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Goal: Connect totally non—negative Grassmannians to M—curves through
finite—gap KP theory

KP-II equation (—4u: + 6uuyx + Uxx)x + 3uyy =0

Two relevant classes of solutions:
@ Real regular multiline KP solitons which are in natural correspondence with
totally non—negative Grassmannians [Chakravarthy-Kodama; Kodama-Williams];
@ Real regular finite—gap KP solutions parametrized by degree g real regular
non—special divisors on genus g M-curves [Dubrovin-Natanzon]

Novikov: relevant to check whether real regular soliton solutions may be obtained
from real regular finite—gap solutions
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The Sato divisor on g

@ Soliton data: (K, [A]), with K = {k1 < ---kn}, A real k X n matrix
o T(x,y,t) = Wi (fD ... f(K), where f() = > Aj’: exp(kjx + n}y + /ij3.t)

@ u(x,y,t) =202 log(r) is regular for real (x,y, t) iff all maximal minors of A are
non—negative [Kodama Williams-2013]

Soliton data: (K,[A]) +—  Sato algebraic geometric data: g rational curve,
marked points Py, K1, ..., kn, k-point real non—special divisor

DY = {1 <y < -+ < v < Ko} [Malanyuk 1991]:

ot

Incompleteness of Sato algebraic—geometric data: k divisor points vs
k(n — k)—dimensional Grassmannian

Idea: use finite-gap theory for degenerate solutions (ex. solitons) on reducible curves!
[Krichever 1986]
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The algebraic curve

[Postnikov 2006]: Parametrization via planar bicolored networks in the disk of
positroid cells (= Gelfand-Serganova stratum + positivity) of totally non—negative
Grassmannians

In arXiv:1801.00208: fix soliton data (K, [A]), choose a trivalent G in Postnikov class
and construct [ rational degeneration of M curve of genus g = #{f} — 1:

g r
Boundary of disk Sato component g
Boundary vertex b, Marked point x; on g

Internal black vertex V! | Copy of CP! denoted ¥
Internal white vertex V| Copy of CP! denoted I
Edge e Double point
Face f Oval

e In the special case of Le—networks (arXiv:1805.05641) genus is minimal and equal to
the dimension of the positroid cell!

k,

1
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The KP divisor for the soliton data (K, [A]) on I

Key ideas:
@ Associate to each edge e of the directed network A/ an edge vector E. so that
Sato constraints are satisfied;

@ Use edge vectors to rule the values of the dressed edge wave function at the
edges e € N (=double points on ) = the Baker-Akhiezer function on I’
automatically takes equal values at double points;

@ Use linear relations at vertices to compute the position of the KP divisor and
extend wave function to I

@ Edge vectors are real = Edge wave function real for real KP times —- KP
divisor belongs to the union of the ovals;

@ Combinatorial proof that there is one divisor point in each oval.

& The j—th component of E.: (Ee)j = > (—l)Wi”d(PHi”t(P)W(P).
P:e—b;

o Explicit expressions for components of edge vectors on any network (modification of
Postnikov and Talaska): the edge vector components are rational in weights with
subtraction free denominators;

¢ Linear relations at internal vertices analogous to momentume-elicity conservation

conditions in the planar limit of N = 4-SYM theory (see Arkani-Ahmed, Bourjaily,
Cachazo, Goncharov, Postnikov, Trnka [2016]).
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Soliton lattices of KP-II and desingularization of spectral curves in
Gr™®(2,4) [AG-2018 Proc.St.]

Reducible plane curve Py(\, p) = 0, with

Pohp) =p- (n—= (A =r1)) - (m+ (A= r2)) - (r— (A= r3)) - (1 + (A — ra)).
Genus 4 M—curve after desingularization:
r(e) : POwp)=Po(Ap)+e(B2—p?) =0, 0<e<l,
where
K4 — K1

1
B = 2 +ZmaX{N2*N17K3*N2,K4*K3}~

k1= —15, Kkp=—075 k3=05, rs=-2.

Level plots for the KP-II finite gap solutions for ¢ = 1072 [left], e = 10710 [center]
and € = 10718 [right]. The horizontal axis is —60 < x < 60, the vertical axis is

0 <y <120, t = 0. The white color corresponds to lowest values of u, the dark color
corresponds to the highest values of u.
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Frobenius Manifolds

Definition (Frobenius manifold)
A Frobenius structure on M is the data (M, o, <,> , ¢, E)
satisfying:

1 n:=<, > is a flat pseudo-Riemannian metric;

2 e is C-linear, associative, commutative product on T,,M
which depends smoothly on m;

3 e is the unity vector field for the product and Ve = 0;

4 Vyc(x,y,z) is symmetric, where c(x,y,z) =< xey,z>;

5 A linear vector field E € (M) must be fixed on M, i.e.
VVE = 0 such that:

Le<,>=(2—-d)<,> Lge=e Lge=c¢



Frobenius Manifolds as Q/W

Theorem (Dubrovin Conjecture, Hertling 1999)

Any irreducible semisimple polynomial Frobenius manifold with
positive invariant degrees is isomorphic to the orbit space of a
finite Coxeter group.

Main Point

Differential geometry of the orbit spaces of reflection groups and of
their extensions — Frobenius manifolds.

Similar constructions works when W is Extended affine Weyl Group
[Dubrovin, Zhang 1998] and for Jacobi groups [Bertola 1999].
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Problem Setting

My = C3/A Moo = C?/ A
Example of Orbit space of Jacobi Example of Orbit space of
Group Extended Affine Weyl Group

Mixed of Extended Affine Weyl Group + Jacobi Group?
M0 = C*H/W
Generalization

Ml,n,O = (Cn+3/W



Thank you!



EMMA BAILEY

Joint work with Jon Keating
arXiv:1807.06605
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Take A € CUEp, an N x N unitary matrix. Then define

Pn(A, ) = det(] — Ae™ ).
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Pn(A, ) = det(] — Ae™ ).

Then there are two spaces to average over:

Gy Moments of Moments CIRM 2019

2/6



Take A € CUEy, an N x N unitary matrix. Then define
Pn(A, ) = det(] — Ae™ ).

