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Example 1: Sine kernel

Introduce

τ (t) = det
(
1− K

∣∣
(0,t)

)
, K (x , y) =

sin x−y
2

π (x − y)
.

I τ (t) is a Painlevé V tau function: ζ (t) = t d
dt
ln τ(t) satisfies(

tζ′′
)2

+
(
tζ′ − ζ

) (
tζ′ − ζ + 4ζ′2

)
= 0. (ζ-PV)

I Asymptotics:

τ (t → 0) = 1− t

2π
+

t4

576π2 + O
(
t6
)
,

τ (t →∞) = τsine · t−
1
4 e−

t2
32

[
1 +

1
2t2

+ O
(
t−4)]



Conjecture [Dyson, ’76]:

τsine = 2
7
12 e3ζ′(−1) =

√
2G

( 1
2

)
G
( 3

2

)
.

I Barnes G -function is essentially defined by the recurrence relation
G (z + 1) = Γ (z)G (z); it has integral and product representations, etc

I proved in [Ehrhardt, ’04; Krasovsky, ’04; Deift, Its, Krasovsky, Zhou, ’06]



Example 2: 2D Ising model

σ0,0

σ3,2

I Nearest-neighbor interaction

H [σ] = −J
∑
i,j

σi,j (σi+1,j + σi,j+1) ,

of spin variables σi,j = ±1.
I Spin-spin correlation function:

〈
σ0,0σrx ,ry

〉
=

∑
[σ] σ0,0σrx ,ry e

−βH[σ]∑
[σ] e

−βH[σ]

I Phase transition at s ≡ sinh 2βJ = 1
I Spontaneous magnetization [Yang, ’52]:

〈σ〉 =

{(
1− s−4) 1

8 , s > 1,
0, s < 1,

I Correlation length Λ ∼ 2−
1
2 |s − 1|−1 T

〈σ〉

Tc

1



Scaling limit of the 2-point functions is described by

T → Tc , Λ→∞, R =
√

r2
x + r2

y →∞,
R

Λ
→ t,〈

σ0,0σrx ,ry

〉
→ Λ−

1
4 2

3
8 τ± (t) , T ≷ Tc ,

Scaled correlations can be written in terms of Fredholm determinants & related
to Painlevé functions [McCoy, Tracy, ’73; Wu, McCoy, Tracy, Barouch, ’76]
(PV, PIII(D6), PIII(D8)). In particular, both ζ± = t d

dt
ln τ± (t) satisfy(

tζ′′
)2

= 4
(
ζ − tζ′

)2
+ 4

(
ζ′
)2 (

ζ − tζ′
)

+
(
ζ′
)2 (ζ-PV)

I Long distances (form factor expansions):

τ+ (t →∞) ∼ e−t

√
2πt

, τ− (t →∞) ∼ 1.

I Short distances (conformal limit):

τ± (t → 0) ∼ τIsing · (2t)−
1
4 .



Theorem [Tracy, ’91]:

τIsing = 2
1
12 e3ζ′(−1) = G

( 1
2

)
G
( 3

2

)
.

I alternative proof in [Bothner, ’17]

I constant factors in the asymptotics of tau functions (connection
constants) were computed for many other (special!) Fredholm
determinant solutions of Painlevé equations:

- correlator of twist fields in sine-Gordon field theory at the
free-fermion point [Basor, Tracy, ’91]

- Airy kernel [Tracy, Widom, ’92; Deift, Its, Krasovsky, ’06]
- Bessel kernel [Tracy, Widom, ’93]
- confluent hypergeometric kernel [Deift, Krasovsky, Vasilevska, ’10]
- hypergeometric kernel [Lisovyy, ’09]
- . . .



Summary:
I Ising scaled correlator = specific PV tau function
I it has Fredholm determinant representation
I its asymptotics at one singular point (t →∞) is “easy”
I the asymptotics at the other singular point (t → 0) is difficult

(connection constant)

Questions:
I Can the general solutions of Painlevé equations be written as Fredholm

determinants?
I How to compute the relevant connection constants?

