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Tiling model

Fix Sc R, N> 0 and

w:S — Ry, w(x)=0.

We consider a class of probability measures Py (S, w) on all
N-point subsets of S of the form

N
Pn(la, o, l)oe [T (=) T w(®)
i=1

1<i<j<N

where ;e Sfori=1,..., N,

where S = {g7* + ug* : 0 < x < M} with g € (0,1), x, M € Z>g
and v e [0,1).
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Tiling model

Tiling model

Lozenge tilings of a hexagon can be viewed as stepped surfaces.
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Tiling model

Tiling model

Consider the probability
measure on the set of tilings defined by

where w(7) = H w(<).

CeT

w(T)
P(T) = Z(a, b,c)’
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Tiling model

Consider the probability
measure on the set of tilings defined by

where w(7) = H w(<).

CeT

w(T)
P(T) = Z(a, b,c)’
b

& i

o If we set w(<) =1 we will obtain the uniform measure.
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Tiling model

Tiling model

Consider the probability
measure on the set of tilings defined by

P(7) = 57

Z@.b.0)’ where w(7) = H w(<).

CeT

b

o If we set w(<) =1 we will obtain the uniform measure.
e Let j be the coordinate of ©. Set w(<¢) =q~7, 1> g > 0.
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Tiling model

Tiling model

Consider the probability
measure on the set of tilings defined by

P(7) = 57

Z@.b.0)’ where w(7) = H w(<).

CeT

b

o If we set w(<) =1 we will obtain the uniform measure.
e Let j be the coordinate of ©. Set w(<¢) =q~7, 1> g > 0.

W(T) = Const(a, b’ C) . q—Volume‘

4/35



Tiling model

Tiling model

Consider the probability
measure on the set of tilings defined by

P(7) = 57

Z@.b.0)’ where w(7) = H w(<).

CeT

b

o If we set w(<) =1 we will obtain the uniform measure.
e Let j be the coordinate of ©. Set w(<¢) =q~7, 1> g > 0.

W(T) = Const(a, b’ C) . q—Volume‘

o Let j be the coordinate of . Set w(<O) = kg! — kg7,
1>qg>0.
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Tiling model

Limit shape
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Tiling model

Waterfall

Figure: A simulation for a = 80, b = 80, ¢ = 80. On the left picture the
parameters are 2 = —1, g = 0.8, and on the right picture the

parameters are k2 = —1, g = 0.98.
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Tiling model

Affine transformation
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Tiling model

Tiling model

It establishes a bijection between tilings and non-intersecting paths:

t=3

Let C(t) = (x1,x2,...,xn) be the positions of nodes.
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Tiling model

g-Racah ensemble

Theorem (Borodin, Gorin, Rains '2009)

N

Prob{C(t) = (x1,....xn)} = C- [ (o(x)—a(x)* ] [ we(i),

0<i<j<M i—1
where o(x;) = ¢~ + u(k, N, S, T)g* and w(x) is the weight

function of the g-Racah polynomial ensemble up to a factor not
depending on x.
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Tiling model

Limit shape for domino and lozenze tilings

e Law of Large Numbers for the height function
[Cohn—Larsen—Propp '98], [Cohn—Kenyon—Propp '01],
[Kenyon—Okounkov '07]
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Tiling model

Limit shape for domino and lozenze tilings

e Law of Large Numbers for the height function
[Cohn—Larsen—Propp '98], [Cohn—Kenyon—Propp '01],
[Kenyon—Okounkov '07]

e Central Limit Theorem: convergence of the global
fluctuations of the height function
[Kenyon '01], [Borodin—Ferrari '08], [Petrov '13],
[Duse—Metcalfe '14], [Bufetov—Gorin '17], [Bufetov-K. '17]
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Tiling model

Regularity assumptions

|
e Letqe (0,1),M>1andu€e|0,1).
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e Let gy € (0,1), My € N and up € [0,1) be sequences of
parameters such that
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Tiling model

