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: : Motivations and existing results

Some motivations:

Neural network : let x ∈ Rn be an input column vector, W1,W2 be p× n matrices.

The neural network output is: s = W2f(W1x), where f(x) = max(0, x) is applied

pointwise.

Multistage architecture: alternated layers with both linear/non linear such fonctionnals

s = W3 max(0,W2 max(0,W1x))...

W1,W2 are the (synaptic) weights to be learned, with e.g. stochastic gradient descent

(or other). There are multiple choices for the ”activation function” f

• f(x) = max(0, x) known as ReLU activation function good choice in general

(accelerates learning but the process can die)

• sigmoid function f(x) = (1 + e−x)−1, f(x) = tanh(x)...

To understand how it works: make it random
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: : Motivations and existing results

Random matrices and neural networks:
Let X be a deterministic n × p matrix of input data, Y be a d × p matrix (the target

dataset).

Let W be a m× n random matrix with i.i.d. entries: W is the random weight matrix.

Let B be a m× d matrix. Set z = B∗f(WX).

Aim: minimize
1

p

p∑
i=1

(zi − yi)2 + γ||B||2F ,

for some regularisation factor γ.

Then the optimal B is:

p−1M(p−1M∗M + γI)−1Y ∗, where M = f(WX).

The performance depends on the spectral measure of G = p−1M∗M.
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: : Motivations and existing results

Random matrices and neural networks II:
Theorem Louart, Liao, Couilet (18)

Assume that:

-W is sub Gaussian (Wij = g(N (0, 1)ij) for a Lipschitz function g)

-f is Lipschitz continuous

-m,n, p grow to infinity in the same way (m/n bounded from above and below).

The empirical eigenvalue distribution of 1/pM∗M has the same limit as µ̄ defined through

its Stieltjes transform by

mµ̄(z) =
1

p
Tr

(
n

p

G

1 + s(z)
− zIm

)−1

with G = E [M∗M/p]

and s(z) is the solution such that Im s(z) > 0 of

s(z) =
1

p
Tr

(
G

(
n

p

G

1 + s(z)
− zIm

)−1
)
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: : Motivations and existing results

Some comments

• The dependence in f comes from the deterministic matrix G.

• Let T be a deterministic matrix such that TT ∗ = G. The limiting e.e.d. is the same

as that of a sample covariance matrix with general population of type TXX∗T ∗/p

(Silverstein, Bai (95)).

• The limit is non universal. See Louart, Liao, Couillet for the effect of the fourth

moments of the distribution for the efficiency of the neural networks, as well as that of

spikes.
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: : Motivations and existing results

Fully random case

Pennington Worrah (17) consider the model:

W resp. X, is a m× n (resp. n× p) random matrix with i.i.d. Gaussian N (0, 1) matrices

Y also random and independent of X

Set

M =

(
f
(WX√

n

))
; G =

1

p
M∗M.

Similar minimization problem. The limiting distribution of G describes the performance

of learning.

Theorem Pennington Worrah (17)

• There exists a limiting distribution µf provided m/n→ ψ and m/p→ φ.

• The Stieltjes transform of µf satisfies a quartic fixed point equation.
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: : Results

The model

Assume that

• the entries Wij, Xij are independent random variables which are centered and of

variance 1, and

P (|W11| > t) 6 e−ϑwt
α

and P (|X11| > t) 6 e−ϑxt
α
, α > 1.

• f is a real analytic function such that

∫
f(x)

e−x
2/2

√
2π

dx = 0.

• m/n→ ψ > 0 and m/p→ φ > 0 as n→∞.

Then the e.e.d. of G converges to a probability distribution µf .
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: : Results

What is µf?
Same as Pennington Worrah : Set

θ1(f) =

∫
f2(x)

e−x
2/2

√
2π

dx and θ2(f) =

(∫
f ′(x)

e−x
2/2

√
2π

dx

)2

.

The measure µf is characterized through a self-consistent equation for its Stieljes transform

S defined for z ∈ C \ R by

S(z) :=

∫
dµf(x)

x− z
, denote also H(z) :=

ψ − 1

ψ
+
z

ψ
S(z),

Hφ(z) := 1− φ+ φH(z) and Hψ(z) := 1− ψ + ψH(z)

Then

H(z) = 1 +
Hφ(z)Hψ(z)(θ1(f)− θ2(f))

ψz
+

Hφ(z)Hψ(z)θ2(f)

ψz −Hφ(z)Hψ(z)θ2(f)
.
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: : Model and results

Some remarks

• The dependence in f lies in the two parameters θ1 and θ2 only.

• If θ2 = 0, one recovers the Marcenko-Pastur distribution.

• If θ2 = θ1, µ is the same as the limiting distribution as that of a product Wishart

matrix ZZ∗/p with Z = WX (Dupic, Castillo (14))

• In other cases, some kind of interpolation.

In all cases, we obtain a quartic equation for the Stieltjes transform.

Application: choice for the activation function.
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: : Model and results

Examples
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: : Model and results

In addition the largest eigenvalue sticks to the support of the probability distribution µf .
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: : Model and results

More than one layer

Assume that X,W (i), i = 1, . . . , L are independent random matrices (W (i) of size

mi ×mi−1) such that the entries satisfy the same decay assumption as before. Set

M (L) =

f
 W (L)M (L−1)√

nVarM
(L−1)
12


 , M (0) = X; 1 ≤ L ≤ L0

G(L) =
1

p
M (L)M (L)∗.

