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OPUCs (part I)

For any measure on the unit circle (∂D), we can associate a family of
orthogonal polynomials, Φ0(z),Φ1(z),Φ2(z), ....

There exists a bijection between measures on the unit circle and
sequences of Verblunsky coefficients.

µ↔ {αk}∞k=0

where the αk ’s give recurrence coefficients that may be used to build the
OPUCs that are orthogonal with respect to the measure µ.

Particularly in the case where µ has finite support we may study the
orthogonal polynomials to obtain information about the measure. If the
measure is random this can be more useful that studying the measure
directly.
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OPUCs (part II): The Szegö Recursion

Suppose that Φ0(z),Φ1(z), ... are a family of OPUCs associated to a
measure µ on ∂D.

Define: Φ∗k(z) = zkΦk( 1
z ).

Then:

Φk+1(z) = zΦk(z)− ᾱkΦ∗k(z)

Φ∗k+1(z) = Φ∗k(z)− αkzΦk(z)

[
Φk+1(z)
Φ∗k+1(z)

]
=

[
z −ᾱk

−αkz 1

] [
Φk(z)
Φ∗k(z)

]
= Tk

[
Φk(z)
Φ∗k(z)

]
Using this notation we can write[

Φk+1(z)
Φ∗k+1(z)

]
= Tk · · ·T0

[
1
1

]
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OPUCs and Matrices

Suppose that Un is an n × n unitary matrix. We can define a spectral
measure µn by ∫

∂D
f (z)dµn(z) = 〈f (Un)e1, e1〉

In this case we have that If the measure µn =
∑n

k=1 qkδzk and there
exists a bijection

({zk}nk=1, {qk}n−1k=1)↔ {αk}n−1k=0

with αk ∈ D for k ≤ n − 1 and |αn−1| = 1.
The associated Verblunsky coefficients {αk}n−1k=0 allow us to generate

Φ0(z),Φ1(z), ...,Φn(z) = det(Un − zI )

Notice that Φn(z) is not actually orthogonal to the previous polynomials
with respect to µn.
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Random Matrix Ensembles

Recall that if we choose On and Un according to Haar measure on the
orthogonal and unitary groups respectively, then the eigenvalues of On or
Un have joint distribution given by

f (θ1, ..., θn) =
1

Zn,β

∏
j<k

|e iθj − e iθk |β . (0.1)

for β = 1, 2.

If we study µn defined as the spectral measure at e1 then

µn =
n∑

k=1

qkδe iθk , where
∑

qk = 1.

and the weights {qk} are independent from the {θk} with

(q1, ..., qn) ∼ Dirichlet(β2 , ...,
β
2 )
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Verblunsky’s for the β-circular ensemble

The joint density on the previous slide defines an n-point measure on the
unit circle (or [−π, π]) for any β > 0. A set of angles with joint density

f (θ1, ..., θn) =
1

Zn,β

∏
j<k

|e iθj − e iθk |β . (0.2)

is called the β-circular ensemble

Theorem (Killip-Nenciu)

Let µn =
∑n

k=1 qkδe iθk with {θk} having β-circular distribution and

(q1, ..., qn) ∼ Dirichlet(β2 , ...,
β
2 ). then the associated Verblunsky

coefficients will be independent with rotationally invariant distribution
and

|αk |2 ∼

{
Beta (1, β2 (n − k − 1)) k < n − 1

1 k = n − 1
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Finding a counting function

For a measure µ supported on n points we can use the Szegö recursion to
define the function Φn(z) (not an OPUC) which is 0 on the support of µ.

e ix ∈ supp µ ⇐⇒ Φn(e ix) = 0

⇐⇒ e ixΦn−1(e ix) = αn−1Φ∗n−1(e ix)

On ∂D the definition of Φ∗k becomes Φ∗k(e ix) = e ixkΦk(e ix):

e ix ∈ supp µ ⇐⇒ argαn−1 = 2 arg(Φn−1(e ix))− x(n − 2).

More generally define

ωk(x) = 2 arg(Φk(e ix))− x(k − 1),

then...

