Tilings of a hexagon and non-hermitian orthogonality on a contour

Arno Kuijlaars (KU Leuven)

joint work with

Christophe Charlier, Maurice Duits, and Jonatan Lenells (KTH Stockholm)

Integrability and Randomness in Mathematical Physics and Geometry

Luminy, France, 11 April 2019

Outline

- 1. Hexagon tilings
- 2. Non-intersecting paths
- 3. Tile probabilities
- 4. Saddle points
- 5. Equilibrium measure
- 6. Riemann-Hilbert problem
- 7. Deformation of contours

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. Hexagon tilings

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lozenge tiling of a hexagon

three types of lozenges

Large random tiling

Arctic circle phenomenon

Affine change of coordinates

Hexagon with corner points at (0,0), (N,0), (2N,N), (2N,2N), (N,2N), and (0,N).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Non uniform model

Probability of tiling:
$$\mathbb{P}(\mathcal{T}) = \frac{W(\mathcal{T})}{\sum_{\mathcal{T}'} W(\mathcal{T}')}$$
Weight on a tiling: $W(\mathcal{T}) = \prod w(\Box)$

Weight of \Box depends on its position:

$$w(\Box) = \begin{cases} \alpha, & \text{if } \Box \text{ is in odd numbered column} \\ 1, & \text{if } \Box \text{ is in even numbered column} \end{cases}$$

 $\Box \in \mathcal{T}$

 $\alpha = 1$ is the usual uniform model $\alpha < 1$ means punishment if \Box is in an odd column

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Only ground state in case $\alpha = 0$

Small $\alpha > 0$

Liquid region consists of two ellipses if $\alpha > 0$ is small Special frozen region with two tiles in the middle

Larger $\alpha > 0$

Liquid region is bounded by more complicated curve Special frozen region is broken. It no longer goes all the way from left to right.

2. Non-intersecting paths

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Non-intersecting paths

Tiling is equivalent to N non-intersecting paths starting at (0,0), ..., (0, N-1) and ending at (2N, N), ..., (2N, 2N-1)

Paths fit on a directed graph

SAC

Weighted graph

Weight of a path system $w(P_1, \ldots, P_N) = \prod_{j=1}^N \prod_{e \in P_j} w(e)$

Weight of an edge

$$w(e) = egin{cases} lpha, & ext{if } e ext{ is a horizontal edge} \ lpha, & ext{in an odd numbered column} \ 1, & ext{otherwise} \end{cases}$$

Interacting particle system is determinantal [Lindstrom Gessel Viennot]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LGV formula

Probability for particle configuration $(x_i^{(m)})_{j,m}$ is

$$\frac{1}{Z_N} \prod_{m=1}^{2N} \det \left[T_m \left(x_i^{(m-1)}, x_j^{(m)} \right) \right]_{i,j=0,\dots,N-1}$$

with transition matrices

~ • •

$$T_m(x,y) = \begin{cases} \alpha & \text{if } y = x \text{ and } m \text{ is odd} \\ 1 & \text{if } y = x \text{ and } m \text{ is even} \\ 1 & \text{if } y = x+1 \\ 0 & \text{otherwise} \end{cases}$$

Sum formula for correlation kernel [E

[Eynard Mehta]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transition matrices are Toeplitz

Observation:

 T_m is an infinite Toeplitz matrix with symbol

$$a_m(z) = egin{cases} z+lpha, & ext{if } m ext{ is odd} \ z+1, & ext{if } m ext{ is even} \end{cases}$$

Theorem [Duits-K]; (scalar version)

Correlation kernel is

$$\begin{aligned} \mathcal{K}(x_1, y_1; x_2, y_2) &= -\frac{\chi_{x_1 > x_2}}{2\pi i} \oint_{\gamma} \prod_{m=x_2+1}^{x_1} a_m(z) \cdot z^{y_2 - y_1 - 1} dz \\ &+ \frac{1}{(2\pi i)^2} \oint_{\gamma} \frac{dz}{z} \oint_{\gamma} \frac{dw}{w^{2N}} \prod_{m=x_2+1}^{N} a_m(w) \cdot R_N(w, z) \cdot \prod_{m=1}^{x_1} a_m(z) \cdot \frac{w^{y_2}}{z^{y_1}} \end{aligned}$$

