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Example 1: Sine kernel

Introduce

. ox—y
sin =

() = det (1 - K}(Ovt)) O P

> 7(t) is a Painlevé V tau function: ¢ (t) = t& In7(t) satisfies
(t¢") + (¢¢' = ¢) (¢¢' — ¢ +4¢%) = 0. (¢-PV)

» Asymptotics:
4

bt 6
T(t—0) =1 27r+5767r2+o(t)’
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7(t — 00) =Teine - t 4e 32 1+ﬁ+o(t )



Conjecture [Dyson, '76]:

Taine = 2123 D = \/2G (1) G (3).

> Barnes G-function is essentially defined by the recurrence relation
G (z+1) =T (z) G(2); it has integral and product representations, etc

> proved in [Ehrhardt, '04; Krasovsky, '04; Deift, Its, Krasovsky, Zhou, '06]



Example 2: 2D Ising model

> Nearest-neighbor interaction

Hlol=—J>_ oij(ois+0iji),

ij

03,2
of spin variables ¢;; = +1.

» Spin-spin correlation function:

700 e~ PHlo]

Z[o‘] 00,007r,r,
Z[d] e—BH]o]

<(7'0,00'r)< Wy > =

» Phase transition at s =sinh28J =1

> Spontaneous magnetization [Yang, '52]:

<0>—{(15_4)§7 s> 1,

B 0, s<1,

> Correlation length A ~ 272 |s — 1t



Scaling limit of the 2-point functions is described by

R
T T, A = oo, R=1/r2+r2 — oo, Kb
(00,000.) = N 32872 (), T=T,

Scaled correlations can be written in terms of Fredholm determinants & related
to Painlevé functions [McCoy, Tracy, '73; Wu, McCoy, Tracy, Barouch, '76]
(PV, PlI(Ds), PIl(Dg)). In particular, both {1+ = t<% In7y (t) satisfy

(") =4(C— 1) +4(¢) (C—t)+ () (¢-PV)

> Long distances (form factor expansions):

eft
V2t

> Short distances (conformal limit):

T4 (t = 00) ~ T_ (t - o00) ~ 1.

_1
4.

T+ (t — 0) ~ Tlsing * (2t)



Theorem [Tracy, '91]:

Tising = 21262 = G (1) G (2).

> alternative proof in [Bothner, '17]

> constant factors in the asymptotics of tau functions (connection
constants) were computed for many other (speciall) Fredholm

determinant solutions of Painlevé equations:

- correlator of twist fields in sine-Gordon field theory at the
free-fermion point [Basor, Tracy, '91]

- Airy kernel [Tracy, Widom, '92; Deift, Its, Krasovsky, '06]

- Bessel kernel [Tracy, Widom, '93]

- confluent hypergeometric kernel [Deift, Krasovsky, Vasilevska, '10]

- hypergeometric kernel [Lisovyy, '09]



Summary:

v

Ising scaled correlator = specific PV tau function

» it has Fredholm determinant representation

> its asymptotics at one singular point (t — c0) is “easy”
>

the asymptotics at the other singular point (t — 0) is difficult
(connection constant)

Questions:

> Can the general solutions of Painlevé equations be written as Fredholm
determinants?

» How to compute the relevant connection constants?

In this talk, | will mainly focus on the Painlevé VI case.



Isomonodromic tau function [Jimbo, Miwa, Ueno, '79]
Consider a system of linear ODEs with rational coefficients

do
E:A(Z)¢7 A,q)eMatNxN

> Laurent expansions of A(z) at singularities

Au —r
————— 4+ 0((z—a,)™ " as z = a,,
A(z) =1 (z—a,)v*t ( )
—2"TA + 0 (2=7?) as z — oo,
where r1, ..., fn, oo € Z>0.

> assume A, are diagonalizable,
A =G0, .G 0, , =dag{l1,...,00n}.

and non-resonant (6, are distinct whenever r, = 0).