N([0, x ]) =

⌊
ωn−1(x)− argαn−1

2π

⌋
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The counting function from ωn−1(x) for Circular β

P350(x) for n = 1000 ωn−1(x) for n = 12, β = 4.
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Counting functions are useful!

Theorem (Killip)

Let Nn(a, b) be the number of points of an n-point β-circular ensemble
that lie in the arc between a and b, then√

π2β

2 log n

[
Nn(a, b)− n(b − a)

2π

]
⇒ N (0, 1).

Rotational invariance means we can study [a, b] = [0, x ]. We can
compute

ωk(x)− ωk−1(x) = 2 arg(1 + α̃k) + x

Where α̃k
d
= αk (only for a fixed x)

ωn−1(x)− nx = 2
n−1∑
k=0

arg(1 + α̃k)

If we reverse the order of the Verblunsky coefficients we get that
ωn−1(x)− nx is a martinage in n. The martingale central limit theorem
will give the theorem.
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Local limits for Circular β

What if we want to see the local interaction between eigenvalues?
−π π0

Λn

x

n(Λn − x)

0

Rotational invariance means that we will see the same type of structure
everywhere in the spectrum (on the circle).

We will focus near 0 which means we need to look at ωn−1(x/n) in order
to see the counting function.
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Seeing the local limit structure at a finite level
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Seeing the local limit structure at a finite level

ω40(x) on [0.1, 0.3] for β = 4
ωb50tc(

5
50 ) on [0, .99] for β = 4
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The bulk limit

Theorem (Killip-Stoiciu, Valkó-Virág)

Let {· · · < x−1 < 0 < x0 < x1 < · · · } have β-circular distribution (in the
argument), then

{..., nx−1, nx0, nx1, ...} ⇒ Sineβ as n→∞.

Sineβ may be characterized by its counting function which has

distribution Nβ(λ) = limt→∞
αλ(t)
2π where

dαλ = λ
β

4
e−

β
4 tdt + Re[(e−iαλ − 1)d(B(1) + iB(2))], αλ(0) = 0.

Morally: α̂λ(t) = αλ(− 4
β log(1− t)) ≈ ωbntc(λ/n). Under this time

change α̂λ(0) = 0, t ∈ [0, 1)

dα̂λ(t) = λdt +
2√

β(1− t)
Re[(e−iα̂λ − 1)d(B(1) + iB(2))].
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Moral proof by picture

ωb500tc(
10
500 ) and ωb500tc(

14
500 ) for

β = 4
α̂10(t) and α̂14(t) for β = 4

Diane Holcomb, KTH Random Orthogonal Polynomials: From matrices to point processes



What about Sine2

Recall that for β = 2 there is a beautiful integrable structure. Sine2 is a
determinantal process with kernel function

K (x , y) =
sin(x − y)

x − y
.

This description is very good for some types of questions:

What is the probability of seeing no points in a large interval?

P(N(λ) = 0) = (κβ + o(1))λ−1/4 exp

(
− β

64
λ2 +

(
β

8
− 1

4

)
λ

)
Widom (1994), Deift, Its, and Zhou (1997), Krasovsky (2004), Ehrhardt
(2006), Deift et al. (2007)

Here you can not do as well with the counting function machinery (as of
yet), but what about other questions?
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Natural Questions for Sineβ (or Sine2) counting function

1 What can we say about the distribution of the number of points in a
large interval?

Large Gaps (Valkó, Virág)
Large deviations (H., Valkó)
Central limit theorem (Krichevsky, Valkó, Virág)

2 What is the probability of an overcrowded interval? (Holcomb,
Valkó)

3 Point process limits as β → 0? (Allez, Dumaz)

4 Maximum deviation of the counting function from its norm (H.,
Paquette)

5 Other questions on Sineβ (Dereudre, Hardy, Leblé, Mäıda, Chhaibi,
Najnudel)
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3 Point process limits as β → 0? (Allez, Dumaz)

4 Maximum deviation of the counting function from its norm (H.,
Paquette)

5 Other questions on Sineβ (Dereudre, Hardy, Leblé, Mäıda, Chhaibi,
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Log-correlated fields and branching processes

Branching Brownian Motion
(Borrowed from Matt Roberts)

Models with log-correlated
structure: Branching Random
walk, Branching Brownian motion,
log-correlated Gaussian field,
characteristic polynomials of
random matrices.

