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Goal: Connect totally non–negative Grassmannians to M–curves through
finite–gap KP theory

KP-II equation (−4ut + 6uux + uxxx )x + 3uyy = 0

Two relevant classes of solutions:

Real regular multiline KP solitons which are in natural correspondence with
totally non–negative Grassmannians [Chakravarthy-Kodama; Kodama-Williams];

Real regular finite–gap KP solutions parametrized by degree g real regular
non–special divisors on genus g M-curves [Dubrovin-Natanzon]

Novikov: relevant to check whether real regular soliton solutions may be obtained
from real regular finite–gap solutions
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The Sato divisor on Γ0

Soliton data: (K, [A]), with K = {κ1 < · · ·κn}, A real k × n matrix

τ(x , y , t) = Wrx (f (1), . . . f (k)), where f (i) =
∑n

j=1 A
i
j exp(κjx + κ2

j y + κ3
j t)

u(x , y , t) = 2∂2
x log(τ) is regular for real (x , y , t) iff all maximal minors of A are

non–negative [Kodama Williams-2013]

0ࢣ

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝒏 P𝟎
…

𝜸1 𝜸2 𝜸𝑘

Soliton data: (K, [A]) 7→ Sato algebraic geometric data: Γ0 rational curve,
marked points P0, κ1, . . . , κn, k-point real non–special divisor

D(k)
S = {κ1 < γ1 < · · · < γk ≤ κn} [Malanyuk 1991]:

Incompleteness of Sato algebraic–geometric data: k divisor points vs
k(n − k)–dimensional Grassmannian

Idea: use finite–gap theory for degenerate solutions (ex. solitons) on reducible curves!
[Krichever 1986]
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The algebraic curve

[Postnikov 2006]: Parametrization via planar bicolored networks in the disk of
positroid cells (= Gelfand-Serganova stratum + positivity) of totally non–negative
Grassmannians

In arXiv:1801.00208: fix soliton data (K, [A]), choose a trivalent G in Postnikov class
and construct Γ rational degeneration of M curve of genus g = #{f } − 1:

G Γ

Boundary of disk Sato component Γ0

Boundary vertex bl Marked point κl on Γ0

Internal black vertex V ′s Copy of CP1 denoted Σs

Internal white vertex Vl Copy of CP1 denoted Γl

Edge e Double point

Face f Oval

• In the special case of Le–networks (arXiv:1805.05641) genus is minimal and equal to
the dimension of the positroid cell!
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The KP divisor for the soliton data (K, [A]) on Γ

Key ideas:

Associate to each edge e of the directed network N an edge vector Ee so that
Sato constraints are satisfied;

Use edge vectors to rule the values of the dressed edge wave function at the
edges e ∈ N (=double points on Γ) =⇒ the Baker-Akhiezer function on Γ
automatically takes equal values at double points;

Use linear relations at vertices to compute the position of the KP divisor and
extend wave function to Γ

Edge vectors are real =⇒ Edge wave function real for real KP times =⇒ KP
divisor belongs to the union of the ovals;

Combinatorial proof that there is one divisor point in each oval.

� The j–th component of Ee : (Ee)j =
∑

P:e→bj

(−1)wind(P)+int(P)w(P).

� Explicit expressions for components of edge vectors on any network (modification of
Postnikov and Talaska): the edge vector components are rational in weights with
subtraction free denominators;

� Linear relations at internal vertices analogous to momentum-elicity conservation
conditions in the planar limit of N = 4–SYM theory (see Arkani-Ahmed, Bourjaily,
Cachazo, Goncharov, Postnikov, Trnka [2016]).
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Soliton lattices of KP-II and desingularization of spectral curves in
Gr TP(2, 4) [AG-2018 Proc.St.]

Reducible plane curve P0(λ, µ) = 0, with

P0(λ, µ) = µ ·
(
µ− (λ− κ1)

)
·
(
µ+ (λ− κ2)

)
·
(
µ− (λ− κ3)

)
·
(
µ+ (λ− κ4)

)
.

Genus 4 M–curve after desingularization:

Γ(ε) : P(λ, µ) = P0(λ, µ) + ε(β2 − µ2) = 0, 0 < ε� 1,

where

β =
κ4 − κ1

4
+

1

4
max {κ2 − κ1, κ3 − κ2, κ4 − κ3} .

κ1 = −1.5, κ2 = −0.75, κ3 = 0.5, κ4 = 2.

Level plots for the KP-II finite gap solutions for ε = 10−2 [left], ε = 10−10 [center]
and ε = 10−18 [right]. The horizontal axis is −60 ≤ x ≤ 60, the vertical axis is
0 ≤ y ≤ 120, t = 0. The white color corresponds to lowest values of u, the dark color
corresponds to the highest values of u.
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Frobenius Manifolds

Definition (Frobenius manifold)

A Frobenius structure on M is the data (M, •, <,> , e, E )
satisfying:

1 η:=<,> is a flat pseudo-Riemannian metric;

2 • is C-linear, associative, commutative product on TmM
which depends smoothly on m;

3 e is the unity vector field for the product and ∇e = 0;

4 ∇wc(x , y , z) is symmetric, where c(x , y , z) :=< x • y , z > ;

5 A linear vector field E ∈ Γ(M) must be fixed on M, i.e.
∇∇E = 0 such that:

LE <,>= (2− d) <,>, LE• = • LEe = e



Frobenius Manifolds as Ω/W

Theorem (Dubrovin Conjecture, Hertling 1999)

Any irreducible semisimple polynomial Frobenius manifold with
positive invariant degrees is isomorphic to the orbit space of a
finite Coxeter group.

Main Point

Differential geometry of the orbit spaces of reflection groups and of
their extensions 7→ Frobenius manifolds.

Similar constructions works when W is Extended affine Weyl Group
[Dubrovin, Zhang 1998] and for Jacobi groups [Bertola 1999].



Problem Setting

M1,1
∼= C3/Â1

Example of Orbit space of Jacobi
Group

M0,0,0
∼= C2/Ã1

Example of Orbit space of
Extended Affine Weyl Group

Mixed of Extended Affine Weyl Group + Jacobi Group?

M1,0,0
∼= C4/W

Generalization

M1,n,0
∼= Cn+3/W
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Example of Orbit space of Jacobi
Group

M0,0,0
∼= C2/Ã1
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Take A ∈ CUEN , an N × N unitary matrix. Then define

PN(A, θ) = det(I − Ae−iθ).