Regularity assumptions

e Letqe (0,1),M>1andu€e|0,1).
e Let gy € (0,1), My € N and up € [0,1) be sequences of
parameters such that
° MN >N-1
° max(N2|qN—q1/N|,|MN—N~M|,N|uN—uD < Ag,
for some A; > 0.
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Tiling model

Regularity assumptions

e Letqe (0,1),M>1andu€e|0,1).
e Let gy € (0,1), My € N and up € [0,1) be sequences of
parameters such that
e My >N-—-1
o max (N2 |gn — gV, |My — N - M|, N|uy —uf) < Ay,
for some A; > 0.

e Denote
1 N
UN = N I_Zl d (El) )
where ({1,...,0y) is Py — distributed with parameters
an, un, M.
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Tiling model

Assumptions on the weight

Let w(s; N) = exp (—=NVp(s)),
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Assumptions on the weight

Let w(s; N) = exp (—NVp(s)),
e V) is continuous on the intervals [1 + uy, q,T,M"’ + qu,A\f"’];
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Tiling model

Assumptions on the weight

Let w(s; N) = exp (—NVp(s)),
e V) is continuous on the intervals [1 + uy, q,T,M"’ + qu,A\f"’];

e For some positive constants Ay, A3 > 0
[Viv(s) = V(s)| < A2 - N™*log(N),

where V is continuous and |V/(s)| < As.
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Tiling model

Assumptions on the weight

Let w(s; N) = exp (—NVp(s)),
e V) is continuous on the intervals [1 + uy, q,T,M"’ + qu,A\f"’];

e For some positive constants Ay, A3 > 0
[Viv(s) = V(s)| < A2 - N™*log(N),

where V is continuous and |V/(s)| < As.
e V/(s) is differentiable and for some A; > 0

‘V’(s)‘ <A1+ |log|s —1—ul|+|log|s —q ™ —uq"]],

forse[l+uq™+uq".
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Tiling model

Law of Large Numbers

Theorem (Dimitrov-K. '18)

There is a deterministic, compactly supported and absolutely
continuous probability measure (x)dx such that uy concentrate
(in probability) near ;1. More precisely, for any Lipschitz function
f(x) defined on a real neighborhood of the interval

[14+w,q ™+ uq"| and each e > 0 the random variables

N1/2—8

| Fomn(a) = | Fooutod

converge to 0 in probability and in the sense of moments.
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Tiling model

Theorem (Dimitrov-K. '18)
Take m > 1 polynomials fi, . .., fn, € R[x] and define

Lr = NJR £ (x)pun (dx) — NEp,, UR IS-(X),uN(dx)} fori=1,...,m

Assume that the limit measure has one band, then under technical
assumptions the random variables L¢. converge jointly in the sense
of moments to an m-dimensional centered Gaussian vector

X = (X1,...,Xm) with covariance

Cov(Xi, Xj) = ff;§ s)fj(t)C(s, t)dsdt, where
27TI

_ 1 (s —a1)(t—p1) + (t —ou)(s — B1)
Cls,t)=s— | 1—
2(s— 1) 24/(s — a1)(s — B1)4/(t — a1)(t — B1)
where I is a positively oriented contour that encloses the interval
[1+u,q™+uq"]. 14735



Tiling model

General (8

Let g€ (0,1), ue[0,1), M=>N—-1€Z, 60> 0.
e Recall
Mgx+1) 1-g"

_ (1-q)t (T ) and satisfies ( -
o) = (1) (D2 and saisies L) - 2T

where (y;i @)k = (1—y) - (1 —yg*1).
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Tiling model

General

Let g€ (0,1), ue[0,1), M=>N—-1€Z, 60> 0.

e Recall

_ : Lo [ (X + 1) 1—g~

Fe(x) = (1—q)* Xw and satisfies —2 = )

S M) 1-q
where (y;i @)k = (1—y) - (1 —yg*1).

o Let /; = q_)"' + uq’\", where

Ai=xi+ (=10, and0<xy <xp<---<xy<M-N+1
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Tiling model