In this talk, I will mainly focus on the Painlevé VI case.



Isomonodromic tau function [Jimbo, Miwa, Ueno, ’79]

Consider a system of linear ODEs with rational coefficients

dΦ

dz
= A (z) Φ, A,Φ ∈ MatN×N

I Laurent expansions of A (z) at singularities

A (z) =


Aν

(z − aν)rν+1 + O
(
(z − aν)−rν

)
as z → aν ,

−z r∞−1A∞ + O
(
z r∞−2) as z →∞,

where r1, . . . , rn, r∞ ∈ Z≥0.
I assume Aν are diagonalizable,

Aν = GνΘν,−rνG
−1
ν , Θν,−rν = diag {θν,1, . . . , θν,N} .

and non-resonant (θν,k are distinct whenever rν = 0).



At each singular point, there is a unique formal solution

Φ
(ν)
form (z) = GνΦ̂(ν) (z) eΘν (z), Φ̂(ν) (z) = 1 +

∞∑
k=1

gν,k (z − aν)k ,

where Θν(z) are diagonal and have the form

Θν(z) =
−1∑

k=−rν

Θν,k

k
(z − aν)k + Θν,0 ln (z − aν) .

Isomonodromic times:
I positions of singularities aν
I diagonal elements Θν,k 6=0

Monodromy data:
I Stokes matrices relating canonical solutions in different sectors at aν
I formal monodromy exponents Θν,0

I connection matrices relating canonical solutions at different singularities



Theorem [Jimbo, Miwa, Ueno, ’79]:
Let us collectively denote the times by T . The 1-form

ωJMU = −
∑

ν=1,...,n,∞

resz=aν Tr
(

Φ̂(ν) (z)−1 ∂z Φ̂(ν) (z) dTΘν (z)
)

is closed when restricted to isomonodromic family of A (z). It thus defines the
isomonodromic tau function by

dT ln τJMU = ωJMU

Example. For A (z) = A0
z

+ At
z−t

+ A1
z−1 (4 simple poles 0, t, 1,∞)

∂t ln τJMU =
TrA0At

t
+

TrAtA1

t − 1
.

For 2× 2 matrices, this is Painlevé VI tau function.

Aim: Extend Jimbo-Miwa-Ueno differential to the space of monodromy data
(the space of parameters and initial conditions for Painlevé).



Isomonodromic deformations
tau functions

2D CFT
conformal blocks

4D SUSY YM
partition functions

[Alday, Gaiotto, Tachikawa, ’09]

[Gamayun, Iorgov, OL, ’12-13]

[Iorgov, OL, Teschner, ’14]

[Bershtein, Shchechkin, ’14]

τVI (t) =N0
∑
n∈Z

e inη σ + n
θ1 θt

θ∞ θ0

=N0 (1− t)2θtθ1
∑
n∈Z

e inη
∑
λ,µ∈Y

Bλ,µ(σ + n, ~θ) t(σ+n)2−θ20−θ
2
t +|λ|+|µ|

=N0 t
σ2−θ20−θ

2
t det (1 + K) ← Task 1

I explicit integrable (2× 2 or 4× 4) matrix kernel K involving 2F1 functions;
acts on vector-valued functions on a circle (and not on an interval!)



Asymptotic behaviors of τVI:

τVI (t) '

{
Ñ0 t

σ2−θ20−θ
2
t as t → 0,

Ñ1 (1− t)ρ
2−θ21−θ

2
t as t → 1.