 $R_{\rm N}$ is the reproducing kernel for orthogonal polynomials on γ with weight

$$W(z) = rac{1}{z^{2N}} \prod_{m=1}^{2N} a_m(z) = rac{(z+1)^N (z+\alpha)^N}{z^{2N}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Orthogonal polynomials

$$\frac{1}{2\pi i} \oint_{\gamma} p_n(z) z^k \frac{(z+1)^N (z+\alpha)^N}{z^{2N}} dz = \kappa_n \delta_{k,n}, \quad k = 0, \dots, n-1$$

with reproducing kernel

$$R_{N}(w,z) = \sum_{n=0}^{N-1} \frac{p_{n}(w)p_{n}(z)}{\kappa_{n}}$$
$$= \kappa_{N}^{-1} \frac{p_{N}(z)p_{N-1}(w) - p_{N-1}(z)p_{N}(w)}{z - w}$$

Non-hermitian orthogonality! Existence of OP is not automatic but can be proved for degrees $n \le 2N$ OP is Jacobi polynomials $P_n^{(-2N,2N)}$ in case $\alpha = 1$

3. Tile probabilities

Probabilities for lozenges (one-point functions)

$$\mathbb{P}\left(\begin{array}{c}\swarrow\\(x,y)\end{array}\right) = 1 - \mathcal{K}(x,y;x,y)$$
$$= 1 - \frac{1}{(2\pi i)^2} \oint_{\gamma} \oint_{\gamma} \mathcal{R}_N(w,z) \frac{(w+1)^N (w+\alpha)^N}{w^{2N}}$$
$$\times \frac{(z+1)^{\lfloor \frac{x}{2} \rfloor} (z+\alpha)^{\lfloor \frac{x+1}{2} \rfloor}}{(w+1)^{\lfloor \frac{x}{2} \rfloor} (w+\alpha)^{\lfloor \frac{x+1}{2} \rfloor}} \frac{w^y}{z^y} \frac{dwdz}{z}$$

with similar double contour integral formulas for

$$\mathbb{P}\left(\begin{array}{c} \swarrow\\ (x,y) \end{array}\right) \quad \text{and} \quad \mathbb{P}\left(\begin{array}{c} \Box\\ (x,y) \end{array}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large N limit

Suppose x and y vary with N such that

$$\lim_{N \to \infty} \frac{x}{N} = 1 + \xi, \qquad \lim_{N \to \infty} \frac{y}{N} = 1 + \eta$$

 (ξ,η) are coordinates for the hexagon ${\cal H}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main result on limiting tile probabilities

4. Saddle points

Saddle point equation

Asymptotic analysis of the orthogonal polynomials. If $p_N(z) \approx e^{g(z)N}$ then (very roughly) $R_N(w, z) \approx e^{(g(w)+g(z))N}$

and the integrand of the double integral is

$$\approx e^{g(z)N} (z+1)^{\frac{1+\xi}{2}N} (z+\alpha)^{\frac{1+\xi}{2}N} z^{-(1+\eta)N} \\ \times e^{g(w)N} (w+1)^{\frac{1-\xi}{2}N} (w+\alpha)^{\frac{1-\xi}{2}N} w^{-(1-\eta)N}$$

Saddle point equations

$$g'(z) + \frac{1+\xi}{2(z+1)} + \frac{1+\xi}{2(z+\alpha)} - \frac{1+\eta}{z} = 0$$

$$g'(w) + \frac{1-\xi}{2(w+1)} + \frac{1-\xi}{2(w+\alpha)} - \frac{1-\eta}{2} = 0$$

g-function

\boldsymbol{g} function typically takes the form

$$g(z) = \int \log(z-s) d\mu_0(s)$$

where μ_0 is the weak limit of the normalized zero counting measures of the orthogonal polynomials

$$\frac{1}{N}\sum_{p_N(z)=0}\delta_z \stackrel{*}{\to} \mu_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Where are the zeros of the orthogonal polynomials?

