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Moments of Random Matrices

» j,p.d.f. of the eigenvalues at the classical RMT Ensembles

n

1
THWﬁ(XJ‘)X/(Xj) H ‘Xk*Xj|BdX1~~~an
i J=1 1<j<k<n

B=1,2,41=R, [ =R, and | = [0, 1]



Moments of Random Matrices

» j,p.d.f. of the eigenvalues at the classical RMT Ensembles

1 |
Crs [TwsCodxa) T I —xlPdxa---dx
n, =1

1<j<k<n

=124 1=R, | =R; and | =][0,1]
» The weights are

e~ (8/2)x Hermite
wa(x) = { x(B/2)(m=nt1)=1 o=(5/2)x Laguerre
(1- X)%(m1—n+1)—1 L mo—nt1)=1  jcobi
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Moments of Random Matrices

» GUE ensemble
Pn(Xla---axn):Cn Hexp (_)<J2) H |Xk_Xj2
j=1

» The k-point correlation function
k
Rk(Xl, .. >Xk) = Els’lc( [K,,(X,', )g)]i,jzl

» The kernel is expressed in terms of Hermite polymonials,

Hi(x) = (~1)keX ——e ™

/ Hi(x)Hi(x)e ™ dx = a2 k16j
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Moments of Random Matrices

» We define the eigenvalue density pg,ﬁ)(x)
n
() = Ral) = E | 32 d(x — x)
j=1

» The main object we study
ETr Xk = / xkpg,ﬂ)(x) dx
I

» Applications:
» Quantum Transport: Conductance, Shot noise, Wigner
time-delay
» Quantum Field Theory — maps enumerations
» Others...
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Moments of Random Matrices

> If X, is a GUE matrix then

[k/2]
Clh) — 2k _ pk+1
Qe(n)=ETr X7 = Z n2g .

eg(k) is the number of maps of genus g with k edges.

> Take X, in the LUE, i.e. w()\) = A"e™ "™\
» Then 7 = (1/n) Tr X! is the Wigner delay time
» The CGF H,(t) satisfies Painlevé Il (FM & Simm, 2013)

(zHy)?= 8Hn((H,)> — Hp) — (42(H,)?
—(4z + (b—2n)*)H}, — 2n(b — 2n)) H, + n®
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Moments of Random Matrices

» Take the cumulant expansion of 7,

1 Co (v
Cv = (2n2)v1 Z £)
>0

» co(v) are integers for all v (FM & Simm, 2013)
> Take

MP(n) = nk IETr X% k>0, B=1,2

> Now take the asymptotics expansion of the moments

M) (n) ZKg & f=1,2.
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Moments of Random Matrices

» Conjecture: Iig) € N (Cunden, FM, Simm & Vivo 2016)

» Cumulant expansion of negative powers of matrices in the LUE

Ck (TrX,,_“l,...,Tan_“k) = Zn_gcg(ul,...,pk),

1
k—1
(2N2)F T

with (1, .., ux) € NX.

» The c,(p1, ..., 1k) are Hurwitz numbers (Cunden, Dahlqvist
& O'Connell 2018)
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» If X, is a GUE matrix then E Tr X2¥ is a polynomial in n

E Tr X8 = 14n° + 70n° + 21n. (%)

» Can we say something about it as a function of k7
(k+2) Qi1 (n) = 2n(2k+1)QF (n)+k(2k+1)(2k—1) Qi1 (n),

(Harer and Zagier, 1986)
» It turns out that

1
(2k — 1)1

This is a Meixner polynomial! I

4 2
ETr X7 = §k3 + 4k + ?Ok + 4.
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> Meixner polynomials have the representation

—n, —x 1
Ma(xi7,c) =oF (7 51— 2
(x;7,¢) 21( 8 C>

> They obey the orthogonality relation

> ?,X My (x; 7, €)Mp(x; 7, €)

x=0
Cn
= )5m,,, v>0, O0<c<l1

(M1 —c

» They obey the recurrence relation

(€ = 1)xMn(x;7,¢) = c(n+ ) Mpy1(x;7, c)
—[n+ (n+7) c] Ma(x; 7, €) + nMp_1(x; 7, €)
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> Take X, in the LUE with parameter & = m — n and define

QS (m,n) =ETrXk

> We have
Qc(m,n)  mn £ 1—n,1—k,2+k_1
Mk+a+1) TR+a)’? 2240

=mn(2+ a)k—1Rn—1((k = 1)(k +2); 1,1, -2 — a).

