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Global rigidity of eigenvalues

Random matrix eigenvalues

Fundamental question in random matrix theory is to understand eigenvalue

statistics of large random matrices

v/ Global statistics of eigenvalues: limiting eigenvalue
distribution, macroscopic linear statistics ...

v/ Local statistics of eigenvalues: universal local
correlations, extreme eigenvalue distribution

v In this talk: maximal fluctuation of eigenvalues around

their classical positions




Global rigidity in the GUE

Classical GUE eigenvalue locations

Let A\{ < XAy < ... < Ay be the eigenvalues of a GUE matrix M of size

N X N, normalized such that the eigenvalue distribution converges to a
semi-circle law on |—1, 1|.

(Equivalently, M is Hermitian and the independent entries Mi,j are iid (real

on the diagonal, complex otherwise) Gaussians with variance %.)

Classical locations k1,...,ky € |—1,1] are given by % _F”i V1 — zidx = %

—
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Global rigidity in the GUE

Global rigidity

What can we say for large /N about the distribution of the normalized
maximal fluctuation of eigenvalues

2
MN = jIE.a.J}.fN{T(\/l — Iﬁ:?|)\j — Iﬁ:j|}?




Global rigidity in the GUE

Upper bound for generalized Wigner matrices (ErRpos-Yau-YIN "12)

looc N a log log N ,
( og ) ) < C’exp(—c(logN)a loglogN)
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Lower bound for GUE (GusTtavssonN '05)

;N R
zﬂ\/l — K g N (Aj — k;) = N(0,1)

for § < j < (1—9)N, which implies (non-optimal) lower bounds for M.



Global rigidity in the GUE

Theorem (C-Fahs-Lambert-Webb '18)

For any € > 0, we have

: log N log N
| Pl (1 — M 1 = 1.
m (< )N <My <(l+e) WN)

Unitary invariant ensembles

A similar result holds for unitary invariant ensembles with eigenvalue

distribution

LI a1 e

N 1<i<j<N 1<j<N

for real analytic V with sufficient growth at +=0c0.




Global rigidity in unitary invariant ensembles

Equilibrium measure and classical locations

Semi-circle law is then replaced by the equilibrium measure puy minimizing

/RXR log |£I3 — ’y|_1d,u(213)d,u(y) + / V(iﬁ)du(a}).

R

We assume that uy is one-cut reqular, and that the support is [—1, 1] for
convenience.

The classical locations K1,...,kNy € |—1,1] are now defined by
K 7
Jodpy () = +-




Global rigidity in unitary invariant ensembles

Theorem (C-Fahs-Lambert-Webb '18)

For any € > 0, we have

, (1—¢)logN dpy (1 +¢)log N
z\lrlfgop( N < max E(Iij)‘)\j—h}j‘ < = 1.




Global rigidity in unitary invariant ensembles

Eigenvalue counting function

We prove this via the extrema of the normalized eigenvalue counting
function

h(z) = \/577( Z 1y<e — N d#v), z € R.

1<j<N —1

Namely, we prove that for any § > 0,

lim P |(1—6)y/2log N < max{ +hy(z)} < (1+ 5)\/§logN- = 1.

N—oo reR

Heuristically, we expect hy(A;) = ):fj duy () ~ Cgb—wv(mj)(/ij — A;), which

explains the connection between global rigidity and the maximum of the
normalized eigenvalue counting function.



Extreme values of the eigenvalue counting function

Extreme of log-correlated fields

hxy behaves for large N like a stochastic process with log-correlations
(JoHANSSON '98)

How to estimate extrema of log-correlated processes? This question has
been studied in different contexts.

v Riemann ( function and CUE (Fyoporov-HiARY-KEATING "12,
ARGUIN-BELIUS-BOURGADE 16, CHHAIBI-M ADAULE-N AUNUDEL '16)

v Circular Beta Ensemble and Sine Beta process (CHHaiBI-
MADAULE-N AUNUDEL "16, PAQUETTE-ZEITOUNI "16, HOLCOMB-
PAQUETTE "18)

v/ Characteristic polynomial in unitary invariant
ensembles (Frobporov-SiMMm "14, LAMBERT-PAQUETTE '18)




Extreme values of the eigenvalue counting function

Multiplicative chaos

Powerful tools to study such extrema come from the theory of
multiplicative chaos

v/ General theory (KaAHANE '85, RHODES-V ARGAS 14, BERESTYCKI
"15)
v/ Applied to Circular Unitary Ensemble (Fyoporov-KEATING

14, WEess 15, BERESTYCKI-WEBB-W ONG 18, LAMBERT-OSTROVSKY-
Simm "18)

Exponential moments

Crucial input for this method: good control of exponential moments
1V (2) qnd Eenhv(@)+%hn(z2) for large NV




Extreme values of the eigenvalue counting function

Upper bound estimates

Upper bound for maxwd{ = hN(:c)} can be obtained using an elementary

one-moment method.

1. max{ &+ hy(z)} < max{ £ hn(k;)} + 1.

$EI jZF&jEI

2. By a union bound and Markov's inequality,

<L,e’th(Kj)

P (maX{hN(Iij)} > Y) < Z IPD(hN(’ij) > Y) < Z VY

k€L . .
JFg ]IK,J'GI ]:lﬂ?jEI

3. Substitute large /N asymptotics for e () gnd
choose Y as big as possible such that rhs decays for

some .



Extreme values of the eigenvalue counting function

Upper bound estimates

7P () is @ Hankel determinant with discontinuous weight e~ NV(A) eﬂASw,

and large [N asymptotics for such Hankel determinants are known for

r € (—1+ 9,1 — ) (Irs-Krasovsky '08 for GUE, CHarLIEr "18 for one-cut
regular unitary invariant ensembles):

Ee™®) < C,N=z, ze(=1+6,1-04).