General

Let g€ (0,1), ue[0,1), M=>N—-1€Z, 60> 0.
e Recall
Mgx+1) 1-g"

= (1—qg)~ (9:9)e0 and satisfies ( =
To) = (1) g, 2nd =20t Mq(x) 1-q’

where (y; q)k = (1 —y)--- (1 = yg*™h).
o Let ¢; = g~ + ug’i, where

Ai=xi+ (=10, and0<xy <xp<---<xy<M-N+1

o Denote X% := {(f1,...,¢n)}.
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Tiling model

General

We consider probability measures on 3€‘;’V

1 T\ — A+ DTg(A — A + 0)
P 96 f _ = 20X " q\"y q\"y
(. i) [ a Ty —ATa— A+ 1-6)

N <icisn

N
y 1—[ Mg+ A+ v+ Dlg(Aj+Ai+v+0) w(ly),
1<KKNI‘q(/\J-JrA,-Jrv)rc,()\jJr)\,-+v+1—9) Pl

v is such that g = v.
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Tiling model

General 5 analogue

|
Observe as ¢ —» 17 and ¢ — y € [0,1)

(9% q)

Mg(x + )
(qx-i-a;q)Oo

ey o9

~(1-q)*1-y)"
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Tiling model

General 5 analogue

|
Observe as ¢ —» 17 and ¢ — y € [0,1)

Fq(x +a) —a_(g%i9) -
——— =(1—-q) *———F—~(1—g O‘l—yo‘.
= =g <1 g) - y)
Setting gV = y;, £i = y; + u/y; for i =1,..., N we get
H yj20(1 - yiyj—1)29 . (1 o uyi—lyj—l)20 _ H (ej - ei)20.
1<i<j<N 1<i<j<N
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Tiling model

LLN and CLT for discrete log-gases

e Law of Large numbers [Johansson '00, '02], [Feral '08]
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Tiling model

LLN and CLT for discrete log-gases

e Law of Large numbers [Johansson '00, '02], [Feral '08]
¢ Central limit theorem

e special cases [Borodin-Ferrari '08], [Breuer—Duits '13],
[Dolega—Feray '15]
o general potential with general 8 [Borodin—Gorin—-Guionnet '15]
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Tiling model

How is CLT usually proved?
Johansson’s CLT proof in RMT is based on loop equations

% H (i —¢)) Hexp

I<i<j<N
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Tiling model

How is CLT usually proved?

Johansson’s CLT proof in RMT is based on loop equations

N
> I1 @07 ew(-mvi)
i=1

I<i<j<N

Guiz) — L3 !
Nz _Nizlz—f,'

19/35



Tiling model

How is CLT usually proved?

Johansson’s CLT proof in RMT is based on loop equations

N
> I1 @07 ew(-mvi)
=1

I<i<j<N

1Y 1
Gn(z) = —
n(z) N /_21 z—¥;
[EGn(2)]? + ;V’(z)[EGN(z)] + (analytic) % (),

obtained by a clever integration by parts.
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Tiling model

Assumptions on the weight

e Assume there is an open set M < C\{0, £4/u}, such that for
large N

—Mpy—1 M 1 —
([q}v,q,v N ] U [u/vq,\,’V+ ,u/vq,vl]) < M.
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Tiling model

Assumptions on the weight

e Assume there is an open set M < C\{0, ++/u}, such that for
large N

—Mpy—1 M 1 —
([q}v,q,v N ] U [u/vq,\,’V+ ,u/vq,vl]) < M.

e Suppose there exist analytic functions (ﬁ,, ¢ on M such that
for ze M and on(z) = z + uyz ! the following hold

w(on(z)iN) _ ¢(2)
wlon(gnz)i N)  ¢p(2)’

onlay™ ) = on(1) =0
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Tiling model

Nekrasov's equation

Theorem
Define
N
_ on(gnz) — 4
Ru(z) = O(2) - Er, [H p ] +
i=1 !