Then there are two spaces to average over:

the unit circle in the complex plane,

U(N) with respect to the Haar measure.
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Moments of Moments

MoMN(k, β)
Set

MoMN(k , β) := EA∈U(N)

((
1

2π

∫ 2π

0
|PN(A, θ)|2βdθ

)k
)
.

Conjecture (Fyodorov & Keating)

As N →∞,

MoMN(k , β) ∼

{
γk,βN

kβ2
k < 1/β2

ρk,βN
k2β2−k+1 k ≥ 1/β2,

for some coefficients γk,β, ρk,β.
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Results

Consider the case when k, β ∈ N.

Then kβ2 ≥ 1 so we expect

MoMN(k, β) ∼ ρk,βNk2β2−k+1.

Theorem [B.-Keating (2018)]

Let k , β ∈ N. Then MoMN(k , β) is a polynomial in N.

Theorem [B.-Keating (2018)]

Let k , β ∈ N. Then with ρk,β an explicit function of k and β,

MoMN(k , β) = ρk,βN
k2β2−k+1 + O(Nk2β2−k).
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Example

MoMN(2, 3) = (N+1)(N+2)(N+3)(N+4)(N+5)(N+6)(N+7)(N+8)(N+9)(N+10)(N+11)
1722191327731024154944441889587200000000

×
(
12308743625763N24+1772459082109872N23+121902830804059138N22+

+5328802119564663432N21+166214570195622478453N20+3937056259812505643352N19

+73583663800226157619008N18+1113109355823972261429312N17+13869840005250869763713293N16

+144126954435929329947378912N15+1259786144898207172443272698N14

+9315726913410827893883025672N13+58475127984013141340467825323N12

+311978271286536355427593012632N11+1413794106539529439589778645028N10

+5427439874579682729570383266992N9+17564370687865211818995713096848N8

+47561382824003032731805262975232N7+106610927256886475209611301000128N6

+194861499503272627170466392014592N5+284303877221735683573377603640320N4

+320989495108428049992898521600000N3+266974288159876385845370793984000N2

+148918006780282798012340305920000N+43144523802785397500411904000000

)
Emma Bailey Moments of Moments CIRM 2019 5 / 6



Thank you
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Problem statement
Consider Laguerre Unitary Ensemble:

𝑀 = 𝑈*diag{Λ1, . . . ,Λ𝑛}𝑈, (1)

where 𝑈 is distributed uniformly on the unitary group 𝑈(𝑛)
The random variables Λ1, . . . ,Λ𝑛 have the joint probability density

𝑃𝑛,𝑚(𝜆1, . . . , 𝜆𝑛) =
1

𝑍𝑛,𝑚

∏︁
𝑗

1[𝜆𝑗 > 0]𝜆𝛼
𝑗 𝑒

−4𝑚𝜆𝑗

∏︁
𝑗<𝑘

(𝜆𝑘 − 𝜆𝑗)
2, (2)

where 𝛼 > −1, 𝑚 ∈ N, and 𝑍𝑛,𝑚 is the partition function.
Let 𝑓(𝑀) be a real-valued function defined on the spectrum of 𝑀 .
Our goal is to study the characteristic function

E𝑛,𝑚

[︀
𝑒𝑖ℎTr 𝑓(𝑀)

]︀
=

∫︁
𝑒𝑖ℎ

∑︀
𝑓(𝜆𝑗)𝑃𝑛,𝑚(𝜆1, . . . , 𝜆𝑛) 𝑑𝜆1 · . . . · 𝑑𝜆𝑛 (3)

of the linear statistic Tr 𝑓(𝑀) in a double-scaling limit
as 𝑛 = 𝑚 → ∞.
Conference “Integrability and Randomness in Mathematical Physics and Geometry”, April 8–12, 2019 1



Main results
Let 𝑓 : R+ → R be locally Hölder continuous such that it admits the
analytic continuation to some neighborhood of [0, 1].

Theorem (Convergence to the Gaussian law)

Tr 𝑓(𝑀) − 𝑛κ[𝑓 ]
𝑑−→ 𝑁(𝜇[𝑓 ], 𝐾[𝑓 ]), 𝑛 = 𝑚 → ∞. (4)

The linear functionals κ[𝑓 ], 𝜇[𝑓 ], and the quadratic functional 𝐾[𝑓 ]
are given with the explicit formulas.

Theorem (Speed of convergence)

Let 𝑓(𝑥) also satisfy 𝑓(𝑥) = 𝑂(𝑒𝐴𝑥), 𝐴 > 0, as 𝑥 → +∞. Define the
cumulative distribution functions 𝐹𝑛(𝑥) and 𝐹 (𝑥) corresponding
to Tr 𝑓(𝑀) − 𝑛κ[𝑓 ] − 𝜇[𝑓 ] and to 𝑁(0, 𝐾[𝑓 ]), respectively. Then

sup
𝑥

|𝐹𝑛(𝑥) − 𝐹 (𝑥)| = 𝑂(1/𝑛), 𝑛 = 𝑚 → ∞. (5)
Conference “Integrability and Randomness in Mathematical Physics and Geometry”, April 8–12, 2019 2



The proof of Theorems is based on the Riemann–Hilbert analysis
similar to Charlier&Gharakhloo (2019). However, unlike them, we are
interested in complex exponents. In such a case the corresponding
Hankel determinants and/or the weight of the corresponding
orthogonal polynomials can be zero. Also we need the exponents that
grow with 𝑛.
To succeed we adopt the approach from Deift, Its&Krasovsky (2014)
and use the deformation of

𝑤(𝑥) = 𝑥𝛼𝑒−4𝑛𝑥𝑒𝑖ℎ𝑓(𝑥). (6)

into

�̃�𝑙,𝑡(𝑥) = 𝑥𝛼𝑒−4𝑛𝑥
(︀
1 − 𝑡 + 𝑡𝑒𝑖ℎ1[𝑙<𝑛𝛾+1]𝑓(𝑥)

)︀
𝑒𝑖ℎ(𝑙−1)1[𝑙<𝑛𝛾+1]𝑓(𝑥), (7)

We choose 𝜀 > 0 small enough so that

1 − 𝑡 + 𝑡𝑒𝑖ℎ1[𝑙<𝑛𝛾+1]𝑓(𝑥) ̸= 0, 𝛾 ∈ [0, 1], (8)

for all 𝑡 ∈ [0, 1], 𝑥 in the neighborhood of [0, 1], ℎ such that |ℎ| < 𝜀,
and for all 𝑛, 𝑙.
Conference “Integrability and Randomness in Mathematical Physics and Geometry”, April 8–12, 2019 3
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Partitions

• • ◦ ◦ ◦ ◦ ◦•◦••◦••

Figure: Partition (Young diagram) λ = (2, 2, 2, 1, 1) (Frobenius coordinates (1, 0|4, 1)) in English, French and Russian notation, with

associated Maya diagram (particle-hole representation). Size |λ| = 8, length `(λ) = 5.