» The polynomial

. — _nv_X7X+7+5+1.
Rn()‘(x)vPYv(S:N)_:iFZ( 7+1?_N 11)7

A(x) = x(x +7v+d + 1), is a dual-Hahn polynomial.
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P> Let's consider again

QF(m, n) mn

_ g (t—ml—k2+k
Mk+a+1) TQR+a)’? 224+a

> NowtakekECandsetk:—%—f—ix,xeR
C
Q*%+i><(m’ n)
M(—2+ix+a+l

):
mn F 1—n,%+ix,%—ix_1
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P> Let's consider again

Qi (m. n)

mn

_ g (t—ml—k2+k
Mk+a+1l) T(Q2+a)’?

2,24+«

> NowtakekECandsetk:—%—f—ix,xeR

C
Q7%+I’X(m7 n)
M(—2+ix+a+l

):
mn F 1—n,%+ix,%—ix_1 _
r2+aw) 2,2+« '

_ 1 s (31 1
F(m)r(m)”" 2\ 222" 72

)
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» The polynomials

Sn(x*;a,b,¢) = (a+ b)n(a+ c)n 3F2 <_n’a+ X, 8= Ix, )

a+b,a+c

are continuous dual Hahn polynomials.

> They obey the orthogonality relation

1 [|[(a+ ix)T(b+ ix)[(c+ ix)|?
27rR/ ‘ r(2ix)

X Sm(x?; a,b,¢)S,(x?; a, b, c)dx
=l(n+a+b)l[(n+a+c)l(n+b+c)n! Smn.
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Moments & Hypergeometric OP's

We compute pg,z)(x) using orthogonal polynomials. For the GUE

/ Hi(x)Hj(x)e ™ dx = /m2X k15

—0o0

The moments

ETr Xk = / X2kp£,2)(X)dX

are Hypergeometric OP’s in k of degree n — 1.

This is a statement on the Mellin transform

M pa(x)is] = /Ooo PP (x)x* L.
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> They admit a representation in terms of hypergeometric
functions
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MNg+n
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Moments & Hypergeometric OP's

> They admit a representation in terms of hypergeometric
functions

> .
qu <ala"'7ap;z> — (al)J (aP)Ji

bi...by*) T 2z () (b, T

MNg+n
(@ =a(a+ D(a+2)-(a+n-1) (@)= o0
» Hermite polynomials are hypergeometric OP (of first type)

Hn(X) —_ (2X)2n2F0 <_n/2a _(n - 1)/2 — 1 )

x2

They satisfy the second order ODE

y"(x) = 2xy'(x) + 2ny(x) = 0
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Moments & Hypergeometric OP's

1. First Type: Solutions of continuous second order ODE's.
(Classical Orthogonal Polynomials: Hermite, Laguerre and
Jacobi, etc.)

2. Second Type: Solutions of second order discrete difference
equations with real coefficients. (Meixner, Hahn, dual Hahn
and others)

3. Third Type: Solutions of second order discrete difference
equations with complex coefficients. (Meixner-Pollaczek,
continuous Hahn, continuous dual Hahn and others.)

4. Askey Scheme of Hypergeometric OP’s.
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Moments & Hypergeometric OP's
» Define

ji 1
<Xn(5) =Tr ’Xn‘is = W, Xn € {GUE,LUE, JUE},
j=1 "

> and
22s .
m ]ECXH(4S) if Xn € GUE s
1 Ee(s) ifX,cLUE
§n(5) e r(l +a— S) Xn n 5

NMl+oa1+ax+2n—>5s)
Ml4+ a2 —5)
xE ((x,(s) = Cx, (s — 1)) if X, € JUE,




Moments & Hypergeometric OP's

Theorem (Cunden,FM,O’Connell and Simm, 2019)

For all n, £,(s) is a hypergeometric orthogonal polynomial:

( 1—n
'ﬁ PW. (2ix; 7/2) X, € GUE
1 o 31 1
- | Frarm o (6 3 30 03) xeerue

Mair+a2+n+1)

1 a1+ n) X, e JUE
F(n) (a2 + n )3 i " i 11 )
x W,_1 <(/x) L -|-2 > a1 — Qo 2n>,

where x = 1/2 — s. In particular, &,(s) satisfies the functional

equation &,(s) = £,(1 — s), and all its zeros lie on the critical line
Re(s) = 1/2.



Moments & Hypergeometric OP's

These polynomials have the hypergeometric representations:

einqb
Meixner-Pollaczek

V(xid) = (200

x 2F1 (—n,z)\/\—i— IX; 1-— €2i¢)

Sn(x% a,b,¢) = (a+ b)p(a+ c)n continuous dual Hahn
n,a+ix,a— ix
X3F2< at+ba+c '1>

Wi (x%a, b, c,d) = (a+ b)n(a+ c)n(a+ d)n Wilson

% AF —n,n—i—a—i—b—i—c—i—d—1,a—|—lx,a—ix_1
473 a+batc,a+d '



Moments & Hypergeometric OP's

Matrix ens. Correlation func. Moments
(classical OP'’s) (hypergeo. OP’s)
GUE Hermite Meixner-Pollaczek
LUE Laguerre continuous dual Hahn