At each singular point, there is a unique formal solution

o) (2)= GO (2) e, V() =1+ gulz—a),
k=1
where ©,(z) are diagonal and have the form
-1

o) = Y @z a) tooin(z-a).

k=—r,
Isomonodromic times:
> positions of singularities a,
> diagonal elements ©, i
Monodromy data:
> Stokes matrices relating canonical solutions in different sectors at a,
> formal monodromy exponents ©, .o

> connection matrices relating canonical solutions at different singularities



Theorem [Jimbo, Miwa, Ueno, '79]:
Let us collectively denote the times by 7. The 1-form

wIMU = — Z res;—a, Ir (é(”) (2)71 0,9 (2) drO, (z))

v=1,...,n,00

is closed when restricted to isomonodromic family of A(z). It thus defines the
isomonodromic tau function by

dr InTymu = wimu

Ay
o

Example. For A(z) = % + % + (4 simple poles 0, t, 1, 00)

1

TrAcA:  TrAA;

O InT: =
: In Tavu ; r—

For 2 x 2 matrices, this is Painlevé VI tau function.

Aim: Extend Jimbo-Miwa-Ueno differential to the space of monodromy data
(the space of parameters and initial conditions for Painlevé).



Isomonodromic deformations
[Gamayun, lorgov, OL, '12-13] tau functions  w R
[lorgov, OL, Teschner, '14]

[Bershtein, Shchechkin, '14]

RN
2D CFT ) [Alday, Gaiotto, Tachikawa, '09] R 4D SUSY YM
conformal blocks partition functions

01 0,
TVI (t) ZNoZe’nn >J—H<
n€Z 900 90

=No (1= ) 3" e™ 37 By (o + n,6) ¢ -0 oAl
neZ A, u€EY

= No t7° %% det (1 + K) « Task 1

> explicit integrable (2 x 2 or 4 x 4) matrix kernel K involving 2 F1 functions;
acts on vector-valued functions on a circle (and not on an intervall)



Asymptotic behaviors of 7y1:

~ 2 2 2
() No 7 —%—0% ast — 0,
TVI1 =~ ~ 2_p2_g2
Ny (1—¢)" faf ast— 1.
> o, p are 2 Painlevé VI integration constants, related to monodromy of the
associated 4-point Fuchsian system

Task 2 — compute the connection coefficient A3 /Ao

Remark. Tau function can be expanded in different channels (there are
different Fredholm determinant representations, adapted for asymptotic
analysis near different critical points):

0 0 b b
. 1 t .
TVI(t):NoZe'"" >O-—+n< :lee'"“ p+n
neZ 000 90 neZ
O 0o

This allows to relate the connection coefficient to the ¢ = 1 fusion matrix,
0:

0

91 o Ot_ 91 0t.p 1
e A NS B )

0o ) 0

bo



M . .
It turns out In ~~ coincides (up to an elementary correction) with the
0
generating function of the canonical transformation between two pairs of
Darboux coordinates on Hom (71 (Go,4) , SL (2, C)) /SL(2,C): 0,7 and p, p.

This in its turn coincides (again up to an elementary correction) with the
complexified volume of the hyperbolic tetrahedron with dihedral angles o, p,

90,1’,1,90-

8

NlnH G(1+Zk)

> z's are explicit elementary (though complicated) functions of
monodromy parameters

> conjecture in [lorgov, OL, Tykhyy, '13]
> proved in [Its, OL, Prokhorov, '16]



Riemann-Hilbert setup

> let C C C be a circle centered at the origin
> pick a loop J(z) € Hom (C, GLy (C))
» J(z) continues into an annulus A D C

J(Z) = ZJka,

keZ

Two Riemann-Hilbert problems:
direct: J(z)=V_(2) 'V, (2)
dual: J(2) =V, (2)V_(2)



Main definition: The tau function of RHPs defined by (C, J) is defined as
Fredholm determinant

7[J] = dety, (MeJ ™ NI,

where H = L? (C,C") and M, is the orthogonal projection on H. along H-_.

Properties:

» dual RHP is solvable ifF the operator P := N.J N, is invertible on Hy,
in which case P~ =W, N, ¥2'N,

> likewise, for direct RHP and Q := M. JMMy, with Q' = W 'MW _T.
> if either direct or dual RHP is not solvable, then 7[J] =0

Example: scalar case (N = 1)
» direct and dual factorization coincide
> J(z2)=(1—t12)"* (1 — to/2)" with |z| =1 and |t1],|t2] < 1, then

T[J] = (1 — t1t2)y1y2



Remark. 7 [J] appears [Widom, '76] in the asymptotics of determinant of block
Toeplitz matrix with symbol J,

Jo J_1 ce J7K+1

h Jo ... Jky2
Tkl = : . :
Ik_1 JIk—o ... Jo

In this context, 7 [J] is called Widom's constant.
> strong Szeg6 for N =1: 7[J] =exp>_ 2, k(InJ), (InJ)_,