Figure: Skew partitions (Young diagrams) (4, 3, 2, 1)/(2, 1) (but also (5, 4, 3, 2, 1)/(5, 2, 1), . . . ) and (4, 4, 2, 1)/(2, 2) (but also

(6, 4, 4, 2, 1)/(6, 2, 2), . . . )



Counting tableaux

A standard Young tableau (SYT) is a filling of a (possibly skew) Young diagram with
numbers 1, 2, . . . strictly increasing down columns and rows.

1 3 5 6
2 4 9
7
8

1 7
3 4

2 5
6

dimλ := number of SYTs of shape λ

and similarly for dimλ/µ.



Measures on partitions

There are two natural measures on all partitions: poissonized Plancherel vs. (grand
canonical) uniform

Prob(λ) = e−ε
2
ε2|λ| (dimλ)2

(|λ|!)2
vs. Prob(λ) = u|λ|

∏
i≥1

(1− ui )

with ε ≥ 0 and 1 > u ≥ 0 parameters.



Ulam’s problem and Hammersley last passage percolation

Quantity of interest: L = longest up-right path from (0, 0) to (1, 1) (= 4 here).
Schensted’s theorem yields that, in distribution,

L = λ1

with λ coming from the poissonized Plancherel measure.



The Baik–Deift–Johansson theorem and Tracy–Widom

Theorem (BaiDeiJoh 1999)
If λ is distributed as poissonized Plancherel, we have:

lim
ε→∞

Prob

(
λ1 − 2ε

ε1/3
≤ s

)
= FTW(x) := det(1− Ai2)(s,∞)

with

Ai2(x , y) :=

∫ ∞
0

Ai(x + s)Ai(y + s)ds.

and Ai the Airy function (solution of y ′′ = xy decaying at ∞).

FTW is the Tracy–Widom GUE distribution. It is by (original) construction the extreme
distribution of the largest eigenvalue of a random hermitian matrix with iid standard
Gaussian entries as the size of the matrix goes to infinity.



The Erdős–Lehner theorem and Gumbel

Theorem (ErdLeh 1941)
For the uniform measure Prob(λ) ∝ u|λ| we have:

lim
u→1−

Prob

(
λ1 < −

log(1− u)

log u
+

ξ

| log u|

)
= e−e−ξ .



The finite temperature Plancherel measure

On pairs of partitions µ ⊂ λ ⊃ µ consider the measure

Prob(µ, λ) ∝ u|µ| ·
ε2(|λ|−|µ|) dim2(λ/µ)

(|λ/µ|!)2

with u = e−β , β = inverse temperature.

I u = 0 yields the poissonized Plancherel measure

I ε = 0 yields the (grand canonical) uniform measure



The finite temperature Plancherel measure II

Theorem (B/Bouttier 2019)
Let M = ε

1−u
→∞ and u = exp(−αM−1/3)→ 1. Then

lim
M→∞

Prob

(
λ1 − 2M

M1/3
≤ s

)
= Fα(x) := det(1− Aiα)(s,∞)

with

Aiα(x , y) :=

∫ ∞
−∞

eαs

1 + eαs
· Ai(x + s)Ai(y + s)ds.

the finite temperature Airy kernel.



What is in a part?

PPP (ε2)

PPP (uε2)

PPP (u2ε2)

PPP (u3ε2)

PPP (u4ε2)

With L the longest up-right path in this cylindric geometry, in distribution, Schensted’s
theorem states that

λ1 = L + κ1

where κ is a uniform partition Prob(κ) ∝ u|κ| independent of everything else.



A word on the finite temperature Airy kernel Aiα

I introduced by Johansson (Joh07)

I also appearing as the KPZ crossover kernel: SasSpo10 and AmiCorQua11; in random
directed polymers BorCorFer11; cylindric OU processes LeDMajSch15

I interpolates between the Airy kernel and a diagonal exponential kernel:

lim
α→∞

Aiα(x , y) = Ai2(x , y),

lim
α→0+

1

α
Aiα

(
x

α
−

1

2α
log(4πα3),

y

α
−

1

2α
log(4πα3)

)
= e−xδx,y

I with Fα(s),FTW(s), and G(s) the Fredholm determinants on (s,∞) of Aiα,Ai2 and
e−xδx,y , (Joh07)

lim
α→∞

Fα(s) = FTW(s),

lim
α→0+

Fα
(

s

α
−

1

2α
log(4πα3)

)
= G(s) = e−e−s



Direct limit to Tracy–Widom

Theorem (B/Bouttier 2019)
Let u → 1 and ε→∞ in such a way that ε(1− u)2 →∞. Then we have

Prob

(
λ1 − 2M

M1/3
≤ s

)
→ FTW(s), M :=

ε

1− u
.



Direct limit to Gumbel

Theorem (B/Bouttier 2019)
Set u = e−r and assume that r → 0+ and εr2 → 0+ (with ε possibly remaining finite).
Then:

Prob

(
rλ1 − ln

I0(2ε+ εr)

r
≤ s

)
→ e−e−s

where I0(x) := 1
2π

∫ π
−π ex cosφdφ is the modified Bessel function of the first kind and order

zero.



