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1. Hexagon tilings



Lozenge tiling of a hexagon

three types of lozenges



Large random tiling

Arctic circle phenomenon



Affine change of coordinates

Hexagon with corner points at (0, 0), (N , 0), (2N ,N),
(2N , 2N), (N , 2N), and (0,N).



Non uniform model

Probability of tiling: P(T ) =
W (T )∑
T ′W (T ′)

Weight on a tiling: W (T ) =
∏
�∈T

w(�)

Weight of � depends on its position:

w(�) =

α, if � is in odd numbered column

1, if � is in even numbered column

α = 1 is the usual uniform model

α < 1 means punishment if � is in an odd column



Case α = 0

Only ground state in case α = 0



Small α > 0

Liquid region consists of two ellipses if α > 0 is small

Special frozen region with two tiles in the middle



Larger α > 0

Liquid region is bounded by more complicated curve

Special frozen region is broken. It no longer goes all
the way from left to right.



2. Non-intersecting paths



Non-intersecting paths

Tiling is equivalent to N non-intersecting paths

starting at (0, 0), . . . , (0,N − 1) and

ending at (2N ,N), . . . , (2N , 2N − 1)



Paths fit on a directed graph
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Weighted graph

Weight of a path system w(P1, . . . ,PN) =
N∏
j=1

∏
e∈Pj

w(e)

Weight of an edge

w(e) =

α,
if e is a horizontal edge

in an odd numbered column

1, otherwise

Interacting particle system is determinantal
[Lindstrom Gessel Viennot]



LGV formula

Probability for particle configuration (x
(m)
j )j ,m is

1

ZN

2N∏
m=1

det
[
Tm

(
x

(m−1)
i , x

(m)
j

)]
i ,j=0,...,N−1

with transition matrices

Tm(x , y) =


α if y = x and m is odd

1 if y = x and m is even

1 if y = x + 1

0 otherwise

Sum formula for correlation kernel [Eynard Mehta]



Transition matrices are Toeplitz

Observation:

Tm is an infinite Toeplitz matrix with symbol

am(z) =

z + α, if m is odd

z + 1, if m is even



Theorem [Duits-K]; (scalar version)

Correlation kernel is

K (x1, y1; x2, y2) = −χx1>x2

2πi

∮
γ

x1∏
m=x2+1

am(z) · zy2−y1−1dz

+
1

(2πi)2

∮
γ

dz

z

∮
γ

dw

w 2N

N∏
m=x2+1

am(w)·RN(w , z)·
x1∏

m=1

am(z)·w
y2

zy1

RN is the reproducing kernel for orthogonal polynomials
on γ with weight

W (z) =
1

z2N

2N∏
m=1

am(z) =
(z + 1)N(z + α)N

z2N



Orthogonal polynomials

1

2πi

∮
γ

pn(z)zk
(z + 1)N(z + α)N

z2N
dz = κnδk,n, k = 0, . . . , n−1

with reproducing kernel

RN(w , z) =
N−1∑
n=0

pn(w)pn(z)

κn

= κ−1
N

pN(z)pN−1(w)− pN−1(z)pN(w)

z − w

Non-hermitian orthogonality! Existence of OP is not
automatic but can be proved for degrees n ≤ 2N

OP is Jacobi polynomials P
(−2N,2N)
n in case α = 1



3. Tile probabilities



Probabilities for lozenges (one-point functions)

P

(
(x , y)

)
= 1− K (x , y ; x , y)

= 1− 1

(2πi)2

∮
γ

∮
γ

RN(w , z)
(w + 1)N(w + α)N

w 2N

× (z + 1)b
x
2
c(z + α)b

x+1
2
c

(w + 1)b
x
2
c(w + α)b

x+1
2
c

w y

zy
dwdz

z
.

with similar double contour integral formulas for

P


(x , y)

 and P

(
(x , y)

)