Zeros of orthogonal polynomials: $\alpha = 1$

Zeros of $P_N^{(-2N,2N)}$ cluster as $N \to \infty$ to an arc on the unit circle.

Zeros of orthogonal polynomials: $1/9 < \alpha < 1$

Zeros of P_N cluster as $N \to \infty$ to an arc on the circle of radius $\sqrt{\alpha}$.

Zeros of orthogonal polynomials: $\alpha = 1/9$

The circular arc closes at $\alpha = 1/9$

5. Equilibrium measure

Equilibrium conditions

Take
$$V(z) = 2 \log z - \log(z+1) - \log(z+\alpha)$$

 μ_0 should be probability measure on contour γ_0 going around 0 such that $g(z) = \int \log(z-s) d\mu_0(s)$ satisfies

$$\mathsf{Re}\left[g_+(z)+g_-(z)-V(z)+\ell
ight]egin{cases} =0, & ext{ for } z\in \mathsf{supp}(\mu_0),\ \leq 0, & ext{ for } z\in \gamma_0\setminus\mathsf{supp}(\mu_0), \end{cases}$$

 $\text{Im}\left[g_{+}(z)+g_{-}(z)-V(z)\right] \quad \begin{array}{l} \text{is constant on each connected} \\ \text{component of } \sup (\mu_{0}), \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 μ_0 is equilibrium measure of γ_0 in external field Re V γ_0 is a contour with the *S*-property [Stahl]

Rational function Q_{α}

Since $g'_{+} + g'_{-} = V'$ on the support $\left[\int \frac{d\mu_0(s)}{z-s} - \frac{V'(z)}{2}\right]^2 = Q_\alpha(z)$ is a rational function

Rational function Q_{α}

Since
$$g'_{+} + g'_{-} = V'$$
 on the support

$$\left[\int \frac{d\mu_0(s)}{z-s} - \frac{V'(z)}{2}\right]^2 = Q_{\alpha}(z) \text{ is a rational function}$$

If $\alpha \geq 1/9$ then

$$Q_{\alpha}(z) = \frac{(z + \sqrt{\alpha})^2 (z - z_{+}(\alpha))(z - z_{-}(\alpha))}{z^2 (z + 1)^2 (z + \alpha)^2}$$

with $z_{\pm}(\alpha) = \sqrt{\alpha} e^{\pm i\theta_{\alpha}}$ for some $\frac{2\pi}{3} \le \theta_{\alpha} \le \pi$ If $\alpha < 1/9$ then

$$Q_{\alpha}(z) = \frac{(z - z_{+}(\alpha))^{2}(z - z_{-}(\alpha))^{2}}{z^{2}(z + 1)^{2}(z + \alpha)^{2}}$$

with real $-1 < z_{-}(\alpha) < -\sqrt{\alpha} < z_{+}(\alpha) < -\sqrt{\alpha}$

Liquid/frozen regions

Saddle point equation

$$Q_{\alpha}(z) = \left(-\frac{\xi}{2(z+1)} - \frac{\xi}{2(z+\alpha)} + \frac{\eta}{z}\right)^2$$

becomes a degree four polynomial equation in z.

It has four solutions (four saddles).

Lemma

If (ξ, η) belongs to the hexagon, then at least two saddles in $(-1, -\alpha)$. Hence at most one saddle in \mathbb{C}^+ .