To extend this to all eigenvalues, we need a similar result for x close to 1.
We prove

2 3,2
4

Eerhn(@) < C’§N77(1 — )T, |z|<1-mN?3,




Extreme values of the eigenvalue counting function

Lower bound estimates

Optimal lower bound estimates are much harder to obtain, and require to
investigate the log-correlated structure of hy.

Log-correlated structure

hy behaves for large N (JoHansson '98) like a Gaussian process X(x) with
logarithmic covariance kernel

1 —zy++v1—x224/1 —y?
T — 1y '

5(z,y) = log




Multiplicative chaos

Maximum of the eigenvalue counting function

For studying the maximum of Ay, we prove that the random measure

dpl. = dzx, veE R

converges weakly in distribution to a multiplicative chaos measure which
can be formally written as (cf. KaAHANE '85, RHODES-V ARGAS "10, BERESTYCKI "17,

BERESTYCKI-WEBB-WONG '17)




Multiplicative chaos

Extreme values

It will turn out that the extreme values of the limiting measure u” will lead

us to estimates for extreme values of hy.

Heuristics

e7h (

]Ee'th(

Heuristically, the random measure du?v(a:) — _dz is expected to be

dominated for v > 0 by z-values where hy(z) is exceptionally large,
namely hy(x) > vlog N and it is natural to expect that the multiplicative
chaos measure u” will give us information about large values of hy(z).

For || > V2, ©’ = 0, which suggests heuristically that values where
hy(z) > (v/2 + 8)log N are unlikely to occur.




Multiplicative chaos

Multiplicative chaos and y-thick points

Consider the set of v-thick points

yNiV ={x e |[-1,1] : +hy(z) > £tylogN}.

This set contains points where hy(x) is of the order of its variance rather
than its standard deviation. It follows from the multiplicative chaos

convergence that for any v € (—+/2,1/2) \ {0}, in probability,

log | .7, 2
lim g| N‘:—l.

N—00 logN 2




Multiplicative chaos

Freezing transition

Another consequence of the multiplicative chaos convergence is that

1 o
lim - 10g(/ e’)’hN(CB)dm) _ {’)’2/2 if v < \/i,

in probability.

In the physics literature, this is called a freezing transition of the random
energy landscape hjp (cf. Froborov-BoucHaup '08, Fyoporov-Le DoussaL-Russo
12, Fyoporov-KEeaTING 14 for CUE).




Exponential moment estimates

Convergence to multiplicative chaos

The key technical input to prove convergence of ,UJXI to 1 consists of

detailed asymptotic estimates as N — oo for exponential moments of the
form

Ee’)’th(fB)—l—’)’th(y)—i—Z;il W(Aj) .

These can also be written as Hankel determinants

N—1
Dy (z,y;71,72; W) = det (/ >\’+7f(>\;w,y;71,vz;W)d>\) :
R

2,J=0

with f(X; 2, 5571, 723 W) = eV2Mloen 1v2mnlocy TWN-NVRY)

Asymptotics are known (CharLier '18) for x # y € (—1,1) fixed and for W
independent of V.




Exponential moment estimates

Two merging singularities

L2
log Dy (z1,%2;71,72;0) = log Dy (1;71 + 72;0) + \/§7T72N/ dpy
L1

— v1vo max{0,log(|z; — z2|N)} + O(1),

as N — 0o, where the error term is uniform for —1 +d < z; < s <1 — 9,
0 < xy —x1 < 0 for J sufficiently small.

Method of proof

We prove this using a method similar to one sed for Toeplitz determinants
with merging Fisher-Hartwig singularities (C-Krasovsky '15) and Hankel
determinants with merging root singularities (C-Faus '16), based on a
Riemann-Hilbert approach.



Exponential moment estimates

N-dependent W

Assume that W = W is a sequence of functions which are analytic and

uniformly bounded on a suitable domain which does not shrink too fast
with IV.

log Dy (1, 2;71,72; WN) = log Dy (1, Z2; 71,725 0)

1 2 Y
N [ Wxd —a(Wy)? N — 22UW N (s 1),
N [ Wiy + Jo(Wr) D EEZLACORED

as N — 0o, uniformly for (x1,x2) in any fixed compact subset of (—1, 1)2,
where

// fia ( )dmdya (Uw)(z) = 1P.V./1 w(t)  dt

(s _133—1;\/]_—1;2.



Exponential moment estimates

Finally, we need also asymptotics for Hankel determinants with one

singularity tending to the edge £1. This is needed for the upper
bound estimate for the maximum of hy.

Singularity close to the edge

Dy (z;7;0)
Dy (x;0;0)

T 72 3,72
log = V2mIN [ duy(©) + T logN + 2T -log(1 ~a?) + O(1),
1

as N — 00, with the error term uniform for all |z| < 1 — MN ~2/3, with M
sufficiently large.



Overview

Summary of the method

1. Hankel determinant asymptotics
e hy(x)

dx to a multiplicative
Eevhn(2)

—> Convergence of

chaos measure u’
—> Estimates for y-thick points
—> Estimates for the lower bound of max hy
2. Hankel determinant asymptotics
—> Estimates for the upper bound of max hy via one-
moment method
3. Estimates for extrema of hy
—> Estimates for global rigidity of eigenvalues




Simvulations

Histogram of GUE eigenvalues for N = 300

Normalized elgenvalue counting function hy for N = 300.
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Simulations

Ee7hN (w)

with v = 0.5
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Simvulations

Histogram of GUE eigenvalues for N = 6000
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Normalized eigenvalue counting function Ay for N = 6000.




Simulations

Ee7hN (w)
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Thank you for your attention!