If θ2(f) = 0 and f is real analytic and bounded,then the limiting e.e.d. after layer L is

the Marcenko-Pastur distribution (whose shape parameter is mL/n).

Remarks: -all this has been conjectured by Pennington and Worrah.

This result is important for the choice of the activation function (batch normalization).
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: : Proof

Some ideas of the proof

The proof is a simple moment method when f is a polynomial. Assume f is an odd

monomial: f(x) = xk and one wants to compute ETrGq for some given integer q.

Developp the whole trace in terms of W and X entries

1

m
E [TrGq] =

1

mpqnkq
E

m∑
i1,...,iq

p∑
j1,...,jq

n∑
`11,...`

1
k...

`
2q
1 ...`

2q
k

k∏
p=1

Wi1`1p
X`1pj1

k∏
p=1

Wi2`2p
X`2pj1

· · ·
k∏
p=1

W
i1`

2q
p
X
`
2q
p jq

.

Encode each summand into a graph as follows: assume first that the ik, jk’s are pairwise

distinct. We encode the i, j labels into a black graph, decorated by blue edges :
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: : Proof

•l : Wi1lXlj1

•
•

i1
•

j1
•
••

•
i2
••••

j2
•
•
•
•
i3•
•
•
• j3•

••
• i4•

•••

j4•

•
•
•

Figure 1: The basic cycle with 2q edges. There are k blue vertices between subsequent

two black nodes on the main cycle.

A blue point bears an l-label: as each Wil and Xlj entry has to arise at least twice in the

expected trace: the blue points need to be matched.
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: : Proof

Typical matchings

•
•
•

i1
•

j1
•
••

•
i2
••••

j2
•
•
•
•
i3•
•
•
• j3•

••
• i4•

•••

j4•

•
•
•

Figure 2: The basic cycle with 2q edges: one cycle and perfect matches inside ”niches”.

Other matchings give a negligible contribution.
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: : Proof

Typical black graphs

One can identify some i-indices or j-indices: Any black graph contributing to the expected

trace is a ”cactus graph” i.e. a tree of cycles (of even length).

j4•
i2•

i1
•

j1•

i3•

A typical matching for such a graph is for each black cycle: a full blue cycle and perfect

matching inside niches, except when the black cycle has length 2 (perfect matching of

the 2k blue edges without a cycle).
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: : Proof

Moments

Let A(q, Ii, Ij, b) denote the number of such cactus graphs which have been obtained

from the 2q cycle by identifying Ii (resp. Ij) i-vertices (resp. j-vertices) and with b cycles

of length 2.

Moments:

∫
xqdµf =

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij, b)θ1(f)bθ2(f)q−bψIi+1−qφIj

Remarks: -f is a monomial here but the moment depend on f only through the parameters

θ1 and θ2.

-If θ2 = 0 one recovers the number of fat trees (and Narayana numbers) from Chen Yan

Yang (08).

-If θ1 = θ2, simple sum over all such graphs as for (WX)(WX)∗.
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: : Proof

Extension

Case of an even monomial: by centering the monomial w.r.t. the Gaussian distribution,

this amounts to ban perfect matchings inside each niche. Thus negligible except those

from graphs with cycles of length 2 only.

Arbitrary polynomial: long cycle only odd monomials contribute; cycles of length 2

monomials are both odd or both even.

Extension to real analytic functions f : by Taylor approximation.

Largest eigenvalue: can push the argument up to q in the order of lnn, which is enough:

µf has compact support, we call u+ the top edge. Then one has

P(λmax ≥ u+(1 + η))→ 0 ∀η > 0.
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: : Proof

Multiple layers: ideas of the proof

We explain some ideas of the proof for L = 2. Again for a monomial develop the trace:

then X is first replaced with M (1) whose entries are not independent.

Assume the i and j indices are pairwise distinct. Match the W (2) entries and consider

the induced graph on (j, l) indices.

i1

j2

i2

j1

`1

`2

`3

`4

`5

`6

Corresponding moment:
M`1j1M2

`6j1M2
`5j1M`4j1M`4j2M2

`3j2M2
`2j2M`1j2

`1

j1

`4

j2

`2

`3

`6

`5

1
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: : Proof

Multiple layers: ideas of the proof II

A typical matching on the W (2) entries produces an admissible induced graph (or is

negligible):

-There is a single edge linking two niches adjacent to the same i-labeled vertex which we

call a bridge (green on the figure).

-Remaining edges inside a niche are matched according to a perfect matching.

- We can add identifications between bridges only.

Note that the graph can be a forest of such graphs.

Going through more layers results in multiplying the ”flowers”.
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: : Proof

Conclusion

• The method does not work for f(WX), W deterministic or f(X) Wigner

(combinatorics is different). In these cases, no universality.

• Main open problem: it does not work for the max function.

• Complex case and f polynomial: extremal cases only (Marcenko-Pastur or product

Wishart) if EW 2
il = 0.

• Possible outliers: models can be determinantal in the complex case, e.g. products of

Ginibre matrices (Kuijlaars, Zhang (14); Akeman Burda Kieburg (13). The largest

eigenvalue can exhibit a phase transition (Liu, Wang, Wang (18))
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