Then there are two spaces to average over:

( the unit circle in the complex plane,

Gy Moments of Moments

CIRM 2019

2/6



Take A € CUEy, an N x N unitary matrix. Then define
Pn(A, ) = det(] — Ae™ ).

Then there are two spaces to average over:
( the unit circle in the complex plane,

> U(N) with respect to the Haar measure.
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Moments of Moments

MOMN(k’ B)

Set .
1 27
MoMy(k, 8) = Eacu(n) <<2ﬂ/0 |Pn(A, 9)|2ﬂd9) ) :
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Moments of Moments
MOMN(k’ B)

Set .
1 27
MoMy(k, 8) = Eacu(n) <<2ﬂ/0 |Pn(A, 9)|2ﬂd9) ) :

Conjecture (Fyodorov & Keating)
As N — oo,

’ykﬁNk’g2 k < 1/ﬁ2

MoMy(k, B) ~
nl5) {pk,BN“ﬂz—k“ k>1/62,

for some coefficients vy g, pk 3-
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Results

Consider the case when k, 5 € N.
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Results

Consider the case when k, 3 € N. Then k3% > 1 so we expect

MoMy (k, 8) ~ pi,s K7 K+,
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Results

Consider the case when k, 3 € N. Then k3% > 1 so we expect

MoMy (k, 8) ~ pi,s K7 K+,

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then MoMy(k, ) is a polynomial in N.

Theorem [B.-Keating (2018)]
Let k, 3 € N. Then with p, 5 an explicit function of k and £,

MoMpy (k, B) = pr sN¥*F—K+1 1 O(NKF*=ky,
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Example

(N+1)(N+2)(N+3)(N+4) (N+5)(N+6)(N+7)(N+8) (N+9)(N+10)(N+11)
MoMy (2 3) 1722191327731024154944441889587200000000

x (12308743625763 N24 +1772450082100872N23 1121902830804050138N22 1
15328802119564663432N21 1+ 166214570105622478453N20 1 3937056250812505643352 12
173583663800226157619008/18 1 1113100355823072261420312 17 1 13869840005250869763713203 /16
+144126054435920320947378912N15 +1250786144808207172443272698 N 14
19315726013410827893883025672N 13+ 58475127984013141340467825323 12
+311078271286536355427593012632N11 +1413794106539529439589778645028 V10
15427430874579682720570383266092N 1 17564370687865211818995713006848 N8
+47561382824003032731805262075232N 7 +106610027256886475209611301000128 /O
1104861499503272627170466392014502 V5 +284303877221735683573377603640320N%
1320089495108428049992898521600000/V3 +266974288159876385845370793984000N 2

+148918006780282798012340305920000/N+-4314452380278539750041 1904000000)
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Speed of Convergence in the Gaussian
Distribution for Laguerre Ensembles
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Problem statement
Consider Laguerre Unitary Ensemble:

M = U*diag{A,..., A, }U, (1)

where U is distributed uniformly on the unitary group U(n)
The random variables Al, ..., \,, have the joint probability density

Pom(A, . An) = Z Hm > 0[ATe ™ TTOw = A)% (2)

i<k

where « > —1, m € N, and Z,, ,,, is the partition function.
Let f(M) be a real-valued function defined on the spectrum of M.
Our goal is to study the characteristic function

E,,, [T O0] = /eihiﬂ*ﬂpn,m(xl, AN - dh (3)

of the linear statistic Tr f(A/) in a double-scaling limit
as n = m — o0.
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Main results

Let f: RT — R be locally Holder continuous such that it admits the
analytic continuation to some neighborhood of [0, 1].

Theorem (Convergence to the Gaussian law)

Tr f(M) — nof] -5 N(ulf],K[f]), n=m—oco. (4)

The linear functionals »[f], u[f], and the quadratic functional K|f]
are given with the explicit formulas.

Theorem (Speed of convergence)

Let f(z) also satisfy f(x) = O(e?*), A >0, as v — +0o. Define the
cumulative distribution functions F,,(x) and F(x) corresponding
to Tr f(M) — nsx[f] — p[f] and to N(0, K[f]), respectively. Then

sup |F,(z) — F(z)| = O(1/n), n=m — occ. (5)
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The proof of Theorems is based on the Riemann—Hilbert analysis
similar to Charlier&Gharakhloo (2019). However, unlike them, we are
interested in complex exponents. In such a case the corresponding
Hankel determinants and/or the weight of the corresponding
orthogonal polynomials can be zero. Also we need the exponents that
grow with n.

To succeed we adopt the approach from Deift, Its&Krasovsky (2014)
and use the deformation of

w(z) = xte neehf (@), (6)
into
Wie(x) = 0 (1 " temn[z<nv+1}f(x)) eh(=DII< +11f(z) - (7)
We choose € > 0 small enough so that
1 —t + tePtl<n 1@ £ 0~ e [0,1], (8)

for all t € [0,1], x in the neighborhood of [0, 1], & such that |h| < ¢,
and for all n, .

Conference “Integrability and Randomness in Mathematical Physics and Geometry”, April 8-12, 2019



From Gumbel to Tracy-Widom Il, via integer partitions
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University of Bonn
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Partitions

Figure: Partition (Young diagram) A = (2, 2, 2, 1, 1) (Frobenius coordinates (1, 0|4, 1)) in English, French and Russian notation, with

associated Maya diagram (particle-hole representation). Size || = 8, length £()\) = 5.

Figure: Skew partitions (Young diagrams) (4, 3, 2, 1)/(2, 1) (but also (5, 4, 3,2, 1)/(5, 2, 1), . .

(6,4,4,2,1)/(6,2,2),...)

L[]

.)and (4,4,2,1)/(2,

2) (but also



Counting tableaux

A standard Young tableau (SYT) is a filling of a (possibly skew) Young diagram with

numbers 1,2, ... strictly increasing down columns and rows.
1[3]5]6] 1]7]
21419 34
7] 2|5
18] 6

dim A := number of SYTs of shape A

and similarly for dim \/p.



