleright X \text{ is a uniqueness set for } \mathcal{B}.$

▶ for ALL $f \in \mathcal{B}$ and all $z \in \mathbb{D} \cap \mathbb{Q}^2$, the limit equality

$$f(z) = \lim_{n \to \infty} \frac{\sum_{k=0}^{\infty} \sum_{x \in \mathbf{X} \atop k \le d_{\mathbb{D}}(z,x) < k+1} e^{-s_n d_{\mathbb{D}}(z,x)} f(x)}{\sum_{x \in \mathbf{X}} e^{-s_n d_{\mathbb{D}}(z,x)}}$$

A D F A 目 F A E F A E F A Q Q

Statements of results: continued

Theorem (Bufetov -Q. 2018)

Let \mathbb{P} satisfy (I) and (II). Let $\mathcal{B} = h^2(\mu)$. Then for \mathbb{P} -almost every $X \subset \mathbb{D}$,

- \blacktriangleright X is a uniqueness set for \mathcal{B} .
- ▶ for ALL $f \in \mathcal{B}$ and ALL $z \in \mathbb{D}$, the limit equality

$$f(z) = \lim_{s \to 1^+} \frac{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)} f(x)}{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)}}.$$

A D F A 目 F A E F A E F A Q Q

Statements of results: continued

Theorem (Bufetov -Q. 2018)

Let \mathbb{P} satisfy (I) and (II). Let $\mathcal{B} = h^2(\mu)$. Then for \mathbb{P} -almost every $X \subset \mathbb{D}$,

- $\blacktriangleright X$ is a uniqueness set for \mathcal{B} .
- ▶ for ALL $f \in \mathcal{B}$ and ALL $z \in \mathbb{D}$, the limit equality

$$f(z) = \lim_{s \to 1^+} \frac{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)} f(x)}{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)}}.$$

Corollary A: Under the above assumptions, \mathbb{P} -a.e. $X \subset \mathbb{D}$,

 $\lim_{s \to 1^+} \frac{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)} \delta_x}{\sum_{x \in \mathbf{X}} e^{-sd_{\mathbb{D}}(z,x)}} = \text{harmonic measure with repect to point } z.$

Relax average conformal invariance

Theorem (Bufetov-Q. 2018)

Let $\beta \geq 2$. Fix $(s_n)_{n\geq 1}$ with $s_n > \beta$ and $\sum_{n=1}^{\infty} (s_n - \beta) < \infty$. Let \mathbb{P} be a point process on \mathbb{D} satisfying Assumption (II) such that

$$\mathbb{E}_{\mathbb{P}}\Big[\#(X \cap B)\Big] \propto \int_{B} \frac{dLeb}{(1-|x|^2)^{\beta+1}}.$$

Then \mathbb{P} -almost any $X \subset \mathbb{D}$, the limit equality

$$f(z) = \lim_{n \to \infty} \frac{\sum_{k=0}^{\infty} \sum_{\substack{x \in X \\ k \le d_{\mathbb{D}}(z,x) < k+1}} e^{-s_n d_{\mathbb{D}}(z,x)} \left(\frac{|1 - x\bar{z}|^2}{1 - |z|^2}\right)^{\beta - 1} f(x)}{\sum_{x \in X} e^{-s_n d_{\mathbb{D}}(z,x)} \left(\frac{|1 - x\bar{z}|^2}{1 - |z|^2}\right)^{\beta - 1}}$$

holds simultaneously for all $f \in A^2(\mathbb{D})$ and all $z \in \mathbb{D} \cap \mathbb{Q}^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some problems

- Construct deterministic subsets $X \subset \mathbb{D}$ satisfying the reconstruction properties.
- ► Give sufficient conditions or even geometric criteria for subsets X ⊂ D satisfying the reconstruction properties.

More general situations

Our method works in the following situations as well:

- ▶ Real hyperbolic spaces: the unit ball in \mathbb{R}^n , equipped with the Poincaré metric, (we should consider the invariant harmonic functions)
- Complex hyperbolic spaces: the unit ball in \mathbb{C}^n , equipped with the Bergman metric.

A D F A 目 F A E F A E F A Q Q

- ▶ Quaternion hyperbolic spaces.
- ► Any locally finite infinite connected graph.

Thank you !

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Appendix

▶ The complex hyperbolic spaces: Let $\mathbb{D}_d = \{z \in \mathbb{C}^d : |z| < 1\}$ equipped with the Riemannian metric (called the Bergman metric on \mathbb{D}_d) as follows

$$ds_B^2 := 4 \frac{|dz_1|^2 + \dots + |dz_d|^2}{1 - |z|^2} + 4 \frac{|z_1 dz_1 + \dots + z_d dz_d|^2}{(1 - |z|^2)^2}.$$

Bergman Laplacian $\widetilde{\Delta}$ is given by the formula

$$\widetilde{\Delta} = (1 - |z|^2) \sum_{i,j} (\delta_{ij} - z_i \bar{z}_j) \frac{\partial^2}{\partial z_i \partial \bar{z}_j}$$

▶ The real hyperbolic spaces: Let $m \ge 2$ be a positive integer and let $\mathbb{B}_m \subset \mathbb{R}^m$, equipped with the Poincaré metric

$$ds_h^2 = 4 \frac{dx_1^2 + \dots + dx_m^2}{(1 - |x|^2)^2}.$$

The hyperbolic Laplacian Δ_h on \mathbb{B}_m is:

$$\Delta_h = (1 - |x|^2)^2 \sum_{i=1}^m \frac{\partial^2}{\partial x_i^2} + 2(m-2)(1 - |x|^2) \sum_{i=1}^m x_i \frac{\partial}{\partial x_i}.$$