A few people who have worked in
the area: Derrida-Spohn, Hu-Shi,
Áıdékon-Shi, Arguin-Zindy

Full results for log-correlated
Gaussian fields: Ding-Roy-Zeitouni
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Log-correlated fields and Circular β

Conjecture (Fyodorov, Hiary, Keating)

For β = 2, and K1,K2 independent Gumble distributions

sup
z∈∂D

log |Φn(z)| − (log n − 3

4
log log n)→ 1

2
(K1 + K2)

1st term: Arguin, Belius, Bourgade (2017)

2nd term: Paquette-Zeitouni (2017)

tightness of the distribution (β > 0): Chhaibi, Mandaule, Najnudel
(2018)

Recall that we said that α̂λ(t) was morally 2 arg Φbntc(e
iλ/n) + tλ. This

gives that 2Im log Φn(e iλ/n) is comparable to 2πN(λ)− λ. For Sineβ the
analogous question is

sup
|λ|≤x

(Nβ(λ)− Nβ(−λ)− λ

π
)− Cβ(log x − 3

4
log log x)⇒?
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The Result

Theorem (H., Paquette)

max
0≤λ≤x

N(λ)− N(−λ)− λ
π

log x
→ 2√

βπ
in probability as x →∞.

Notice that

N(λ)− N(−λ)− λ

π
=

1

2π
Re

∫ ∞
0

(e−iαλ(t) − e−iα−λ(t))dZ =
1

2π
Mλ(∞)

Conjecture

max
0≤λ≤x

Mλ(∞)− 2√
βπ

(log x − 3

4
log log x)⇒ ξ.
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OPUCs and Dirac Operators

Recall that for OPUCs we had the Szeg̋recursion[
Φk+1(z)
Φ∗k+1(z)

]
=

[
z −ᾱk

−αkz 1

] [
Φk(z)
Φ∗k(z)

]
= Tk

[
Φk(z)
Φ∗k(z)

]
We can write

Tk =

[
1 −ᾱk

−αk 1

] [
z 0
0 1

]
= AkZ .

Let Mk = Ak−1Ak−2 · · ·A0 then we can look at the evolution of[
fk+1(λ)
f ∗k+1(λ)

]
= e−iλ(k+1)/2M−1k

[
Φk(e iλ)
Φ∗k(e iλ)

]
=

[
e−iλ/2 0

0 e iλ/2

]Mk−1
[

fk(λ)
f ∗k (λ)

]
where AB = B−1AB.
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OPUC’s and Dirac Operators II

Theorem (Valkó, Virág)

Let µn be supported on n points and define M(t) = Mbmntc for
t ∈ [0, n/mn) and consider the differential operator τ acting on functions
g : [0, n/mn)→ C2 given by

τg = 2

[
−i 0
0 i

]Mt

g ′(t), g(0) ‖
[

1
1

]
, g( n

mn
) ‖ M−1n−1

[
ᾱn−1

1

]
.

The eigenvalues of τ are{
λ ∈ R : e i

λ
mn is in the support of µn

}
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Idea of Proof

Then the solution of the eigenvalue equation τg = µg satisfies

g ′(t) =

[
iµ/2 0

0 −iµ/2

]M(t)

g(t)

which we can solve explicitly on the intervals [ k
mn
, k+1

mn
) giving us

g( k+1
mn

) =

[
e i

µ
2mn 0

0 e−i
µ

2mn

]M(k/mn)

g( k
mn

).

Recall

[
fk+1(λ)
f ∗k+1(λ)

]
=

[
e−iλ/2 0

0 e iλ/2

]Mk−1
[

fk(λ)
f ∗k (λ)

]
At this point we can see that gµ(k/mn) = fk(µ/mn)
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Thank You!
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