Large N limit

Suppose x and y vary with N such that

lim
N→∞

x

N
= 1 + ξ, lim

N→∞

y

N
= 1 + η

(ξ, η) are coordinates for the hexagon H

Double contour integral
has relevant saddle point

s(ξ, η)

Liquid region is character-
ized by

Im s(ξ, η) > 0
(−1,−1) (0,−1)

(1, 0)

(1, 1)(0, 1)

(−1, 0) H



Main result on limiting tile probabilities

φ2

s(ξ, η)

φ1−1
φ3 0

ψ2

s(ξ, η)

ψ1
−α

ψ3 0

lim
N→∞

P

(
(x , y)

)
=
φ3

π
=
ψ3

π
= 1− 1

π
arg s(ξ, η),

lim
N→∞

P


(x , y)

 =


φ1

π
, x odd,

ψ1

π
, x even,

lim
N→∞

P

(
(x , y)

)
=


φ2

π
, x odd,

ψ2

π
, x even,



4. Saddle points



Saddle point equation

Asymptotic analysis of the orthogonal polynomials.

If pN(z) ≈ eg(z)N then (very roughly)

RN(w , z) ≈ e(g(w)+g(z))N

and the integrand of the double integral is

≈ eg(z)N (z + 1)
1+ξ

2
N(z + α)

1+ξ
2

Nz−(1+η)N

× eg(w)N (w + 1)
1−ξ

2
N (w + α)

1−ξ
2

Nw−(1−η)N

Saddle point equations

g ′(z) +
1 + ξ

2(z + 1)
+

1 + ξ

2(z + α)
− 1 + η

z
= 0

g ′(w) +
1− ξ

2(w + 1)
+

1− ξ
2(w + α)

− 1− η
2

= 0



g -function

g function typically takes the form

g(z) =

∫
log(z − s)dµ0(s)

where µ0 is the weak limit of the normalized zero
counting measures of the orthogonal polynomials

1

N

∑
pN(z)=0

δz
∗→ µ0

Where are the zeros of the orthogonal polynomials?



Zeros of orthogonal polynomials: α = 1

Zeros of P
(−2N,2N)
N cluster as N →∞ to an arc on the

unit circle.

[Mart́ınez-Finkelshtein Orive]

[Driver Duren]



Zeros of orthogonal polynomials: 1/9 < α < 1

Zeros of PN cluster as N →∞ to an arc on the circle of
radius

√
α.



Zeros of orthogonal polynomials: α = 1/9

The circular arc closes at α = 1/9

The density of zeros
vanishes quadratically at −1/3

Local behavior in terms of Lax pair solutions
for Hastings-McLeod solution of Painlevé II



5. Equilibrium measure



Equilibrium conditions

Take V (z) = 2 log z − log(z + 1)− log(z + α)

µ0 should be probability measure on contour γ0 going

around 0 such that g(z) =

∫
log(z − s)dµ0(s) satisfies

Re [g+(z) + g−(z)− V (z) + `]

{
= 0, for z ∈ supp(µ0),

≤ 0, for z ∈ γ0 \ supp(µ0),

Im [g+(z) + g−(z)− V (z)]
is constant on each connected
component of supp(µ0),

µ0 is equilibrium measure of γ0 in external field ReV

γ0 is a contour with the S-property [Stahl]



Rational function Qα

Since g ′+ + g ′− = V ′ on the support[∫
dµ0(s)

z − s
− V ′(z)

2

]2

= Qα(z) is a rational function

If α ≥ 1/9 then

Qα(z) =
(z +

√
α)2(z − z+(α))(z − z−(α))

z2(z + 1)2(z + α)2

with z±(α) =
√
α e±iθα for some 2π

3
≤ θα ≤ π

If α < 1/9 then

Qα(z) =
(z − z+(α))2(z − z−(α))2

z2(z + 1)2(z + α)2

with real −1 < z−(α) < −
√
α < z+(α) < −α



Rational function Qα

Since g ′+ + g ′− = V ′ on the support[∫
dµ0(s)

z − s
− V ′(z)