I σ, ρ are 2 Painlevé VI integration constants, related to monodromy of the
associated 4-point Fuchsian system

Task 2 → compute the connection coefficient Ñ1/Ñ0

Remark. Tau function can be expanded in different channels (there are
different Fredholm determinant representations, adapted for asymptotic
analysis near different critical points):

τVI (t) = N0
∑
n∈Z

e inη σ + n
θ1 θt

θ∞ θ0

= N1
∑
n∈Z

e inµ
θ1 θt

θ∞ θ0

ρ+ n

This allows to relate the connection coefficient to the c = 1 fusion matrix,

σθ1 θt

θ∞ θ0

=

∫
Γ

dρ F
[ θ1 θt
θ∞ θ0

;
ρ
σ

] θ1 θt

θ∞ θ0

ρ dρ



It turns out ln
N1

N0
coincides (up to an elementary correction) with the

generating function of the canonical transformation between two pairs of
Darboux coordinates on Hom (π1 (C0,4) , SL (2,C)) /SL (2,C): σ, η and ρ, µ.

This in its turn coincides (again up to an elementary correction) with the
complexified volume of the hyperbolic tetrahedron with dihedral angles σ, ρ,
θ0,t,1,∞.

ln
N1

N0
∼ Vol

 σ

θ0

θ1

ρ
θ∞

θt

 ∼ ln
8∏

k=1

G (1 + zk)

G (1− zk)

I zk ’s are explicit elementary (though complicated) functions of
monodromy parameters

I conjecture in [Iorgov, OL, Tykhyy, ’13]
I proved in [Its, OL, Prokhorov, ’16]



Riemann-Hilbert setup

I let C ⊂ C be a circle centered at the origin
I pick a loop J (z) ∈ Hom (C,GLN (C))

I J (z) continues into an annulus A ⊃ C

J (z) =
∑
k∈Z

Jkz
k ,

+
−C

Two Riemann-Hilbert problems:

direct : J (z) = Ψ− (z)−1Ψ+ (z)

dual : J (z) = Ψ̄+ (z) Ψ̄− (z)
−1



Main definition: The tau function of RHPs defined by (C, J) is defined as
Fredholm determinant

τ [J] = detH+

(
Π+J

−1Π+J Π+

)
,

where H = L2 (C,CN
)
and Π+ is the orthogonal projection on H+ along H−.

Properties:
I dual RHP is solvable iff the operator P := Π+J

−1Π+ is invertible on H+,
in which case P−1 = Ψ̄+Π+Ψ̄−1

− Π+

I likewise, for direct RHP and Q := Π+J Π+, with Q−1 = Ψ−1
+ Π+Ψ−Π+

I if either direct or dual RHP is not solvable, then τ [J] = 0

Example: scalar case (N = 1)
I direct and dual factorization coincide
I J (z) = (1− t1z)ν1 (1− t2/z)ν2 with |z | = 1 and |t1|, |t2| < 1, then

τ [J] = (1− t1t2)ν1ν2



Remark. τ [J] appears [Widom, ’76] in the asymptotics of determinant of block
Toeplitz matrix with symbol J,

TK [J] =


J0 J−1 . . . J−K+1

J1 J0 . . . J−K+2
...

...
. . .

...
JK−1 JK−2 . . . J0

 .

In this context, τ [J] is called Widom’s constant.
I strong Szegő for N = 1: τ [J] = exp

∑∞
k=1 k (ln J)k (ln J)−k

I no nice general formula for N ≥ 2



If the direct RHP is solvable, then τ [J] may also be written as

τ [J] = detH (1 + K) , K =

(
0 a+−

a−+ 0

)
,

where a±∓ = Ψ±Π±Ψ−1
± − Π± : H∓ → H± are integral operators

(a±∓f ) (z) =
1
2πi

∮
C
a±∓

(
z , z ′

)
f
(
z ′
)
dz ′,

with block integrable kernels

a±∓
(
z , z ′

)
= ±1−Ψ± (z) Ψ± (z ′)

−1

z − z ′
.