> no nice general formula for N > 2



If the direct RHP is solvable, then 7[J] may also be written as

7[J] = dety (1 + K), K:( ao 357 )

—+

where a1+ = \Ilil'lillll1 — M4 : Hx — Hy are integral operators
1
(axxf)(2) = %%cai:F (z,2) f (') dZ',

with block integrable kernels

R (2) Vs (z')_I.

z—Zz

atf (2,7) =

In applications to Painlevé:
> W, (direct factorization) are given and define the jump J = W_"1w,

> W, are expressed via classical special functions
(Gauss, Kummer & Bessel for PVI, PV, PIII's)

» dual factorization (\I'i inJ= \TJ+\TJ:1) is the problem to be solved



Variational formula

Theorem: Let (z,t) — J(z,t) be a smooth family of GL (N, C)-loops which
depend on an extra parameter t and admit direct & dual factorization. Then

delnt[J] = 1 TrJlat J[o.0_ Wt wito,w, ]} dz.
27 +

Proof.
B Indety, PQ = Tru, (3PP "+ Q7'9,Q) =
= TrH< J7R0d (U_N_WTt - ) 4 (WL v, — ) J—latj>
-1 AN .
Given d (z,2') = Yi(z) V. (Z) 1, we have d (z,z) = W10, V,. O

z—27
> due to [Widom, '74]; rediscovered by [Its, Jin, Korepin, '06]

> related results in the study of dependence of isomonodromic tau functions
on monodromy [Bertola, '09]

Corollary: in isomonodromic RHPs,

Widom's constant 7 [J] ~  Jimbo-Miwa-Ueno tau function



Example: 4-point Fuchsian system
4 regular singularities at 0, t, 1, co:

Ao At + Al

, b = PA(2), A(z) ==

% (2) (2) z + z—t z-1

> arbitrary rank: Ao 1 € Matyxn (C)

> generic case: Ao and Ao := —Ao — Ar — A; are diagonalizable

> fix the diagonalizations A, = G, '©, G, with diagonal ©,
> eigenvalues of A, are assumed distinct mod Z

There exist unique fundamental solutions ®*) (z), holomorphic on the
universal covering of C\ {0, t,1} and such that

oW (2) (v — Z)OV Gw (2), forv=0,t,1,
z) =
(—Z)_ G( )(Z), for v = 0,

where G (z) is holomorphic and invertible in a finite open disk around z = v
and satisfies G*) (v) = G,.



Dual RHP; for ¥

¥ (2) M (z2), ze Dy,
Z)= — — — —
cD(Z)7 Z%RonDoUDtUDlUDm.



Dual RHP; for ¥




Dual RHP, for U



Dual RHP, for U

= (2N (2), outside C,
V(@) = {w ()40 (2), inside C.



Dual RHP; for W

v (z) = { it \I\’I{l inside C.

), outside C,
- ()7 v (2),

(z

(z

» contour C (single circle I), smooth jump J: C — GL (N, C) given by
J(2)=V_(2) W, (2) =V, (2)V_ (2)

> we are in the previously described setup!



Substitute into Widom's differentiation formula

Bslnt[J] = %ﬁﬂrlc’u (B:0_U— + Wi to,v.) dz.

the expression for the jump J = ¢,71¢e and the dual/direct factorizations,
Vo =00, Uy =070, Vo= (-2, V,=(-2)"0,,
and use that 9,® = ®A(z). This gives
dsInr[J] = % % Tr {A(z)dfl(b,-(‘?s (0;10) — A(2) b0, (071 D)
T Jc

_% (—2)° ;0 (d>,.—1 (—z)G) n % (—2)"® 0.0, (cb;l (fz)6> } dz

Red terms contribute via the residues at z = 0, t, and blue ones via the residues
at z=1, c0.



The log-derivative then reduces to

dsinT[J]= > Tre.,0.6.6,"

v=0,t,1,00

— Z Tr@l,ﬁ,-asGl,,,-G;,-l— Z Tr@y,easGu,eGy_,el

v=0,t,00 v=0,1,00
where ©, are exponents of the 4-point solution,
©0,i =00, ©:i=0;, O4,;i=6,
©0,e =6, ©01.=01, Ox.e=0,
and G, j, G, . are 3-point counterparts of G,.
For s = t (isomonodromic time):

» 1st line is nothing but the Jimbo-Miwa-Ueno definition of

> 2nd line corresponds to tau functions of auxiliary 3-point systems



We then obtain

TIMU (t) = t% Tr(Gz*egie?)T [J] .