Measures on partitions

There are two natural measures on all partitions: poissonized Plancherel vs. (grand
canonical) uniform

—2 21| 7(dim )\)2 Vs. Prob(\) = ulM H(l — ui)

Prob(\) = e (2 11

with € > 0 and 1 > u > 0 parameters.



Ulam's problem and Hammersley last passage percolation

Quantity of interest: L = longest up-right path from (0,0) to (1,1) (= 4 here).
Schensted'’s theorem yields that, in distribution,

L=X\

with A coming from the poissonized Plancherel measure.



The Baik—Deift—Johansson theorem and Tracy—Widom

Theorem (BaiDeiJoh 1999)

If X is distributed as poissonized Plancherel, we have:

-2
lim Prob (Al < s) = Frw(x) == det(1 — Ai2)(s o0)
€l/3 ’

€— 00

with
oo
Aix(x,y) = / Ai(x + s)Ai(y + s)ds.
0
and Ai the Airy function (solution of y" = xy decaying at o).

Frw is the Tracy-Widom GUE distribution. It is by (original) construction the extreme
distribution of the largest eigenvalue of a random hermitian matrix with iid standard
Gaussian entries as the size of the matrix goes to infinity.



The Erdés—Lehner theorem and Gumbel

Theorem (ErdLeh 1941)

For the uniform measure Prob()\) o< ul* we have:

log(1 — u) . ¢ e
log u | log ul '

lim Prob ()\1 < —

u—1—



The finite temperature Plancherel measure

On pairs of partitions x C XA D p consider the measure

Al—
Prob(j, \) oc ul#! ATID dim*(A 1)

(IA/ul)?

with u = e~ #, 8 = inverse temperature.

» u = 0 yields the poissonized Plancherel measure

» ¢ = 0 yields the (grand canonical) uniform measure



The finite temperature Plancherel measure |l

Theorem (B/Bouttier 2019)
Let M = - — oo and u = exp(—aM~1/3) — 1. Then

1—u

, A —2M _ ,
Mlinoo Prob (W < s) = FY(x) :=det(1 — Ai%) (5 o0)

with

oo eOtS
A% (x,y) = / o Al + ANy + 5)ds.

the finite temperature Airy kernel.



What is in a part?

PPP(u'é)

PPP(u’é)

PPP(u?¢)

PPP(ue?)

PPP(e)

With L the longest up-right path in this cylindric geometry, in distribution, Schensted’s
theorem states that

M =L+ k1

where & is a uniform partition Prob(x) o ul®l independent of everything else.



A word on the finite temperature Airy kernel Ai®

» introduced by Johansson (Joh07)

> also appearing as the KPZ crossover kernel: SasSpol0 and AmiCorQuall; in random
directed polymers BorCorFerll; cylindric OU processes LeDMajSch15

> interpolates between the Airy kernel and a diagonal exponential kernel:
lim Aia(X7y) = AI'Q(X,y),
a—r 00

1 1 1
lim —A“ (i — — log(4ma), Y- |og(47ra3)) =e "ox,y
a 2o« a 2o«

a—0+

> with F*(s), Frw(s), and G(s) the Fredholm determinants on (s, co) of Ai%, Ay and
e *éx,y, (Joh07)

lim_ F7(s) = Frw (s),

o

lim F (2 - L |°g(47"a3)> =G(s)=e"*°

a—0+ 2a

s



Direct limit to Tracy—Widom

Theorem (B/Bouttier 2019)

Let u — 1 and € — oo in such a way that €(1 — u)?> — co. Then we have

AL —2M
Prob (W < s) — Frw(s), M =



Direct limit to Gumbel

Theorem (B/Bouttier 2019)
Set u= e~" and assume that r — 0+ and er? — 04 (with e possibly remaining finite).
Then:

Io(2 —s
Prob (r/\l —In M < s) —e €
r

where Ip(x) := 2ﬂ_ f“ xcos e js the modified Bessel function of the first kind and order
zero.



Thank you!



Transition between characters of classical groups,

decomposition of Gelfand-Tsetlin patterns,

and last passage percolation

(joint work with Nikos Zygouras)
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Last passage percolation

Last passage percolation (LPP)

L(2n,2n) := max Z W,

i,j
”EHZn,Zn (i j)EIl’

@ II,, 5, is the set of directed paths in {1,...,2n}? starting from
(1,1) and ending at (2n,2n);

© {W, j}1<i j<on is a field of independent geometric random
variables with various symmetries

wy - (1) TR

(2n,2n) ™ (2n,2n) R (2n,2n)

Antidiagonal symmetry Diagonal symmetry Double symmetry



Character identities and LPP

Character identities and LPP

P(L%(Z”’Z”) < 2“) & Z ﬁz' “1(d mod 2 Zn "1 -P2n)

pC(2u)®m

ﬂpzl s <2n> 15+ s P2ns )

l_[pi Z S (Prs- 5P B) 83 Prsts- -5 P2n3 B)

Acu™

ay il (2n)
7 @ Sy

o s’ is a Schur polynomial that interpolates
between symplectic and odd orthogonal
characters.

is a classical Schur polynomial;

(2n,2n)



Duality between determinants and Pfaffians

Duality between determinants and Pfaffians

Baik-Rains’ formulas and ours show a duality between
o Pfaffians and determinants, for finite N.

@ Fredholm Pfaffian and Fredholm determinantal expressions of
the limiting distribution functions, as N — oo.