Thank you!
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Last passage percolation Character identities and LPP Duality between determinants and Pfa�ians

Last passage percolation (LPP)

L(2n,2n) := max
π ∈Π2n,2n

∑
(i, j )∈π

Wi, j

Π2n,2n is the set of directed paths in {1, . . . ,2n}2 starting from
(1,1) and ending at (2n,2n);
{Wi, j }1≤i, j≤2n is a field of independent geometric random
variables with various symmetries

(1, 1)

(2n, 2n)

Antidiagonal symmetry

(1, 1)

(2n, 2n)

Diagonal symmetry

(1, 1)

(2n, 2n)

Double symmetry
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Last passage percolation Character identities and LPP Duality between determinants and Pfa�ians

Character identities and LPP

P
(
Lβ (2n,2n) ≤ 2u

)
∝

∑
µ⊆(2u ) (2n )

β
∑2n
i=1 (µi mod 2)

· s(2n)µ (p1, . . . ,p2n )

=



2n∏
i=1

pi



u

sCB
u (2n ) (p1, . . . ,p2n ;β )

=



2n∏
i=1

pi



u ∑
λ⊆u (n )

sCBλ (p1, . . . ,pn ;β ) · s
CB
λ (pn+1, . . . ,p2n ;β )

(1, 1)

(2n, 2n)

s(2n)µ is a classical Schur polynomial;

sCBλ is a Schur polynomial that interpolates
between symplectic and odd orthogonal
characters.
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Last passage percolation Character identities and LPP Duality between determinants and Pfa�ians

Duality between determinants and Pfa�ians

Baik-Rains’ formulas and ours show a duality between
Pfa�ians and determinants, for finite N .
Fredholm Pfa�ian and Fredholm determinantal expressions of
the limiting distribution functions, as N →∞.

E.g., we obtain:
Sasamoto’s Fredholm determinant for the GOE Tracy-Widom
distribution in the case of antidiagonal symmetry:

F1 (s ) = det(I −Bs )

Ferrari-Spohn’s Fredholm determinant for the GSE
Tracy-Widom distribution in the case of diagonal symmetry:

F4 (s ) =
1
2
[
det(I −B√2s )+det(I +B√2s )

]

with the kernel being Bs (x ,y) := Ai(x +y+s ) on L2 ([0,∞)).
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Painlevé II τ -function as a Fredholm

determinant
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Introduction

• Question: Can the τ -function of Painlevé II be expressed as a

Fredholm determinant?

• Painlevé II

qss = sq − 2q3 (1)

• The τ -function of Painlevé II is related to its transcendent

d2

ds2
ln τ [s] = −q2(s) (2)

• What is known?

• Ablowitz-Segur family is a special solution of PII

q(s) ≈ κAi(s); κ ∈ C; s →∞ (3)

• It is a known result that the τ -function in this case is the

determinant of the Airy Kernel.

τ [s] = det[I− κ2KAi ]|[s,∞)] (4)
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qss = sq − 2q3 (1)

• The τ -function of Painlevé II is related to its transcendent

d2

ds2
ln τ [s] = −q2(s) (2)

• What is known?

• Ablowitz-Segur family is a special solution of PII

q(s) ≈ κAi(s); κ ∈ C; s →∞ (3)

• It is a known result that the τ -function in this case is the

determinant of the Airy Kernel.

τ [s] = det[I− κ2KAi ]|[s,∞)] (4)

1



Introduction

• Question: Can the τ -function of Painlevé II be expressed as a
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General Painlevé II using IIKS construction

• The Riemann Hilbert problem of Painlevé II, after some transformations,

can be reduced to the following RHP on iR

Γ+(z) = Γ−(z)J(z); Γ(z) = 1 +O(z−1) as z →∞ (5)

iRχ1 χ2 χ3 χ4

• Using χi , the jump function is J(z) =

[
a(z) b(z)

c(z) d(z)

]
= 1 − 2πif (z)gT (z)

• with

f (z) =

[
χ2(z) +

(b(z)−1)
a(z)

χ4(z)
(1+c(z)−a(z))

a(z)
χ1(z) + (a(z)− 1)χ3(z)

]
; g(z) =

1

2πi

[
χ1(z) + χ3(z)

χ2(z) + χ4(z)

]
a(z), b(z), c(z), d(z) are given in terms of parabolic cylinder functions.
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Results

• The integrable kernel on L2(iR) is given by

K (z ,w) =
f T (z)g(w)

2πi(z − w)
(6)

• τ -function:

τ [s] = det(1 − K ) (7)

• τ [s] is related to the JMU τ -function as

∂s ln τ [s] = ∂s ln τJMU +

[
2iν

3
+
ν2

s

]
+ A(ν) (8)

where ν = − 1
2πi ln(1 − s1s3) and s1, s3 are Stokes’ parameters and s

is the PII parameter and A(ν) is a non-vanishing depending only on

ν.
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Previous results I: smallest gaps for CUE

Let e iθ1 , · · · , e iθn be n eigenvalues of CUE, consider

χn =
n∑

i=1

δ(n4/3(θi+1−θi ),θi ).

Theorem (Vinson, Soshnikov, Ben Arous-Bourgade)

χn tends to a Poisson process χ with intensity

Eχ(A× I ) =

(
1

24π

∫
A
u2du

)(∫
I

du

2π

)
.

The kth smallest gap has limiting density

3

(k − 1)!
x3k−1e−x

3
.

Renjie Feng (BICMR) 2 / 10



Previous results II: smallest gaps for GUE

For GUE

χn =
n∑

i=1

δ
(n

4
3 (λi+1−λi ),λi )

1|λi |<2−η

Theorem (Ben Arous-Bourgade, AOP 2013)

χn tends to a Poisson process χ with intensity

Eχ(A× I ) = (
1

48π2

∫
A
u2du)(

∫
I
(4− x2)2dx),

where A ⊂ R+ and I ⊂ (−2 + η, 2− η).

The kth smallest gap has the limiting density 3
(k−1)!x

3k−1e−x
3
, same as

CUE.

Renjie Feng (BICMR) 3 / 10



New results I: smallest gaps for CβE

When β is an positive integer, consider

χn =
n∑

i=1

δ
(n
β+2
β+1 (θi+1−θi ),θi )

Theorem [F.-Wei]

χn tends to a Poisson point process χ with intensity

Eχ(A× I ) =
Aβ|I |
2π

∫
A
uβdu,

where Aβ = (2π)−1 (β/2)β(Γ(β/2+1))3

Γ(3β/2+1)Γ(β+1) . For COE, CUE and CSE,

A1 =
1

24
, A2 =

1

24π
, A4 =

1

270π
.

Renjie Feng (BICMR) 4 / 10



New results II: smallest gaps for GOE

For GOE

χ(n) =
n−1∑
i=1

δn3/2(λ(i+1)−λ(i))

Theorem [F.-Tian-Wei]

χ(n) converges to a Poisson point process χ with intensity

Eχ(A) =
1

4

∫
A
udu.

the limiting density of the kth smallest gap is

2

(k − 1)!
x2k−1e−x

2
,

same as COE.