+®1(2) - Ep, llﬂ[ U’V(Z)_g’] :

e} UN(qu) — 6,’
where &7 (2) = q(g2? — u)(2% — u)é™(2),
®F(2) = (g22 — u)(¢?2® — )¢t (2) and 0(2) = z + uz L.

Then R(z) is analytic in the same complex neighborhood M. If
®*(z) are polynomials of degree at most d, then R(z) is also a
polynomial of degree at most d.
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Tiling model

Computations
N s N s -
o(9z) —o(a™) _ (9z—q7") (z—uq")
oo =g —=® (Z <'°g< (z—q%) " (z- ugh) >>>

— exp (ZN: <|og (1 + (Zq__ql_)j) + log <1 + (q;zl__l 1)22_1») :
i=1




Tiling model

Computations
N s N 0 .
o(9z) —o(a™) _ (9z—q7%) (z—uqg" ™)
oo =@ p<z <'°g< (z—q%) " (z- ugh) >>>

= exp (ZN: <|og (1 + (Zq__ql_)j) + log <1 + m») .
i=1

where AGy(z) = N(Gn(z) — Gu(2)).

22/35



Tiling model

Functional equation on the Stieltjes transform

im By | [0 =5 | oy (3(2)
N—o0 N i1 O'N(Z)—f,'

with &(z) = log(q) - (z —uz ') - G.(z +uz™?).
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Tiling model

Functional equation on the Stieltjes transform

N
. on(gnz) — ¢
Jim Bz, [H L] = exp (6(2))

1 on(z) =4

with &(z) = log(q) - (z —uz ') - G.(z +uz™?).

=2

—~
N

N—
I

(o3 (z)q(Z—u/z) Gu(z+u/z) 4 @+ (z)q_(z_“/z)Gu(Z-i-u/Z) '
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Tiling model

Proposition
The density of the limit measure p for x € (0,M) is given by

p(x) = %arccos ( Rla ™) )

VOF (g ) ()

If the expression inside the arccosine is greater than 1, then we set
w(x) =0 and if it is less than —1, then we set u(x) = 1.
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Tiling model

Discrete RHP

Let w(z) be a 2 x 2 matrix-valued function and X < R finite. An
analytic function

m: C\X — Mat(2,C)

solves a DRHP (X, w) if the entries of m are meromorphic with at
most simple poles at the points of X and its residues at these
points are given by the jump residue condition

Res m(z) = lim m(z)w(z), x € X.

Z=X Z—X
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Tiling model

Proposition
The DRHP (S,w) has a unique solution m(z) such that

w() = [ 8 WE;D) ], m(z/})-[ ¢;N wON ] =140 (;) ,Z— 0.
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Tiling model

Proposition
The DRHP (S,w) has a unique solution m(z) such that

w() = [ 8 WE;D) ], m(z/})-[ ¢;N wON ] =140 (;) ,Z— 0.

Moreover,

A(z) = m(o(qz)) [ CD_O(z) ¢+O(Z) ]m_l(a(z)) is analytic and

a(q2) —6;]+¢+(2)EPN [lﬂ[ o(2) — i ] |

o(2) =1 o=,

N
Tr[A] = ¢ (2)-Ep, [
=1

1
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Tiling model

Special cases of R,,(z)

Recall that monic orthogonal polynomials satisfy difference
equation:

An(z)Pn(o(z)) = Bn(2)Pn(o(q7 2)) + Cn(2)Pn(g2)).

Then R,(z) = Nlim An(z).
—00
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Tiling model

Nekrasov's equation

Theorem (Dimitrov-K. '18)
Define

where &7 (2) = ¢*(q~02% — u)(2 — u)é™(2),
®F(2) = (¢°2° — u)(¢*2% — u)p™ (2) and 0(2) = z + uz 1.