Liquid region \mathcal{L}_{α} : there is a saddle $z = s(\xi, \eta)$ in \mathbb{C}^+ . Otherwise frozen region: all saddles are real. Liquid region for $\alpha < \frac{1}{9}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Liquid region for $\alpha > \frac{1}{9}$

Transition at $\alpha = \frac{1}{9}$: tangent ellipses and tacnode...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

6. Riemann-Hilbert problem

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

RH problem for orthogonal polynomials RH problem [Fokas Its Kitaev]

$$egin{aligned} Y_+(z) &= Y_-(z) \begin{pmatrix} 1 & rac{(z+1)^N(z+lpha)^N}{z^{2N}} \ 0 & 1 \end{pmatrix} & ext{on } \gamma_0 \ Y(z) &= ig(I + \mathcal{O}(z^{-1})ig) \begin{pmatrix} z^N & 0 \ 0 & z^{-N} \end{pmatrix} & ext{as } z o \infty \end{aligned}$$

Reproducing kernel in terms of solution of RH problem

$$R_N(w,z) = \frac{1}{z-w} \begin{pmatrix} 0 & 1 \end{pmatrix} Y^{-1}(w) Y(z) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Transformation

First transformation in RH analysis

$$T(z) = \begin{pmatrix} e^{N\frac{\ell}{2}} & 0\\ 0 & e^{-N\frac{\ell}{2}} \end{pmatrix} Y(z) \begin{pmatrix} e^{-N(g(z)+\frac{\ell}{2})} & 0\\ 0 & e^{N(g(z)+\frac{\ell}{2})} \end{pmatrix}$$

Steepest descent analysis as in [Deift Kriecherbauer McLaughlin Venakides Zhou]

Main outcome

T(z) and $T^{-1}(z)$ remain bounded as $N \to \infty$, uniformly for z away from the branch points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

7. Deformation of contours

More contours

・ロト・西ト・山田・山田・山口・

Algebraic identity

$$\begin{aligned} R_N(w,z) \frac{(w+1)^N(w+\alpha)^N}{w^{2N}} \\ &= \begin{pmatrix} 1 & 0 \end{pmatrix} T_{-}^{-1}(w) T(z) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{N(g(z)-g_{-}(w))} \\ &- \begin{pmatrix} 1 & 0 \end{pmatrix} T_{+}^{-1}(w) T(z) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{N(g(z)-g_{-}(w))} \end{aligned}$$

Deform first term to outside and second term to inside Integrand for third type lozenge is (essentially)

$$\begin{pmatrix} 1 & 0 \end{pmatrix} T^{-1}(w) T(z) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{N(\Phi(z) - \Phi(w))} \frac{1}{z(z-w)}$$

Deformation of γ_w

 $\gamma_{w,out}$ γw,in γ_z is in region where $\operatorname{Re} \Phi < \operatorname{Re} \Phi(s)$ $\gamma_{w,in}$ and $\gamma_{w,out}$ are in region where $\operatorname{Re} \Phi > \operatorname{Re} \Phi(s)$ Deforming γ_w to $\gamma_{w,in}$ we may go across a pole at w = z◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Pole contribution

Remaining double integrals are small

$$\frac{1}{(2\pi i)^2} \int_{\gamma_z} dz \int_{\gamma_{w,in} \cup \gamma_{w,out}} dw \begin{pmatrix} 1 & 0 \end{pmatrix} T^{-1}(w) T(z) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \times e^{N(\Phi(z) - \Phi(w))} \frac{1}{z(z-w)} \to 0 \quad \text{as } N \to \infty.$$

Contributions from pole crossings combine to

Va

$$1 - \lim_{N \to \infty} \mathbb{P}\left(\begin{array}{c} \swarrow \\ (x, y) \end{array} \right) = \frac{1}{2\pi i} \int_{\overline{s}}^{s} \frac{dz}{z} = \frac{1}{\pi} \arg s(\xi, \eta) = 1 - \frac{\psi_{3}}{\pi}$$
$$s(\xi, \eta)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

- **C. Charlier, M. Duits, A. Kuijlaars, and J. Lenells** in preparation (coming soon...)
- M. Duits and A.B.J. Kuijlaars
 The two periodic Aztec diamond and matrix valued orthogonal polynomials,
 J. Eur. Math. Soc. (to appear), arXiv:1712.05636

- Thanks to sponsors FWO (Flemish Science Foundation) and KU Leuven Research Fund
- Advertisement: Post-doc position available...