Conjecture: CβE and GβE share the same smallest gaps.
Renjie Feng (BICMR) 5 / 10



Previous III: order of largest gaps

For CUE and interior of GUE, mk is the kth largest gap,

Theorem (Ben Arous-Bourgade, AOP 2013)

For any p > 0 and ln = no(1), one has

mln ×
n√

32 ln n

Lp

→ 1.

Renjie Feng (BICMR) 6 / 10



New results III: fluctuation of largest gaps

Theorem (F.-Wei)

Let’s denote mk as the k-th largest gap of CUE, and

τnk = (2 ln n)
1
2 (nmk − (32 ln n)

1
2 )/4− (3/8) ln(2 ln n),

then {τnk } tends to a Poisson process and τnk has the limit of the Gumbel
distribution,

ek(c1−x)

(k − 1)!
e−e

c1−x
.

Here, c1 = 1
12 ln 2 + 3ζ ′(−1) + ln π

2 .

Renjie Feng (BICMR) 7 / 10



New results III: fluctuation of largest gaps

Theorem (F.-Wei)

Let’s denote m∗k as the k-th largest gap of GUE, S(I ) = inf I
√
4− x2 and

τ∗k = (2 ln n)
1
2 (nS(I )m∗k − (32 ln n)

1
2 )/4 + (5/8) ln(2 ln n),

{τ∗k } tends to a Poisson process and has the limit of the Gumbel
distribution,

ek(c2−x)

(k − 1)!
e−e

c2−x
.

Here, c2 = 1
12 ln 2 + 3ζ ′(−1) +M0(I ) depending on I , where

M0(I ) = (3/2) ln(4− a2)− ln(4|a|) if a+ b < 0,
M0(I ) = (3/2) ln(4− b2)− ln(4|b|) if a+ b > 0,
M0(I ) = (3/2) ln(4− a2)− ln(2|a|) if a+ b = 0 .

Renjie Feng (BICMR) 8 / 10



Extreme gaps IV: universality of extreme gaps

Recently, our results are generalized for Hermitian/symmetric Wigner
matrices with mild assumptions.

P. Bourgade, Extreme gaps between eigenvalues of Wigner matrices,
arXiv:1812.10376.

B. Landon, P. Lopatto, J. Marcinek, Comparison theorem for some
extremal eigenvalue statistics, arXiv:1812.10022.

Renjie Feng (BICMR) 9 / 10
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MINORS OF TOEPLITZ+HANKEL MATRICES

∫
U(N)

f(M)dM =

1
N!

∫
[0,2π]N

|∆(eiθ)|2
N∏
k=1

f(eiθk)dθk2π

det
N×N



d0 − d2 d1 − d3 d2 − d4 d3 − d5 d4 − d6 d5 − d7 · · ·

d1 − d3

d0 − d4

d1 − d5

d2 − d6

d3 − d7 d4 − d8 · · ·

d2 − d4 d1 − d5 d0 − d6 d1 − d7 d2 − d8 d3 − d9 · · ·

d3 − d5

d2 − d6

d1 − d7

d0 − d8

d1 − d9 d2 − d10 · · ·
d4 − d6

d3 − d7

d2 − d8

d1 − d9

d0 − d10 d1 − d11 · · ·
...

...

...

...

...
...
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d4 − d6 d3 − d7 d2 − d8 d1 − d9 d0 − d10 d1 − d11 · · ·

...
...

...
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...
...





MINORS OF TOEPLITZ+HANKEL MATRICES

∫
G(N)

χλ
G(N)(M−1)χµ

G(N)(M)f(M)dM = (G(N) = Sp(2N),O(2N),O(2N+ 1))

1
N!

∫
[0,2π]N

χλ
G(N)(e−iθ)χµ

G(N)(e
iθ)|∆G(N)(eiθ)|2

N∏
k=1

f(eiθk)dθk2π =

det
N×N



d0 − d2 d1 − d3 d2 − d4 d3 − d5 d4 − d6 d5 − d7 · · ·

d1 − d3

d0 − d4

d1 − d5

d2 − d6

d3 − d7 d4 − d8 · · ·

d2 − d4 d1 − d5 d0 − d6 d1 − d7 d2 − d8 d3 − d9 · · ·

d3 − d5

d2 − d6

d1 − d7

d0 − d8

d1 − d9 d2 − d10 · · ·
d4 − d6

d3 − d7

d2 − d8

d1 − d9

d0 − d10 d1 − d11 · · ·
...

...

...

...

...
...





SOME RESULTS AND APPLICATIONS

· Factorizations∫
U(2N)

f(U)dU =

∫
O(2N+1)

f(U)dU
∫
O(2N+1)

f(−U)dU,∫
U(2N+1)

f(U)dU =

∫
Sp(2N)

f(U)dU
∫
O(2N+2)

f(U)dU.

· Expansions in terms of Toeplitz minors

det (dj−k − dj+k)Nj,k=1 =
1
2N

∑
λ,µ∈R(N)

(−1)(|λ|+|µ|)/2Dλ,µ
N (f).

· Chern-Simons theory∫
G(N)

Θ(U)dU Partition function
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· Expansions in terms of Toeplitz minors

det (dj−k − dj+k)Nj,k=1 =
1
2N

∑
λ,µ∈R(N)

(−1)(|λ|+|µ|)/2Dλ,µ
N (f).

· Chern-Simons theory∫
G(N)

χλ
G(N)(U−1)χµ

G(N)(U)Θ(U)dU Hopf link



Thank you!
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Let ξ be a Gaussian white noise on Rd, and V : Rd → R be
a deterministic function.

Consider the random Schrödinger operator

Ĥ :=
(
−1

2
∆ + V

)
+ ξ.

Problem. Develop a semigroup theory for Ĥ, i.e.,{
e−tĤ : t > 0

}
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e−tĤ : t > 0

}

Pierre Yves Gaudreau Lamarre Semigroups for 1D Operators with Noise



Let ξ be a Gaussian white noise on Rd, and V : Rd → R be
a deterministic function.

Consider the random Schrödinger operator

Ĥ :=
(
−1

2
∆ + V

)
+ ξ.

Problem. Develop a semigroup theory for Ĥ, i.e.,{
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1 SPDEs: u(t, x) := e−tĤu0(x) solves

∂tu =
(
1
2
∆− V

)
u+ ξu, u(0, x) = u0(x).

2 Spectral Analysis of SPDEs:

e−tĤu0 =
∞∑
k=1

e−tλk(Ĥ)〈ψk(Ĥ), u0〉ψk(Ĥ).