2

]2

= Qα(z) is a rational function

If α ≥ 1/9 then

Qα(z) =
(z +

√
α)2(z − z+(α))(z − z−(α))

z2(z + 1)2(z + α)2

with z±(α) =
√
α e±iθα for some 2π

3
≤ θα ≤ π

If α < 1/9 then

Qα(z) =
(z − z+(α))2(z − z−(α))2

z2(z + 1)2(z + α)2

with real −1 < z−(α) < −
√
α < z+(α) < −α



Liquid/frozen regions

Saddle point equation

Qα(z) =

(
− ξ

2(z + 1)
− ξ

2(z + α)
+
η

z

)2

becomes a degree four polynomial equation in z.

It has four solutions (four saddles).

Lemma
If (ξ, η) belongs to the hexagon, then at least two
saddles in (−1,−α).
Hence at most one saddle in C+.

Liquid region Lα: there is a saddle z = s(ξ, η) in C+.

Otherwise frozen region: all saddles are real.



Liquid region for α < 1
9
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α
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Liquid region for α > 1
9

L+
α

L−α
A1

D1

B1

C1

B2

C2

A2

D2

Transition at α = 1
9
: tangent ellipses and tacnode...



6. Riemann-Hilbert problem



RH problem for orthogonal polynomials

RH problem [Fokas Its Kitaev]

Y+(z) = Y−(z)

(
1 (z+1)N(z+α)N

z2N

0 1

)
on γ0

Y (z) =
(
I +O(z−1)

)(zN 0
0 z−N

)
as z →∞

Reproducing kernel in terms of solution of RH problem

RN(w , z) =
1

z − w

(
0 1

)
Y −1(w)Y (z)

(
1
0

)



Transformation

First transformation in RH analysis

T (z) =

(
eN

`
2 0

0 e−N
`
2

)
Y (z)

(
e−N(g(z)+ `

2
) 0

0 eN(g(z)+ `
2

)

)

Steepest descent analysis as in
[Deift Kriecherbauer McLaughlin Venakides Zhou]

Main outcome

T (z) and T−1(z) remain bounded as N →∞, uniformly

for z away from the branch points.



7. Deformation of contours



Possible contours for (ξ, η) ∈ L−α , ξ < 0

−1 −α 0

s

s

Blue: Level lines Re Φ(z) = Re Φ(s) of

Φ(z) = g(z) +
1 + ξ

2(z + 1)
+

1 + ξ

2(z + α)
− 1 + η

z

Figure is for α = 1
8
.



More contours

γz

γ0 = γw

γz is in region where Re Φ < Re Φ(s)



Algebraic identity

RN(w , z)
(w + 1)N(w + α)N

w 2N

=
(
1 0

)
T−1
− (w)T (z)

(
1
0

)
eN(g(z)−g−(w))

−
(
1 0

)
T−1

+ (w)T (z)

(
1
0

)
eN(g(z)−g−(w))

Deform first term to outside and second term to inside

Integrand for third type lozenge is (essentially)

(
1 0

)
T−1(w)T (z)

(
1
0

)
eN(Φ(z)−Φ(w)) 1

z(z − w)



Deformation of γw

γz

γw ,out

γw ,in

γz is in region where Re Φ < Re Φ(s)

γw ,in and γw ,out are in region where Re Φ > Re Φ(s)

Deforming γw to γw ,in we may go across a pole at w = z



Pole contribution

Remaining double integrals are small

1

(2πi)2

∫
γz

dz

∫
γw,in∪γw,out

dw
(
1 0

)
T−1(w)T (z)

(
1
0

)
× eN(Φ(z)−Φ(w)) 1

z(z − w)
→ 0 as N →∞.

Contributions from pole crossings combine to

1− lim
N→∞

P

(
(x , y)

)
=

1

2πi

∫ s

s

dz

z
=

1

π
arg s(ξ, η) = 1− ψ3

π

ψ2

s(ξ, η)

ψ1
−α

ψ3 0
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