E.g., we obtain:
@ Sasamoto’s Fredholm determinant for the GOE Tracy-Widom
distribution in the case of antidiagonal symmetry:

F;(s) = det(I - By)

o Ferrari-Spohn’s Fredholm determinant for the GSE
Tracy-Widom distribution in the case of diagonal symmetry:

Fy(s) = % |det(I - B s5,) +det(I +B.g,)|

with the kernel being B (x,y) := Ai(x +y+s) on L*([0,0)).
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Introduction

e Question: Can the 7-function of Painlevé Il be expressed as a
Fredholm determinant?
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Introduction

e Question: Can the 7-function of Painlevé Il be expressed as a
Fredholm determinant?
e Painlevé Il

Gss = 59 — 2q° (1)
e The 7-function of Painlevé Il is related to its transcendent
d2
= nrls] = —¢(s) )

e What is known?
e Ablowitz-Segur family is a special solution of PII

q(s) =~ kAi(s); ke€C;s— o0 (3)

e It is a known result that the 7-function in this case is the
determinant of the Airy Kernel.

rls] = det[l — £*Ka[joc) 4)



General Painlevé Il using IIKS construction

o The Riemann Hilbert problem of Painlevé Il, after some transformations,

can be reduced to the following RHP on iR

F(z2)=T_(2)J)(z); T(z2)=1+0(z"") as z— 0 (5)
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General Painlevé Il using IIKS construction

e The Riemann Hilbert problem of Painlevé Il, after some transformations,
can be reduced to the following RHP on iR

Fi(z)=T_(2)J(z); T(z2)=140(z"") as z— o0 (5)

e Using x;, the jump function is J(z) = [ a(z) - b(z) ] =1-27if(2)g (2)

c(z) d(z)
e with
f(Z) - \Z(Z) T (b(ﬁz(k)?‘)l) \4(2) . (Z) - i \l(Z) f \3(2)
| ey () + (ale) — a(a) | TET T 2mi [ xe(2) +xa2)

a(z), b(z), c(z),d(z) are given in terms of parabolic cylinder functions.



e The integrable kernel on L2(iR) is given by



e The integrable kernel on L2(iR) is given by

L T(2)a(w)
K(z,w) = 27i(z — w) (©)
e 7-function:
7[s] = det(1 — K) (7)



e The integrable kernel on L2(iR) is given by

K(zow) = L) (6
e 7-function:
7[s] = det(1 — K) (7)

e 7[s] is related to the JMU 7-function as

) ) 2iv 1?2
Os In T[S] = 0s InTypy - F — A(l/) (8)
3 s
where v = —5L In(1 — s153) and s1, 53 are Stokes’ parameters and s

is the PIl parameter and A(v) is a non-vanishing depending only on

V.



References

@ Fokas, A.S., Its, A.R., Kapaev, A.A., Kapaev, A.l., Novokshenov,
V.Y. and Novokshenov, V.l., 2006. Painlevé transcendents: the
Riemann-Hilbert approach (No. 128). American Mathematical Soc.

@ Bertola, M., 2017. The Malgrange form and Fredholm determinants.
arXiv preprint arXiv:1703.00046.

@ Its, A.R., lzergin, A.G., Korepin, V.E. and Slavnov, N.A., 1990.
Differential equations for quantum correlation functions.
International Journal of Modern Physics B, 4(05), pp.1003-1037.

@ Cafasso, M., Gavrylenko, P. and Lisovyy, O., 2017. Tau functions as
Widom constants. arXiv preprint arXiv:1712.08546.

@ Bothner, T. and Its, A., 2012. Asymptotics of a Fredholm
determinant involving the second Painlevé transcendent. arXiv
preprint arXiv:1209.5415.



Extreme gap problems in random matrix theory

Renjie Feng

BIMCR, Peking University

Renjie Feng (BICMR) 1/10



Previous results |: smallest gaps for CUE

Let e/, ... e be n eigenvalues of CUE, consider

n
Xn = Z 5("4/3(9i+1—9i)79i)'
i=1

Theorem (Vinson, Soshnikov, Ben Arous-Bourgade)

Xn tends to a Poisson process x with intensity

Ex(Ax ) = <%/Au2du> (/Ig—;)

The kth smallest gap has limiting density

3 3k—1_—x3
(k—l)!X e .

Renjie Feng (BICMR) 2/10



Previous results |I: smallest gaps for GUE

For GUE

n

0= 20080, a2

i=1

Theorem (Ben Arous-Bourgade, AOP 2013)

Xn tends to a Poisson process x with intensity

Ex(A x l):(%%[‘uzdu)(/(4—x2)2dx),

/

where AC Ry and | C (=24 17,2 —n).

The kth smallest gap has the limiting density ﬁx“_le_xa, same as

CUE.

Renjie Feng (BICMR) 3/10



New results |: smallest gaps for CSE

When S is an positive integer, consider

Theorem [F.-Wei]

Xn tends to a Poisson point process x with intensity

Ex(A x “|/ uPdu,

where Ag = (2m) 120 (LGEEN For COE, CUE and CSE,

r(38/2+1)r(B+1)

1 1 1

A:— = — = —
Y704 2T oan T T 701

Renjie Feng (BICMR)
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New results Il: smallest gaps for GOE

For GOE

n—1
(n) —
X0 = Z 6"3/2(>\(i+1)*>\(i))
i=1

Theorem [F.-Tian-Wei

x{" converges to a Poisson point process y with intensity

1
Ex(A) = —/ udu.
4 /A
the limiting density of the kth smallest gap is

2 2k—1 _—x?
k—1)1° ¢

same as COE.

Conjecture: CSE and GQBE share the same smallest gaps.

Renjie Feng (BICMR)

5 /10



Previous Ill: order of largest gaps

For CUE and interior of GUE, my is the kth largest gap,
Theorem (Ben Arous-Bourgade, AOP 2013)

For any p > 0 and /, = n°D | one has

my. X
L V32Inn

Renjie Feng (BICMR) 6 /10



New results Ill: fluctuation of largest gaps

Theorem (F.-Wei)
Let's denote my as the k-th largest gap of CUE, and

77 = (2In n)2 (nmy — (321n n)2)/4 — (3/8) In(21n n),

then {7/} tends to a Poisson process and 7/ has the limit of the Gumbel

distribution,
ek(c1—x)

(k—1)°
Here, c; = & 1n2+3¢'(—1) +In3.

_ef1—X

Renjie Feng (BICMR) 7/ 10



New results Ill: fluctuation of largest gaps

Theorem (F.-Wei)

Let’s denote mj as the k-th largest gap of GUE, S(/) = inf; v/4 — x? and

77 = (2In n)3(nS(1)mj, — (32In n)2)/4 + (5/8) In(2In n),

{7} tends to a Poisson process and has the limit of the Gumbel
distribution,
ek(q—x)
k—1)°¢

Here, ¢ = 35 1n2+4 3¢’ ( 1) + Mo(!) depending on I, where
Mo(1) = (3/2) In(4 — a) — In(4|a|) if a+ b < 0,
Mo(1) = (3/2) In(4 — b?) — In(4|b|) if a+b>0,
Mo(1) = (3/2)In(4 — a®) —In(2|a|) if a+ b =0 .