3 Feynman-Kac formula:

e−tĤf(x)

= Ex

[
exp

(
−
∫ t

0

V
(
B(s)

)
+ ξ
(
B(s)

)
ds

)
f
(
B(t)

)]
.
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ξ cannot be defined pointwise.

It is thus nontrivial to define

Ĥf =
(
−1

2
∆ + V

)
f + ξf ;

Ex

[
exp

(
−
∫ t

0

V
(
B(s)

)
+ ξ
(
B(s)

)
ds

)
f
(
B(t)

)]
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At my poster:

1 Show how these technical obstacles can be overcome in
one dimension.

2 Discuss applications in random matrix theory and
SPDEs with multiplicative white noise.

3 Discuss partial results in higher dimensions, and
connection to regularity structures/paracontrolled
calculus/renormalization of SPDEs.
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The longest increasing subsequence problem for correlated random variables

The longest increasing subsequence problem

LIS problem
To find an increasing subsequence of maximum length of a finite
sequence of n elements taken from a partially ordered set

(a1, a2,… , an) ⇒ LIS = (ai1 , ai2 ,… aik )

such that ai1 ⩽ ai2 ⩽ ⋯ ⩽ aik with 1 ⩽ i1 < i2 <⋯ < ik ⩽ n

Applications
Bioinformatics — gene sequence alignment
Computational linguistics — querying, string matching, diff
Statistical process control — trend marker

To find one representative LIS of a sequence is an O(n log n) task

1 / 10



The longest increasing subsequence problem for correlated random variables

LIS problem for random permutations
How does the length Ln of the LIS of random permutations grow with n?

(S. Ulam, ∼1960)

Example
� = (2 4 3 5 1 7 6 9 8) ⇒ LIS =

{

(2 3 5 6 8), (2 4 5 7 9), ⋯
}

, Ln = 5

Solution took nearly 40 years to complete (Baik, Deift & Johansson, 1999)

Ln ∼ 2
√

n + n1∕6�2

with �2 ∼ TW2, the distribution for the fluctuations of the largest
eigenvalue of a random GUE matrix (Tracy & Widom, 1993)

2 / 10



The longest increasing subsequence problem for correlated random variables

The LIS of random walks

A random walk (RW) of length n is the r. v.

Sn = X1 + X2 +⋯ + Xn

with Xk i. i.d. according to some to some zero-mean, symmetric p.d.f.

n = (S1, S2,… , Sn) is a sequence of correlated random variables

How does the length of the LIS of n scales with n and the law of increments?

Surprisingly, this problem has been posed only recently in the
literature (Angel, Balkay & Peres, 2014; Pemantle & Peres, 2016)
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The longest increasing subsequence problem for correlated random variables

Rigorous results on the LIS of random walks
LIS of RW with finite variance (Angel, Balkay & Peres, 2014)

Let Sn =
∑n

i=1 Xi be a RW on ℝ with i. i.d. Xi such that E(Xi) = 0 and
Var(Xi) = 1. Then for all " > 0 and large enough n,

c
√

n ⩽ E(Ln) ⩽ n
1
2+".

LIS of RW with infinite variance (Pemantle & Peres, 2016)

If the steps Xi are i. i.d. according to a symmetric �-stable law with a
sufficiently small index � ⩽ 1, then

n�0−o(1) ⩽ E(Ln) ⩽ n�1+o(1),

with �0 = 0.690093⋯ and �1 = 0.814835⋯ (not sharp).
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The longest increasing subsequence problem for correlated random variables

Numerical experiments
Numerical evidence suggests that the p.d.f. f (Ln) = n−�g(n−�Ln).
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The longest increasing subsequence problem for correlated random variables

Correction to scaling

Conjectural asymptotics (JR, 2017)

The length Ln of the LIS of random walks with step lengths of finite
variance scales with n like

Ln ∼
1
e
√

n ln n + 1
2
√

n + lower order terms

Recent data (Börjes, Schawe & Hartmann, 2019) seem to confirm this
scaling over several orders of magnitude
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The longest increasing subsequence problem for correlated random variables

Large deviation function
The empirical large deviation rate function Φn(L) associated with the
distribution of Ln (n≫ 1) observes

f (Ln > L) ≍ exp(−nΦn(L)) ∼

{

L−1.6 (maybe L−3∕2?) in the left tail
L2.9 (maybe L3?) in the right tail

0.001

0.01

0.1

1

0.001 0.01 0.1 1

∼
x −

1.6

∼
x

2
.9Φ

n
(L

)

x = L/Lmax

n = 256
n = 512

n = 1024
n = 2048
n = 4096

The distribution f (u) (or g(u)) remains unknown
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Planar Orthogonal Polynomials

Let pn(z) be the monic polynomial of degree n satisfying the orthogonality
condition: ∫

C
pn(z) pm(z) e

−NQ(z) dA(z) = hnδnm, n,m ≥ 0,

where the external potential is given by

Q(z) = |z |2 + 2
ν∑

j=1

cj
N

log
1

|z − aj |
,

where {c1, · · · , cν} are positive integers and {a1, · · · , aν} are distinct
points in C.
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For ν = 1, the zeros of orthogonal polynomials for c = 1. The left is for
a > 1 and the right is for a < 1.
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The zeros of orthogonal polynomials for c = e−ηn, where η = 0.4 (blue)
and η = 0.2 (magenta).
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The limiting locus (Purple lines).
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The limiting locus for ν = 3 and ν = 6.
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Thank You!
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Korteweg-de Vries equation

ut(x, t) + u(x, t)ux(x, t) +
1

12
uxxx(x, t) = 0, x ∈ R, t ≥ 0.

Lax pair representation

ϕxx + 2uϕ = λϕ,

ϕt =
ux

6
ϕ−

λ+ u

3
ϕx.

Question: Can this be applied to solve an initial value problem (ivp) with an initial
function u(x, 0) = u0(x)?

Answer: As a rule, if u0(x)→ u+(x, t0) as x→ +∞, and u0(x)→ u−(x, t0) as
x→ −∞, where u±(x, t) are exact solutions of the KdV with known solutions of the
Lax pair, then the answer is: yes.

Goal: to solve ivp for KdV with u0(x) from a class of unbounded as x→ ±∞
functions.