Then R(z) is analytic in the same complex neighborhood M?. If
®*(z) are polynomials of degree at most d, then R(z) is also a
polynomial of degree at most d.
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Tiling model

Limit shape for the tilings

c -
N—al

b

T=b+e

Let real numbers N, T, S, q and k be such that

N,T,8,q>0, k>0, gq<1, N<T, S<T, k’q T<1.
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Tiling model

Limit shape

Theorem (Dimitrov-K '18)
Let

N=Ne'+01), T=Te 1+ 0(1), S=s1+0(1),

g=q + 0(?), k=k+ O(e).

Then for any point (t,x) in the hexagon P with parameters N, T, S
and n > 0 there exists an explicit function h(t,x) such that

lim P. (“5 b (e, xe 7t + 1/2) — /A1(t,x)’ > n) —0.

e—0t
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Tiling model

Limit shape

Figure: The left part shows a simulation of a tiling. The middle part
shows the hexagon P and the liquid region D is the region inside the gray
curve. The right part denotes the image of P and D under the map
(t>X) . (q—t7 q—x + k2q—S—t+x)

31/35



Tiling model

Fluctuations

e Given a random point configuration {(t, xf)} on slice t define
(U, V)

U(t, k) = g ¢ and V(t, k) = g% + k2% 57t

forO<t< Tand1l<k<N.
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Tiling model

Fluctuations

e Given a random point configuration {(t, xf)} on slice t define
(U, V)

U(t, k) = g ¢ and V(t, k) = g% + k2% 57t

forO<t< Tand1l<k<N.

e Define a random height function H for the new particle system
as pushforward of h.

32/35



Tiling model

Fluctuations

e Given a random point configuration {(t, xf)} on slice t define
(U, V)

U(t, k) = g ¢ and V(t, k) = g% + k2% 57t

forO<t< Tand1l<k<N.

e Define a random height function H for the new particle system
as pushforward of h.

e This transform bijectively maps liquid region © to a new
region D',
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Tiling model

Theorem (Dimitrov-K. '18)

Fix w € (1,q77) and let t(¢) be a sequence of integers such that
g t€) = w 4 O(e). There exists a diffeomorfism

Q:9 - H
such that for any polinomials ;e R, i=1,...,m
f L (’H(qft, v) — Ep, [’H(qft, v)]) fi(v)dv
R

converge jointly to a Gaussian vector with mean zero and covariance

oot~ [ [ 0010 (oo G R0 ) o
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Tiling model

Diffeomorphism

Q(w, v) is a unique solution z(w, v) € H for (w,v) € D’ of

ar(w,v)z? + a1 (w, v)z + ag(w, v) = 0, where
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Tiling model

Diffeomorphism

Q(w, v) is a unique solution z(w, v) € H for (w,v) € D’ of

ar(w,v)z? + a1 (w, v)z + ag(w, v) = 0, where

1
e a=(w-1)(a"-q")(q* - 1)(1 - Kq ™)
ea1=vq"(@T—1)+ (u(@®—q") —q 3N —q T +2¢") +

+ szqN(q—T + q—S+N _ 2q—S—T) + k2q—T+N(q—S _ qN)).
e a=q'(v-1-¥qw);
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Tiling model

Assumptions

e Assume
(DN(Z) an(2% — un) oy (z) = ©7(2) + ¢y (2) + O (N72) and
®y(2) = (ayz° — un)opy(2) = @7 (2) + j(2) + O (N72),

where ¢7,(z) = O(N1) and the constants in the big O
notation are uniform over z in compact subsets of M. All the
aforementioned functions are holomorphic in M.
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Tiling model

Assumptions

e Assume
(DN(Z) an(2% — un) oy (z) = ©7(2) + ¢y (2) + O (N72) and
®y(2) = (ayz° — un)opy(2) = @7 (2) + j(2) + O (N72),

where ¢7,(z) = O(N1) and the constants in the big O
notation are uniform over z in compact subsets of M. All the
aforementioned functions are holomorphic in M.

e Assume there exists unique maximal interval

[a1, B1] < [1+u,q7" +ug"]

such that 0 < u(x) < fo(og L(x))~! on [au, B1], where
oq(x) = 97 +ug* and fy(x) = d%oq (@7).
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