In applications to Painlevé:
I Ψ± (direct factorization) are given and define the jump J = Ψ−

−1Ψ+

I Ψ± are expressed via classical special functions
(Gauss, Kummer & Bessel for PVI, PV, PIII’s)

I dual factorization (Ψ̄± in J = Ψ̄+Ψ̄−1
− ) is the problem to be solved



Variational formula

Theorem: Let (z , t) 7→ J (z , t) be a smooth family of GL (N,C)-loops which
depend on an extra parameter t and admit direct & dual factorization. Then

∂t ln τ [J] =
1
2πi

∮
C
Tr
{
J−1∂tJ

[
∂zΨ̄− Ψ̄−1

− + Ψ−1
+ ∂zΨ+

]}
dz .

Proof.

∂t ln detH+ PQ = TrH+

(
∂tP P−1 + Q−1∂tQ

)
=

= TrH
(

Π+J
−1∂tJ

(
Ψ̄−Π−Ψ̄−1

− − Π−
)

+
(
Ψ−1

+ Π+Ψ+ − Π+

)
J−1∂tJ

)

Given d̃ (z , z ′) =
Ψ+ (z)−1 Ψ+ (z ′)− 1

z − z ′
, we have d̃ (z , z) = Ψ−1

+ ∂zΨ+. �

I due to [Widom, ’74]; rediscovered by [Its, Jin, Korepin, ’06]
I related results in the study of dependence of isomonodromic tau functions

on monodromy [Bertola, ’09]

Corollary: in isomonodromic RHPs,

Widom’s constant τ [J] ' Jimbo-Miwa-Ueno tau function



Example: 4-point Fuchsian system

4 regular singularities at 0, t, 1,∞:

∂zΦ = ΦA (z) , A (z) =
A0

z
+

At

z − t
+

A1

z − 1

I arbitrary rank: A0,t,1 ∈ MatN×N (C)

I generic case: A0,t,1 and A∞ := −A0 − At − A1 are diagonalizable
I fix the diagonalizations Aν = G−1

ν ΘνGν with diagonal Θν

I eigenvalues of Aν are assumed distinct mod Z
There exist unique fundamental solutions Φ(ν) (z), holomorphic on the
universal covering of C\ {0, t, 1} and such that

Φ(ν) (z) =

{
(ν − z)Θν G (ν) (z) , for ν = 0, t, 1,
(−z)−Θ∞ G (∞) (z) , for ν =∞,

where G (ν) (z) is holomorphic and invertible in a finite open disk around z = ν
and satisfies G (ν) (ν) = Gν .



Dual RHP1 for Ψ̃

0 t 1

Ψ̃ (z) =

{
G (ν) (z) , z ∈ Dν ,

Φ (z) , z /∈ R≥0 ∪ D̄0 ∪ D̄t ∪ D̄1 ∪ D̄∞.



Dual RHP1 for Ψ̃

0 t 1

Cout

Cin

Ψ̂ (z) =

{
(−z)−S Ψ̃ (z) , z ∈ A,
Ψ̃ (z) , z /∈ Ā.



Dual RHP2 for Ψ̂

0 t 1

Cout

Cin



Dual RHP2 for Ψ̂

0 t 1

Cout

Cin

C

Ψ̄ (z) =

{
Ψ+ (z)−1Ψ̂ (z) , outside C,
Ψ− (z)−1Ψ̂ (z) , inside C.



Dual RHP3 for Ψ̄

C

Ψ̄ (z) =

{
Ψ+ (z)−1Ψ̂ (z) , outside C,
Ψ− (z)−1Ψ̂ (z) , inside C.

I contour C (single circle !), smooth jump J : C → GL (N,C) given by

J (z) = Ψ− (z)−1Ψ+ (z) = Ψ̄+ (z) Ψ̄− (z)
−1

I we are in the previously described setup!