Known examples of exact solutions of KdV:

u±(x, t) ≡ 0. The corresponding continuous spectrum is two folded (−∞, 0].
u0(x)→ 0 as x→ ±∞

0

u±(x, t) ≡ c±, where c± are constants. The continuous spectrum is partially
one or two folded.

u0(x)→ c± as → ±∞

2c−2c+

u±(x, t) are the so-called finite gap (quasi periodic) solutions of KdV, who bear
their name after the form of the spectrum (B. Dubrovin, S. Novikov, P. Lax,
A. Its, V. Matveev, V. Marchenko, B. Levitan, H. Knörer, E. Trubowitz). The
solutions of the Lax pair are the Baker-Akhiezer functions, which are
meromorphic functions on the corresponding Riemann surface. The typical
spectrum has the following shape:

finite gap potential

u±(x, t) = U(x, t), where the U(x, t) ∼ 3
√
−x/6 as x→ ±∞ is some particular

function, defined through a Riemann-Hilbert problem. The corresponding
spectrum is one folded real line R.

u0(x) ∼ U(x, t0) as → ±∞
+∞



Scheme of integration of the initial value problem:

Usual scheme for integrating the ivp for KdV consists of two steps:

Forward scattering transform: Given u0(x), construct the solutions of the Lax
pair at the time t = 0, and construct the associated spectral functions, and then

Inverse scattering transform: Given the spectral functions, plug in the
evolution in time t and reconstruct the solution u(x, t) of the ivp.

This is known in the case of an initial function which is
• a perturbation of zero (Gardner Green Kruskal Miura),
• periodic initial function (V. Marchenko, B. Levitan),
• step-like perturbations of finite-gap functions (E. Khruslov, I. Egorova, G. Teschl),
• rapidly vanishing at positive half-axis, arbitrary on the left one (A. Rybkin).

Our goal here is to develop such a theory for u0(x), which is a perturbation of
U(x, t0).

U(x, t = 4), from T. Grava, A. Kapaev, C. Klein, ‘15



Main features of analysis

the Jost solutions of the Lax operator are not similar:
left solution f−(x;λ) ∈ H(C \ R) is discontinuous across λ ∈ R,
right solution f+(x;λ) ∈ H(C \ R) is an entire function;

as a consequence, there is only one ( scattering ) relation between f±;

only one spectral function, a(λ) is determined through that (scattering) relation,

f+(x;λ) = ia(λ− i0)f−(x;λ+ i0)− ia(λ+ i0)f−(x;λ− i0);

another spectral function, b(λ), is determined through asymptotics as x→ +∞
of f−(x;λ);

both a(λ), b(λ) are ∈ H(C \ R) and discontinuous across λ ∈ R;
to reconstruct solution u(x, t) of KdV from a(λ), b(λ), one needs to define a
piece-wise meromorphic matrix-valued function in the complex plane, using as
entries linear combinations of f−, f+;

we use compactness of perturbation in order to construct the above matrix;

poles of the conjugation problem solved by the above matrix are caused not by
zeros of a(λ) (a(λ) 6= 0 everywhere), but by zeros of a(λ) + ib(λ) in the upper
half-plane.

instead of |R|2 + |T |2 = 1, or |r|2 ≡ |b|
2

|a|2 = 1− 1
|a|2 ,we have

−i (r(λ+ i0)− r(λ− i0)) = 1− 1
|a(λ)|2 , λ ∈ R.



(
Flu

au
, Fr

)

(
Fld

ad
, Fr

)

(
Flu

au
, Fr − i

au+ibu
Flu

)

(
Fld

ad
, Fr +

i
ad−ibd

Fld

)

6π
7

−6π
7

 1 0
−i
auad

1



1
i

1− ird

0 1



1
i

1 + iru

0 1



−iru
1−ird

−i
(1+iru)(1−ird)

−i
auad

ird
1+iru





Universality of the conditional
measure of the Bessel Process
Joint work with Marco Stevens

L.D. Molag

KU Leuven

March 12, 2019, Marseille



1 � Rigidity and conditional measures 4/6

Loosely speaking, a point process is rigid when the position of the

points outside a certain interval I, a.s. determine the number of points

inside that interval.

When a point process is indeed rigid, one can consider the induced �nite

point process on I, called the conditional measure.

It is a recent �nd by Subhroshekhar Ghosh that the sine process is rigid.

It is a more recent �nd by Alexander Bufetov that also the Bessel and

Airy process are rigid, and in particular that the conditional measures of

these three processes a.s. are orthogonal polynomial ensembles.

Universality of the conditional measure of the Bessel Process � L.D. Molag



1 � The conditional measure of the Bessel process 5/6

Bufetov posed the question, what would happen when we let I grow to

cover the whole space (i.e. R→∞ in the �gure)? Would we end up

with the original point process?

This question was answered a�rmatively by Arno Kuijlaars and Erwin

Miña-Díaz for the sine process.

That is: the correlation kernel of the conditional measure on [−R,R]
a.s. converges back to the sine kernel as R→∞.

Marco Stevens and I proved that this also holds for the Bessel process.

That is: the correlation kernel of the conditional measure on [0, R] a.s.
converges back to the Bessel kernel.

Universality of the conditional measure of the Bessel Process � L.D. Molag



1 � Approach 6/6

Our approach is as follows:

1 Find the behavior of the (increasingly ordered) points (pn) in a typical

con�guration X = {p1, p2, . . .} of the Bessel process.

2 Approximate the weight of the OP ensemble by a convenient weight.

3 Relate the approximating OP ensemble to a Riemann-Hilbert problem

and solve it using the Deift-Zhou steepest decent method.

4 Use a technique by Lubinsky to �nd the limit of the correlation kernel

corresponding to the original OP weight.

Universality of the conditional measure of the Bessel Process � L.D. Molag



Matrix models and isomonodromic tau functions

Integrability and Randomness in Mathematical Physics
CIRM, Luminy, 8-12 April 2019
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Matrix models & multipoint correlators

Matrix integrals Z = Z(t1, t2, ...) as generating functions of algebro geometric -
combinatorial objects: (connected) multipoint correlators

∂s logZ
∂t`1 · · · ∂t`s

∣∣∣∣
t∗=0

.

Examples:

GUE: Zn =
∫
Hn

etr
∑
`≥3 t`M

`
e− tr M2

2 dM∫
Hn

e− tr M2
2 dM

(ribbon graphs [Bessis, Itzykson & Zuber, 1980])

LUE: Zn(m) =

∫
H+

n
etr

∑
`≥1 t`M

`
e− tr M detm−n MdM∫

H+
n

e− tr M detm−n MdM (monotone Hurwitz numbers [Cunden,

Dahlqvist & O’ Connell, 2018])
Kontsevich matrix integral:

Zn(Λ) =

∫
Hn

etr( M3
3 −ΛM2)dM∫

Hn
etr(−ΛM2)dM

(psi-classes intersection numbers onMg,s [Kontsevich, 1992])

and various generalizations (generalized Kontsevich models).
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Results: formulæ for multipoint correlators

Q: How to effectively compute these numbers?