_e@—x

Renjie Feng (BICMR)
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Extreme gaps IV: universality of extreme gaps

Recently, our results are generalized for Hermitian/symmetric Wigner
matrices with mild assumptions.
o P. Bourgade, Extreme gaps between eigenvalues of Wigner matrices,
arXiv:1812.10376.
e B. Landon, P. Lopatto, J. Marcinek, Comparison theorem for some
extremal eigenvalue statistics, arXiv:1812.10022.

Renjie Feng (BICMR) 9/ 10
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MATRIX MODELS FOR CLASSICAL GROUPS AND
TOEPLITZ+HANKEL MINORS WITH APPLICATIONS TO
CHERN-SIMONS THEORY AND FERMIONIC MODELS
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MINORS OF TOEPLITZ+HANKEL MATRICES
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MINORS OF TOEPLITZ+HANKEL MATRICES
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MINORS OF TOEPLITZ+HANKEL MATRICES

/ f(Myam =

u(n)

1 do

A Joon |A(e’9>|2Hf (e Sk =
do d_w d_z d_3 Cl_z. d_5
di do do do ds d_s
dZ dw do d71 dfz d73

detf g, o, o do dy dos

d_

C/4 d3 Clz d1 dO



MINORS OF TOEPLITZ+HANKEL MATRICES

/ f(MydM =
U(N)
1 dek

T |A(e"’>|2Hf COECE

ds d_ d_s d_4

det| s dy d

d
d dz do dy



MINORS OF TOEPLITZ+HANKEL MATRICES

/U DS =

1 i0 ol '0 2 i0 del? _

A Ga A COTIXC Hf(e Nk =
di d_; ds d_s
detf g, di dor d,
d_s



MINORS OF TOEPLITZ+HANKEL MATRICES
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MINORS OF TOEPLITZ+HANKEL MATRICES

/ AMYAM = (G(N) = Sp(2N), O(2N), O(2N + 1))
G(N)

N
1 / 2 19 dek
i T fEe™) 52 =
N' [O,ZTI']N E

—d, di—ds dr—ds d3—ds dz,—ds ds—
dr—ds do—d, di—ds dy—de ds—d; di—ds
d—d, di—ds do—ds dy—dy d, — ds ds — do

95/5 d3—ds dy—ds di—d; do—ds di—do dy—dio
dy—ds d3s—d; dy—dg di—dy do—do di—dn



MINORS OF TOEPLITZ+HANKEL MATRICES

/ o X Oy () (G(N) = Sp(2N), O(2N), O(2N + 1))
G(N
1 A =0y, 1 (ol6 2 ot dt%
I X e )x f(e™r) =
N Jjoomp (& s (@ H
dy —ds di — ds dy—d; di—dsg
ESIE ds — ds dy — dy dy —do d, — do

dy — ds dy — ds do—dio di—dn



SOME RESULTS AND APPLICATIONS

- Factorizations

fweu = [

0(2N+1)

f(U)du / oy JEV

UQRN)

/ f(U)dU:/ f(U)dU/ fuydu.
Ju@n+) Jsp(an) Jo@n+2)

- Expansions in terms of Toeplitz minors

1 L
det (dj—r — djsr) ey = o S (DN R,

X, ER(N)

- Chern-Simons theory

/ o(U)du Partition function
JG6(N)
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- Chern-Simons theory
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SOME RESULTS AND APPLICATIONS

- Factorizations

fweu = [

0(2N+1)

f(U)du / oy JEV

UQRN)

/ f(U)dU:/ f(U)dU/ fuydu.
Ju@n+) Jsp(an) Jo@n+2)

- Expansions in terms of Toeplitz minors

1 L
det (dj—r — djsr) ey = o S (DN R,

X, ER(N)

- Chern-Simons theory

/( XU k(DO Hopf link
JG(N
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Semigroups for One-Dimensional Schrodinger

Operators with Multiplicative White Noise!

Pierre Yves Gaudreau Lamarre
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!Based on a paper of the same name; arXiv:1902.05047.
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Let £ be a Gaussian white noise on R?, and V : R? — R be
a deterministic function.
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Let £ be a Gaussian white noise on R?, and V : R? — R be
a deterministic function.

Consider the random Schrédinger operator

H:=(-1A+V)+e
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Let £ be a Gaussian white noise on R?, and V : R? — R be
a deterministic function.

Consider the random Schrédinger operator

H:=(-1A+V)+e

Problem. Develop a semigroup theory for H , l.e.,

{eftH > 0}

Lamarre Semigroups for 1D Operators with Noise



© SPDEs: u(t, ) := e "uy(z) solves

du= (AA—-V)u+&u, u(0, ) = ug(z).
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© SPDEs: u(t, ) := e "uy(z) solves

du= (AA—-V)u+&u, u(0, ) = ug(z).

@ Spectral Analysis of SPDEs:

e Mg =3~ e NI (G (H), o) (H).
k=1
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© SPDEs: u(t, ) := e "uy(z) solves

du= (AA—-V)u+&u, u(0, ) = ug(z).

@ Spectral Analysis of SPDEs:

e Mg =3~ e NI (G (H), o) (H).
k=1

@ Feynman-Kac formula:

o~ f(x)

Pierre Yves Gaudreau Lamarre Semigroups for 1D Operators with Noise



& cannot be defined pointwise.
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& cannot be defined pointwise.

It is thus nontrivial to define

Hf = (-3A+V) f+£f;
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& cannot be defined pointwise.

It is thus nontrivial to define

Hf = (-3A+V) f+£f;

E* {exp (— /Ot V(B(s)) + S(B(S>)ds) f(B(t))]

Pierre Yves Gaudreau Lamarre Semigroups for 1D Operators with Noise



At my poster:




At my poster:

@ Show how these technical obstacles can be overcome in
one dimension.
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At my poster:

@ Show how these technical obstacles can be overcome in
one dimension.