Substitute into Widom’s differentiation formula

∂s ln τ [J] =
1
2πi

∮
C

Tr J−1∂sJ
(
∂zΨ̄−Ψ̄−1

− + Ψ−1
+ ∂zΨ+

)
dz .

the expression for the jump J = Φ−1
i Φe and the dual/direct factorizations,

Ψ̄− = Φ−1
e Φ, Ψ̄+ = Φ−1

i Φ, Ψ− = (−z)−S Φi , Ψ+ = (−z)−S Φe ,

and use that ∂zΦ = ΦA (z). This gives

∂s ln τ [J] =
1
2πi

∮
C

Tr
{
A (z) Φ−1Φi∂s

(
Φ−1

i Φ
)
− A (z) Φ−1Φe∂s

(
Φ−1

e Φ
)

−S

z
(−z)−S Φi∂s

(
Φ−1

i (−z)S
)

+
S

z
(−z)−S Φe∂s

(
Φ−1

e (−z)S
)}

dz

Red terms contribute via the residues at z = 0, t, and blue ones via the residues
at z = 1,∞.



The log-derivative then reduces to

∂s ln τ [J] =
∑

ν=0,t,1,∞

TrΘν∂sGνG
−1
ν

−
∑

ν=0,t,∞

TrΘν,i∂sGν,iG
−1
ν,i −

∑
ν=0,1,∞

TrΘν,e∂sGν,eG
−1
ν,e

where Θν are exponents of the 4-point solution,

Θ0,i = Θ0, Θt,i = Θt , Θ∞,i = S,

Θ0,e = S, Θ1,e = Θ1, Θ∞,e = Θ∞,

and Gν,i , Gν,e are 3-point counterparts of Gν .

For s = t (isomonodromic time):
I 1st line is nothing but the Jimbo-Miwa-Ueno definition of τ
I 2nd line corresponds to tau functions of auxiliary 3-point systems



We then obtain

τJMU (t) = t
1
2 Tr(S2−Θ2

0−Θ2
t )τ [J] .

I Recall that

τ [J] = det (1 + K) , K =

(
0 a+−

a−+ 0

)
,

a±∓
(
z , z ′

)
= ±1−Ψ± (z) Ψ± (z ′)

−1

z − z ′
.

I τJMU (t) for 4-point system written via auxiliary 3-point solutions
I hypergeometric representations for N = 2 =⇒ PVI tau function !



Schematically,

τJMU

(
0

8

1t
)

=

τJMU

(
0

8

t )
τJMU

(
0

8

1
)

det

 1 a+−

(
0

8

1
)

a−+

(
0

8

t )
1





VI

V

Vdeg

III

IV

IIFN

IIJM

I

3III3

IIIIII1

III2III

The same is valid for all equations from the upper part of
Chekhov-Mazzocco-Rubtsov geometric confluence diagram, since PVI, PV,
PIII1,2,3 surfaces (Riemann-Hilbert contours) may be cut into solvable pieces:

Whittaker BesselGauss



Connection coefficient

Considering a different pants decomposition which combines t and 1 instead of
t and 0, we obtain a different Fredholm determinant representation, which is
better adapted for the asymptotic analysis of the regime t → 1.

τ̄JMU (t) = (1− t)
1
2 Tr(S̄2−Θ2

1−Θ2
t ) τ

[
J̄
]
.

It is of course proportional to the previous tau function τJMU (t), and their
ratio is the connection coefficient that we want to compute.

Corollary: For any monodromy parameter s,

∂s ln
Ñ1

Ñ0
=

∑
ν=0,t,∞

Tr Θ̄ν,i∂s Ḡν,i Ḡ
−1
ν,i +

∑
ν=0,1,∞

Tr Θ̄ν,e∂s Ḡν,eḠ
−1
ν,e

−
∑

ν=0,t,∞

TrΘν,i∂sGν,iG
−1
ν,i −

∑
ν=0,1,∞

TrΘν,e∂sGν,eG
−1
ν,e

+
1
2
ln t ∂s Tr

(
S2 −Θ2

0 −Θ2
t

)
− 1

2
ln (1− t) ∂s Tr

(
S̄2 −Θ2

1 −Θ2
t

)