Recently, formulæ of the kind

∑
`1,...,`s

1
x
`1+1
1 ···x`s+1

s

∂s log Z
∂t`1 ···∂t`s

∣∣∣∣
t∗=0

=−
∑

σ∈Ss/Cs

tr(R(xσ(1))···R(xσ(s)))
(xσ(1)−xσ(2))···(xσ(s)−xσ(1))

−
δs,2

(x1−x2)2
.

have been found, for the generating functions of connected correlators (matrix resolvent
approach, topological recursion, identification with isomonodromic tau functions).

More formulæ in the poster!
Bertola, Dubrovin & Yang, 2016 - Dubrovin & Yang, 2017 - R & Bertola, 2018 - R & Bertola, 2019 - ...,
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Main technical tool: isomonodromic tau functions
Isomonodromic system: monodromy-preserving deformations of a rational connection on P1.
Independent deformation parameters are called isomonodromic times and are the argument of
the isomonodromic tau function (Sato, Jimbo–Miwa–Ueno), which plays the role of a
generalized determinant (Malgrange–Miwa).
Isomonodromic approach: identification of matrix integrals (and their limits) with suitable
isomonodromic tau functions.

Applications. Let the matrix integral Z(t) (depending on parameters t = (t1, t2, ...)) be
identified with the tau function of the isomonodromic system

∂xΨ(x,t)=A(x,t)·Ψ(x,t), ∂t`
Ψ(x,t)=Ω`(x,t)·Ψ(x,t), Ψ(x,t)=Y (x,t)·eΘ(x,t), Y (x,t)∼1+O(x−1).

(For simplicity, the only pole of A is at x =∞.)

Limits of the matrix integral admit rigorous analytic interpretation in this setting (the limit
itself is in turn interpreted as an isomonodromic tau function).
The Jimbo–Miwa–Ueno formula

∂t` logZ(t) = − res
x=∞

tr(Y−1 · ∂xY · ∂tj Θ)

allows to write the non-recursive formulæ of previous last slide.
Virasoro constraints can be proved by expanding in suitable ways the identity

0 = res
x=∞

tr ∂x (xnY−1 · ∂xY · ∂tj Θ).

Equations of integrable hierarchy can be written down explicitly;

Ωj (x , t) = (∂tj Ψ(x , t) ·Ψ−1(x , t))+.
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Thank you for your time!
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On insertion of a point charge in the random
normal matrix model

Joint work with Yacin Ameur and Nam-Gyu Kang

Seong-Mi Seo (KIAS)

April 09 2019



Random normal matrix model with a logarithmic singularity

Consider n point charges on C influenced by an external potential Vn
where

Vn(ζ) = Q(ζ)− 2c

n
log |ζ|, c > −1.

I Energy of a configuration (ζ1, · · · , ζn) ∈ Cn:

Hn(ζ1, · · · , ζn) =
∑
j 6=k

log
1

|ζj − ζk|
+ n

n∑
j=1

Vn(ζj).

I The Boltzmann-Gibbs distribution at inverse temperature β = 1:

1

Zn
e−Hn(ζ1,··· ,ζn), ζ1, · · · , ζn ∈ C.

With a sufficient growth condition on the external potential, the
eigenvalues (particles) condensate on a compact set S, called the droplet,
as n tends to ∞.



Effects of inserting a point charge

I Microscopic properties of eigenvalues at the singularity in the bulk.

I Difference between the one point functions with and without insertion:
balayage operation.

I Gaussian convergence of the logarithmic potential.

Bulk universality for dominant radial potentials
Consider the external potential

Vn(ζ) = Qr(ζ) + Re

d∑
j=1

tjζ
j − 2c

n
log |ζ|,

where Qr is a radially symmetric function such that
Qr = |ζ|2λ +O(|ζ|2λ+ε) near 0 for λ > 0. Assume that 0 ∈ IntS. Then the
limiting correlation kernel of the rescaled system

zj = n1/2λζj

can be described in terms of the two-parametric Mittag-Leffler function
which depends on λ and c.
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The model

Consider the normal matrix model

ZN(t) =

∫
CN

∏
1≤k<j≤N

|zk − zj |2
N∏
j=1

e−NVt(zj ) d2zj

where (Balogh, Merzi ’13, . . . , Bertola, Rebelo, Grava ’18)

Vt(z) = |z |2s − t(zs + zs), t ∈ R, s ∈ N.

The equilibrium measure for this potential:
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The figures are t < tc, t = tc and t > tc, d = 11 and tc = 1/
√
s.
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Main result

Our main results are the following:

I Painlevé integrability: the partition function ZN(t) can be
represented exactly in terms of a Painlevé V τ -function.

I Double scaling limit N →∞: scaling near t ∼ tc we
calculate an asymptotic expansion in terms of a Painlevé IV
τ -function.

I Moments of characteristic polynomials of non-Hermitian
matrices: the results are intimately related to averages, say
of Ginibre type. (e.g. Akemann and Vernizzi ’02, Fyodorov
and Khoruzhenko ’06, Forrester and Rains ’08):

ZN(t) =
s−1∏
l=0

EGin

(
|det(A− t

√
s)|−γl

)
but now the exponents may not be even integers (fractional
moments).
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Confluence of singularities in the normal matrix model

Double scaling limit in the lemniscate is equivalent to
Fisher-Hartwig singularity (in 2d) colliding with Ginibre’s edge.
This collision → Painlevé IV. More results:

I Two bulk singularities: We find Painlevé V in the double
scaling limit.

I Truncated unitary ensemble: Painlevé VI at finite N and
Painlevé V in the boundary collision (weak non-unitarity).

Methods:

I Integer exponents: The starting point is an exact formula of
(e.g.) Akemann-Vernizzi ’02. Then calculate asymptotics.

I Non-integer exponents: In progress, we apply
Riemann-Hilbert analysis similar to Bertola, Rebelo, Grava ’18.

Thank you for listening. See our poster for more detail and please
ask us any questions.
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More results:

I Two bulk singularities: We find Painlevé V in the double
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I Two bulk singularities: We find Painlevé V in the double
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