JUE Jacobi Wilson




Moments & Hypergeometric OP's

They obey the orthogonality relations

1 _
ori [ (Sl ws)ds = by Gy

14+iR,
where
2/ (25)|? if X, € GUE
F(s)M(s+ 1) (s + ) |2 .
f X, € LUE
w(s) = ’ r(2s—1) X & LU
F(s)F(s+D(s+a2) |* .
f X, ¢ JUE,
’r(s Taitat2mr(2s—1)| "€




Moments & Hypergeometric OP's

°

B
30 ° 40 °
o
N °
30 °
o
3(s) 20 2 (s) .
o o
10 3 e
° 10 H
H g
-0.5 U 035 1 L5 2 -0.5 0) 035 1 15
H R(s) “10 g R(s)
-10 ° °
° -20 4
=20 ° °
. -30 °
N o
-30 ° -40 °
B

° LUE: n=15 0-n

o

o JUE:

=15, 0;=n, @,=2n

The zeros of £(s) for the LUE and JUE.
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The limit n — oo

» Take the equilibrium measure for the LUE

pOO( 7\/(X+ - X X - X—) 1XE(X7,X+)

= [ X~ pc(c)c

Eoo(8) = (x4)2Coo(5),

» Define

Theorem (Cunden, FM, O" Connell and Simm 2019)

The functional equation {,(s) = (1 — s) holds, and the zeros of
the (o (s) all lie on the critical line Re(s) = 1/2.
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> Set

2

Pn(x) = (2"nly/7) Y2 Hy(x)e™ T
o) = [ X 0n(xdx

0
» Theorem (Bump and Ng '86; Bump, Choi, Kurlberg and
Vaarg '00)
The Mellin transform ¢} (s) is a Meixner-Pollaczek
1

polynomial along the line Re(s) = 3.



Wronskians & Hypergepometric OP’s

> Set
Da(x) = (2"n1V7) VP Hy(x)e 7
o3(s) = / 1 (x)dx

0
» Theorem (Bump and Ng '86; Bump, Choi, Kurlberg and
Vaarg '00)
The Mellin transform ¢} (s) is a Meixner-Pollaczek
polynomial along the line Re(s) = 3.

> The density of state is

knfl
kn

n—1
PD(x) =3 03 (x) = L [0n(x) 01 (x) — Dy (x)bn-1(x)]
j=0

kn—l
kn

Wr(pn—1(x), ¢n(x)).
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Wronskians & Hypergeometric OP’s

> Let ¢n(x) be Hermite wavefunctions and set

Wn,e(X) = n(X)Pnre(x)
Wn,f(X) = Wr(gb,,(x), ¢n+E(X))

» Theorem (Cunden, FM, O'Connell and Simm 2019)
1. The Mellin transform of the products is

el n! I(s) (L) ( is w
* — " s Pn 2 —_ =
Wn(s) = 1727 (n+ 0T (==Lt 2'2

2. The Mellin transform of the Wronskians is

20

Woe(s —1) = 5_71/”:.4(5)
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B=1and f =4

> Set

QX (n) =ETr X2k if X, € GOE
Qi (n) =E Tr X2 if X, € GSE

» We have the duality (Mulase and Waldron, 2003)
Qi (n) = (~1)* 1271 Qi (~2n)

» Define

Sk (M= Qia(n) — (4n — 2)Q(n) — 8k(2k — 1)Q"4(n)
Sk ()= 2Qi 1 (n) — (160 + 4) Qi (n) — 16k(2k — 1)Q4(n)



Moments for 5 =1and 3 =4

Theorem (Cunden, FM, O'Connell and Simm, 2019)
The quantities Si(n) and SI(n) have Meixner polynomial factors:

SE(n) = =3n(n—1) (2k — 1)1t M, »(k; 3, 1)

= —=3n(n—1) (2k — 1)!! My(n—2;3,-1)
Si(n) = —6n(2n + 1) (2k — )N Mo, _1(k; 3, —1)

= —6n(2n+1) (2k — 1)!! Mx(2n —1;3,-1).

In particular, S&(n)/(2k — 1)1 and Sf(n)/(2k — 1)!! are
polynomials invariant up to a change of sign under the reflection
k — —3 — k, with complex zeros on the vertical line

Re(k) = —3/2.



Moments for 5 =1and 3 =4

Theorem (Cunden, FM, O' Connell, Simm, 2019)
We have the following duality between GOE and GSE

QE(2n +1) = 25F1Qf(n) + 45T (k + 1/2) fi(n)
where

i"n!

f(n) = WP,(,IM)(—/(k +1/4);7/2)

and P,g)‘)(x,gb) is a Meixner-Pollaczek polynomial.
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