Theorem [Its, OL, Prokhorov, ’16]

For generic monodromy data,

Ñ1

Ñ0
=

∏
ε,ε′=±

G (1 + εσ + ε′θt − εε′θ1)G (1 + εσ + ε′θ0 − εε′θ∞)

G (1 + εσ + ε′θt + εε′θ0)G (1 + εσ + ε′θ1 + εε′θ∞)
×

×
∏
ε=±

G(1 + 2εσ)

G(1 + 2εσ)

4∏
k=1

Ĝ(ς + νk)

Ĝ(ς + λk)

Here G (z) denotes the Barnes G-function, Ĝ (z) = G(1+z)
G(1−z)

, the parameters
ν1...4 and λ1...4 are defined by

ν1 = σ + θ0 + θt , λ1 = θ0 + θt + θ1 + θ∞,
ν2 = σ + θ1 + θ∞, λ2 = σ + σ + θ0 + θ1,
ν3 = σ + θ0 + θ∞, λ3 = σ + σ + θt + θ∞,
ν4 = σ + θt + θ1, λ4 = 0,

and the quantity ς is determined by

e2πiς =
2 cos 2π (σ − σ)− 2 cos 2π (θ0 + θ1)− 2 cos 2π (θ∞ + θt) + TrM0M1∑4

k=1 (e2πi(νΣ−νk ) − e2πi(νΣ−λk ))
,

with 2νΣ =
∑4

k=1 νk =
∑4

k=1 λk .



Some open problems
I 3-point auxiliary solutions are known for 4-point Fuchsian systems of

higher rank N whose 2 singularities have special spectral type (N − 1, 1).
It is then in principle possible to find explicitly the log-differential of the
connection coefficient. Is it possible to integrate it? What would be the
higher-rank analog of the tetrahedron?

I In the generic case, the 3-point solutions for N > 2 are not available. Can
we at least find an interpretation of the connection constant in terms of
Poisson geometry of the SL (N,C) character variety of C0,4? Affirmative
answer [Bertola, Korotkin, ’19]

I Connections constants for PI are computed in [OL, Roussillon, ’16]. Their
evaluation for PII-PV with generic parameters is wide open; for PV
conjectural expressions are available [OL, Nagoya, Roussillon, ’18].







For N = 2:

a+−
(
z , z ′

)
=

(1− z ′)
2θ1
(

K++ (z) K+− (z)
K−+ (z) K−− (z)

)(
K−− (z ′) −K+− (z ′)
−K−+ (z ′) K++ (z ′)

)
− 1

z − z ′
,

a−+

(
z , z ′

)
=

1−
(
1− t

z′

)2θt ( K̄++ (z) K̄+− (z)
K̄−+ (z) K̄−− (z)

)(
K̄−− (z ′) −K̄+− (z ′)
−K̄−+ (z ′) K̄++ (z ′)

)
z − z ′

with

K±± (z) = 2F1

[
θ1 + θ∞ ± σ, θ1 − θ∞ ± σ

±2σ ; z

]
,

K±∓ (z) = ± θ2
∞ − (θ1 ± σ)2

2σ (1± 2σ)
z 2F1

[
1 + θ1 + θ∞ ± σ, 1 + θ1 − θ∞ ± σ

2± 2σ ; z

]
,

K̄±± (z) = 2F1

[
θt + θ0 ∓ σ, θt − θ0 ∓ σ

∓2σ ;
t

z

]
,

K̄±∓ (z) = ∓ t∓2σe∓iη θ
2
0 − (θt ∓ σ)2

2σ (1∓ 2σ)

t

z
2F1

[
1 + θt + θ0 ∓ σ, 1 + θt − θ0 ∓ σ

2∓ 2σ ;
t

z

]
.