@ Discuss applications in random matrix theory and
SPDEs with multiplicative white noise.
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At my poster:

@ Show how these technical obstacles can be overcome in
one dimension.

@ Discuss applications in random matrix theory and
SPDEs with multiplicative white noise.

@ Discuss partial results in higher dimensions, and
connection to regularity structures/paracontrolled
calculus/renormalization of SPDEs.

Pierre Yv E wu Lamarre Semigroups for 1D Operators with Noise
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The longest increasing subsequence problem for correlated random variables

The longest increasing subsequence problem

LIS problem
To find an increasing subsequence of maximum length of a finite
sequence of n elements taken from a partially ordered set

(ay,ay,...,a,) = LIS=(q;,a;,...qa;)

such that a; <a;

i S <a with 1 iy <ip < <ip<n

Applications
m Bioinformatics — gene sequence alignment
m Computational linguistics — querying, string matching, diff

m Statistical process control — trend marker

To find one representative LIS of a sequence is an O(n log n) task

1/10



The longest increasing subsequence problem for correlated random variables

LIS problem for random permutations

How does the length L, of the LIS of random permutations grow with n?
(S. Ulam, ~1960)

Example
c=(243517698) = LIS={(23568), 24579), - },L, =5

Solution took nearly 40 years to complete (Baik, Deift & Johansson, 1999)

L,~2 n+n%y,

with y, ~ TW,, the distribution for the fluctuations of the largest
eigenvalue of a random GUE matrix (Tracy & Widom, 1993)

2/10



The longes asing subsequence problem for correlated random varia

The LIS of random walks

A random walk (RW) of length n is the r. v.
Sn :X1 +X2 + - +Xn

with X, i.i.d. according to some to some zero-mean, symmetric p.d.f.

S, =(51,8,,...,S,) is a sequence of correlated random variables
How does the length of the LIS of S, scales with n and the law of increments?

Surprisingly, this problem has been posed only recently in the
literature (Angel, Balkay & Peres, 2014; Pemantle & Peres, 2016)

3/10



The longest increasing subsequence problem for correlated random variables

What we are looking for

30

10 20

-20 -10 O
|

-200 O 200
| |

-400
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The longest increasing subsequence problem for correlated random variables

Rigorous results on the LIS of random walks

LIS of RW with finite variance (Angel, Balkay & Peres, 2014)

LetS, =, X;be aRW on R with i.i.d. X; such that E(X;) = 0 and
Var(X;) = 1. Then for all € > 0 and large enough n,

1
cy/n < E(L,) < n2*e.

LIS of RW with infinite variance (Pemantle & Peres, 2016)

If the steps X; are i.i.d. according to a symmetric a-stable law with a
sufficiently small index a < 1, then

nﬂo—o(l) < [E(Ln) < nﬂ1+0(1)’

with fy = 0.690093 --- and #; = 0.814835 --- (not sharp).

5/10



he longest increasing subsequence problem for correlated random variables

Numerical experiments

Numerical evidence suggests that the p.d.f. f(L,)
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The longest increasing subsequence problem for correlated random variables

Correction to scaling

Conjectural asymptotics (JR, 2017)

The length L, of the LIS of random walks with step lengths of finite
variance scales with n like

L, ~ %\/Z Inn + %\/ﬁ + lower order terms

Recent data (Borjes, Schawe & Hartmann, 2019) seem to confirm this
scaling over several orders of magnitude

7/10



The longest increasing subsequence problem for correlated random variables

Large deviation function
The empirical large deviation rate function @, (L) associated with the

distribution of L, (n > 1) observes
L~10  (maybe L=3/2?) in the left tail
L~ (maybe L°?) in the right tail

0.1 |

.01 .
2 = L/Lmax

The distribution f(u) (or g(x)) remains unknown
8/10



The longest increasing subsequence problem for correlated random variables
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Merci beaucoup!
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Planar Orthogonal Polynomials

Let pn(z) be the monic polynomial of degree n satisfying the orthogonality
condition:

/ Pn(2) Pm(2) e NQ(2) dA(z) = hsdpm, n,m >0,
C

where the external potential is given by

14
2 < 1
= 2 —=lo
Q)= 1 +23 log [~
Jj=1
where {c1, -+, ¢, } are positive integers and {az,--- ,a,} are distinct

points in C.

Meng Yang (UCLouvain) Planar orthogonal polynomials with logarithm April 9th, 2019



For v =1, the zeros of orthogonal polynomials for ¢ = 1. The left is for
a > 1 and the right is for a < 1.
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The zeros of orthogonal polynomials for ¢ = e~"", where n = 0.4 (blue)
and = 0.2 (magenta).
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The limiting locus (Purple lines).
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The limiting locus for v = 3 and v = 6.
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Korteweg-de Vries equation

1
ug(z,t) + u(z, t)uz (z, t) + Bumm (z,t) =0, z€R,t>0.

|

Lax pair representation

ez + 2up = Ap,

_ Ug A+ u
sot—6<P 3

Px-

Question: Can this be applied to solve an initial value problem (ivp) with an initial
function u(z,0) = uo(x)?

Answer: As a rule, if ug(x) — uy(z,t0) as ¢ — +o0, and ug(z) — u—(z,to) as
T — —00, where u+(x,t) are exact solutions of the KdV with known solutions of the
Lax pair, then the answer is: yes.

N

Goal: to solve ivp for KdV with ug(x) from a class of unbounded as © — +oco
functions.

M




Known examples of exact solutions of KdV:

@ u4(z,t) = 0. The corresponding continuous spectrum is two folded (—oo, 0].

0

@ uy(z,t) = ct, where c+ are constants. The continuous spectrum is partially
one or two folded.