» Recall that
Tl =det(1+K), K= ( ao 36— )
—+

L1-ve (2) Wy (z')_I.

!

azf (2,7) = P

> 7ymu (t) for 4-point system written via auxiliary 3-point solutions

> hypergeometric representations for N = 2 =—> PVI tau function !



Schematically,



The same is valid for all equations from the upper part of
Chekhov-Mazzocco-Rubtsov geometric confluence diagram, since PVI, PV,
Plll1 2,3 surfaces (Riemann-Hilbert contours) may be cut into solvable pieces:

Gauss Whittaker Bessel



Connection coefficient

Considering a different pants decomposition which combines t and 1 instead of
t and 0, we obtain a different Fredholm determinant representation, which is
better adapted for the asymptotic analysis of the regime t — 1.

TIMU (t) = (]_ — t)%Tr(ézfef—Of) - []J )

It is of course proportional to the previous tau function 7ymu (t), and their
ratio is the connection coefficient that we want to compute.

Corollary: For any monodromy parameter s,

M = = =-1 2 = =-1
OsIn—== = Tr @,,,,-85 Gu,iGV,‘ + Tr eu,eas Gl/,e G,
5y oy |

0 v=0,t,c0 v=0,1,00

— 3 T0,0:6,G,  — D Tr0,.0:G,eG, 2

v=0,t,00 v=0,1,00

+%Int85Tr(62—@(2)—@f)—%In(l—t) 9, Tr (&% — 07 - e3)



Theorem [Its, OL, Prokhorov, '16]

For generic monodromy data,

/\i _ G(l—&—e?—l—e'@t—ee'@l)G(l—FeE—Fe/@o—ee'@oo)x
No it G(l+eo+ €0+ €ec’0o) G(1+ €0+ €01+ e€’lu)

XH G(1 + 2e0) f[ ég—i—w)

iGl+2€O’ k:lé<+/\k

Here G (z) denotes the Barnes G-function, G (z) = g((;:)) the parameters
V1.4 and A1 4 are defined by

v =0+ 0 + 0, A1 =00+ 0:+ 01+ O,
vo =0+ 01 + O, A=0+4+7+ 0+ 01,

v3 =0 + 0o + O, A3 =0+4+0+0:+ 0,

|2 :E+0t+91, A4:0,

and the quantity ¢ is determined by

Q2is _ 2cos2m (0 —7) —2cos 2 (0o + 61) — 2cos 27 (0o + 6:) + Tr M0M1
- Zk (e27rl vy —vk) — @2mi(vy— /\k))

with 2vy = 22:1 Vi = 22:1 Ak




Some open problems

> 3-point auxiliary solutions are known for 4-point Fuchsian systems of
higher rank N whose 2 singularities have special spectral type (N —1,1).
It is then in principle possible to find explicitly the log-differential of the
connection coefficient. Is it possible to integrate it? What would be the
higher-rank analog of the tetrahedron?

> In the generic case, the 3-point solutions for N > 2 are not available. Can
we at least find an interpretation of the connection constant in terms of
Poisson geometry of the SL (N, C) character variety of Co 47 Affirmative
answer [Bertola, Korotkin, '19]

> Connections constants for Pl are computed in [OL, Roussillon, '16]. Their
evaluation for PII-PV with generic parameters is wide open; for PV
conjectural expressions are available [OL, Nagoya, Roussillon, '18].









For N = 2:

e (R0 K 0) (8 KE )

ay— (2,7) = 2l 7
200 [ Kii (2) K- (2) R_(Z) -R. ()

a_y (Z z/) _ 1-— (1 - 7) o ( Rt-:_ (2) Ri_ (2) ) ( _R_+ (Z/) R++ (Z/) )

with

Kis (2) =2Fy [ 01+ 0o ii,;; —0to ;Z}

.2 B . )
Ki¥(z):im 2F1|: 1+91+eoo:|:(771+91 0o o ;Z],

20 (1+20) 2420
7 _ [ 0:+600F 0,0 —0oFo t
Kit (z) =2F1 i 20 |

P 2% 20 21

- m02 —(0: F o)t 1460:+6Fo,14+0,—6Fo t
K — F20 _Fin Y0 t t 0 ) t 0 .
(2 = F e ) 2