2cy 2c_

@ u(z,t) are the so-called finite gap (quasi periodic) solutions of KdV, who bear
their name after the form of the spectrum (B. Dubrovin, S. Novikov, P. Lax,
A. lts, V. Matveev, V. Marchenko, B. Levitan, H. Kndrer, E. Trubowitz). The
solutions of the Lax pair are the Baker-Akhiezer functions, which are
meromorphic functions on the corresponding Riemann surface. The typical
spectrum has the following shape:

@ ui(z,t) = U(x,t), where the U(x,t) ~ 3/—x/6 as x — Fo0 is some particular
function, defined through a Riemann-Hilbert problem. The corresponding
spectrum is one folded real line R.

—+00



Scheme of integration of the initial value problem:

Usual scheme for integrating the ivp for KdV consists of two steps:

@ Forward scattering transform: Given ug(z), construct the solutions of the Lax
pair at the time ¢t = 0, and construct the associated spectral functions, and then

@ Inverse scattering transform: Given the spectral functions, plug in the
evolution in time ¢ and reconstruct the solution u(z,t) of the ivp.

This is known in the case of an initial function which is

e a perturbation of zero (Gardner Green Kruskal Miura),

o periodic initial function (V. Marchenko, B. Levitan),

e step-like perturbations of finite-gap functions (E. Khruslov, I. Egorova, G. Teschl),
e rapidly vanishing at positive half-axis, arbitrary on the left one (A. Rybkin).

Our goal here is to develop such a theory for ug(z), which is a perturbation of
U(z,to).

U(z,t =4), from T. Grava, A. Kapaev, C. Klein, ‘15

| |
A E Ut t)

T~ )




Main features of analysis

@ the Jost solutions of the Lax operator are not similar:
left solution f_(x;A) € H(C \ R) is discontinuous across A € R,
right solution fi (z;A) € H(C \ R) is an entire function;

@ as a consequence, there is only one ( scattering ) relation between f4;

@ only one spectral function, a()) is determined through that (scattering) relation,
f+(z; A) = ia(A —10) f— (z; X +10) — ia(X 4 i0) f— (x; A — 10);

@ another spectral function, b()), is determined through asymptotics as x — +oo
of f—(x;A);
@ both a(X),b(\) are € H(C \ R) and discontinuous across A € R;

@ to reconstruct solution u(z,t) of KdV from a()\), b(\), one needs to define a
piece-wise meromorphic matrix-valued function in the complex plane, using as
entries linear combinations of f_, fi;

@ we use compactness of perturbation in order to construct the above matrix;

@ poles of the conjugation problem solved by the above matrix are caused not by
zeros of a(\) (a(X) # 0 everywhere), but by zeros of a(\) +ib(A\) in the upper

half-plane.
2
@ instead of |R|2+|T|2 =1, or |r|?2 = % =1- ﬁ,we have
—i(r(A+i0) —r(A=i0)) = 1 - -5z, A ER.
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1 — Rigidity and conditional measures 4/6

@ Loosely speaking, a point process is rigid when the position of the
points outside a certain interval I, a.s. determine the number of points
inside that interval.

P1 p2 D3 Pa Ps  De
0 R )

@ When a point process is indeed rigid, one can consider the induced finite
point process on I, called the conditional measure.

@ It is a recent find by Subhroshekhar Ghosh that the sine process is rigid.
It is a more recent find by Alexander Bufetov that also the Bessel and
Airy process are rigid, and in particular that the conditional measures of
these three processes a.s. are orthogonal polynomial ensembles.

KU LEUVEN
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1 — The conditional measure of the Bessel process 5/6

@ Bufetov posed the question, what would happen when we let I grow to
cover the whole space (i.e. R — oo in the figure)? Would we end up
with the original point process?

@ This question was answered affirmatively by Arno Kuijlaars and Erwin
Mifia-Diaz for the sine process.
That is: the correlation kernel of the conditional measure on [—R, R]
a.s. converges back to the sine kernel as R — oc.

@ Marco Stevens and | proved that this also holds for the Bessel process.
That is: the correlation kernel of the conditional measure on [0, R] a.s.
converges back to the Bessel kernel.

KU LEUVEN

Universality of the conditional measure of the Bessel Process — L.D. Molag



1 — Approach 6/6

Our approach is as follows:

1 Find the behavior of the (increasingly ordered) points (p,,) in a typical
configuration X = {p1,pa,...} of the Bessel process.

2 Approximate the weight of the OP ensemble by a convenient weight.

3 Relate the approximating OP ensemble to a Riemann-Hilbert problem
and solve it using the Deift-Zhou steepest decent method.

4 Use a technique by Lubinsky to find the limit of the correlation kernel
corresponding to the original OP weight.

KU LEUVEN

Universality of the conditional measure of the Bessel Process — L.D. Molag
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Matrix models & multipoint correlators

Matrix integrals Z = Z(t1, t2, ...) as generating functions of algebro geometric -
combinatorial objects: (connected) multipoint correlators
O log Z
Oty - - - Oty "o 0
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Matrix models & multipoint correlators

Matrix integrals Z = Z(t1, t2, ...) as generating functions of algebro geometric -
combinatorial objects: (connected) multipoint correlators

O log Z
Oty - - - Oty "o 0
Examples:

2

tryp>3 zZM[' —tr MTdM

e = e .

o GUE: Z, = Sty 2 (ribbon graphs [Bessis, itzykson & Zuber, 1980])
Sy Tz am

14
S Xe>1 M = e M germ—n p1q

i) .
o LUE: Z,(m) = i (monotone Hurwitz numbers [cunden,

[+ e ' Mdet™ =" MdM
Hn
Dahlqvist & O’ Connell, 2018])

o Kontsevich matrix integral:

an etr(IVIT:’—/\MZ)d,\/,

Zn(/\) fH etr(,/\MZ)dM

si-classes intersection numbers on M s [Kontsevich, 1992]
g

and various generalizations (generalized Kontsevich models).
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Results: formulae for multipoint correlators

Q: How to effectively compute these numbers?
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Results: formulae for multipoint correlators

Q: How to effectively compute these numbers?

Recently, formula of the kind

..... 05 T = > — = -
S ATE BT Oty 0t |, o pedy s Ko@) T0@) B TXo()  Ca—x2)

1 55 log Z B tr(R(xp (1)) Rxo(s))) 55,2
Yoy z-

have been found, for the generating functions of connected correlators (matrix resolvent
approach, topological recursion, identification with isomonodromic tau functions).
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Results: formulae for multipoint correlators

Q: How to effectively compute these numbers?

Recently, formula of the kind

> 1 o5 log z - (Rl ) Rlo())  5sa
foonts IR JEHT Tty 000 |y o gede/es Co@) o) Co(s) o) Ga2)?

have been found, for the generating functions of connected correlators (matrix resolvent
approach, topological recursion, identification with isomonodromic tau functions).

More formulze in the poster!

Bertola, Dubrovin & Yang, 2016 - Dubrovin & Yang, 2017 - R & Bertola, 2018 - R & Bertola, 2019 - ...,
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Main technical tool: isomonodromic tau functions

Isomonodromic system: monodromy-preserving deformations of a rational connection on P!.
Independent deformation parameters are called isomonodromic times and are the argument of
the isomonodromic tau function (Sato, Jimbo—Miwa—Ueno), which plays the role of a
generalized determinant (Malgrange—Miwa).
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Main technical tool: isomonodromic tau functions

Isomonodromic system: monodromy-preserving deformations of a rational connection on P!.
Independent deformation parameters are called isomonodromic times and are the argument of
the isomonodromic tau function (Sato, Jimbo—Miwa—Ueno), which plays the role of a
generalized determinant (Malgrange—Miwa).

Isomonodromic approach: identification of matrix integrals (and their limits) with suitable
isomonodromic tau functions.

Applications. Let the matrix integral Z(t) (depending on parameters t = (t1, t2,...)) be
identified with the tau function of the isomonodromic system

AW, E)=A(x,t) W(x,t), B, W(x,t)= (x,)-W(x,t), W(x,H)=Y (x,£)-e2Y | ¥ (x,t)~14+0(x72).
(For simplicity, the only pole of A is at x = c0.)

o Limits of the matrix integral admit rigorous analytic interpretation in this setting (the limit
itself is in turn interpreted as an isomonodromic tau function).

o The Jimbo—Miwa—Ueno formula
O, log Z(t) = — res. (Y1 0,y - 0:,9)
allows to write the non-recursive formulz of previous last slide.
o Virasoro constraints can be proved by expanding in suitable ways the identity
0= res trde(x"Y 1.8,V 0,©).
x=00

o Equations of integrable hierarchy can be written down explicitly;
Qj(X’ t) = (85W(X7t) : W_I(X,t))+,

4/s



Thank you for your time!

«O» «Fr «=» «=)» o



On insertion of a point charge in the random
normal matrix model

Joint work with Yacin Ameur and Nam-Gyu Kang

Seong-Mi Seo (KIAS)

April 09 2019



Random normal matrix model with a logarithmic singularity

Consider n point charges on C influenced by an external potential V,,
where 2%
Val€) = Q) — —logldl, ¢ > 1.

» Energy of a configuration ({1, ,(,) € C™
Hn(Cl:"'aC’n ZIOg <—|+TLZV CJ
J#k

» The Boltzmann-Gibbs distribution at inverse temperature 5 = 1:

1
— e Hn(Cry 7<n)’ ¢1,-+ (€ C.
Zn
With a sufficient growth condition on the external potential, the
eigenvalues (particles) condensate on a compact set S, called the droplet,
as n tends to co.



Effects of inserting a point charge
» Microscopic properties of eigenvalues at the singularity in the bulk.

» Difference between the one point functions with and without insertion:
balayage operation.

» Gaussian convergence of the logarithmic potential.



Effects of inserting a point charge
» Microscopic properties of eigenvalues at the singularity in the bulk.

» Difference between the one point functions with and without insertion:
balayage operation.

» Gaussian convergence of the logarithmic potential.

Bulk universality for dominant radial potentials

Consider the external potential
d
. 2c
Va(Q) = Qu(¢) +Re Y ;¢ = —log C],
j=1

where @), is a radially symmetric function such that
Qr = || + O(|¢]?*€) near 0 for A > 0. Assume that 0 € Int S. Then the
limiting correlation kernel of the rescaled system

o 1/2X
zj—n/ Cj

can be described in terms of the two-parametric Mittag-Leffler function
which depends on A and c.
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Consider the normal matrix model
N
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The model

Consider the normal matrix model
N

/(C |2 — zj|? H e NVi(z) d?z

1<k<j<N j=1
where (Balogh, Merzi '13, ..., Bertola, Rebelo, Grava '18)
Vi(z) = |z|* — t(2° + 2°), tecR, seN.

The equilibrium measure for this potential:

1 1 1

05 / \ 05 05

-0.5 1 / -0.5 -0.5

The figures are t < t., t =t. and t > t.,, d =11 and t. = 1/./s.
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Main result

Our main results are the following:

>

>

Painlevé integrability: the partition function Zy(t) can be
represented exactly in terms of a Painlevé V 7-function.

Double scaling limit N — oo: scaling near t ~ t. we
calculate an asymptotic expansion in terms of a Painlevé IV
T-function.

Moments of characteristic polynomials of non-Hermitian
matrices: the results are intimately related to averages, say
of Ginibre type. (e.g. Akemann and Vernizzi '02, Fyodorov
and Khoruzhenko '06, Forrester and Rains '08):

s—1
Zn(t) = HEGin (Jdet(A — t/s)|7)
1=0

but now the exponents may not be even integers (fractional
moments).
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Confluence of singularities in the normal matrix model

Double scaling limit in the lemniscate is equivalent to
Fisher-Hartwig singularity (in 2d) colliding with Ginibre's edge.
This collision — Painlevé V. More results:
» Two bulk singularities: We find Painlevé V in the double
scaling limit.
» Truncated unitary ensemble: Painlevé VI at finite N and
Painlevé V in the boundary collision (weak non-unitarity).
Methods:

> Integer exponents: The starting point is an exact formula of
(e.g.) Akemann-Vernizzi '02. Then calculate asymptotics.

> Non-integer exponents: In progress, we apply
Riemann-Hilbert analysis similar to Bertola, Rebelo, Grava '18.

Thank you for listening. See our poster for more detail and please
ask us any questions.
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