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The largest eigenvalue of a symmetric matrix satisfies

λ1 = max
‖x‖=1

〈x ,Mx〉

Consider its finite temperature version

1

β
log

[∫
‖x‖=1

eβ〈x,Mx〉dΩ(x)

]
, β =

1

T

This is known as the free energy of the Spherical Sherrington-Kirkpatrick
(SSK) model
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Spherical spin glass

In general, a spherical spin glass model is defined by a random symmetric
polynomial H(σ). Its random Gibbs measure is defined by

p(σ) =
1

ZN
eβH(σ) for σ ∈ RN with ‖σ‖ =

√
N

and its free energy by

FN =
1

Nβ
logZN =

1

Nβ
log

[∫
‖σ‖=

√
N

eβH(σ)dΩ(σ)

]

One may consider models in other manifold or graph. The case with {−1, 1}N
is especially important and this is the usual spin glass model.
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Goal

We consider the spherical spin glass model as N →∞ for

(1) SSK H(σ) =
1

2
σTMσ

(2) SSK + CW H(σ) =
1

2
σTMσ +

m

2N
σTσ

(3) SSK + external field H(σ) =
1

2
σTMσ + hσTg

We use random matrix theory to study fluctuations of the free energy and the
spin distribution. Assume that the semicircle law has support [−2, 2]. For (1),
RMT tells us that

FN
D' 1 +

TW1

2N2/3
at T = 0

For T > 0? For (2) and (3)?
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Outline

(1) SSK model H(σ) = 1
2
σTMσ

(i) Fluctuation results

(ii) History

(iii) Random single integral formula

(iv) Linear statistics vs largest eigenvalue

(2) SSK+CW

(3) SSK+external field

Jinho Baik University of Michigan Spherical Sherrington–Kirkpatrick model



Fluctuations of free energy

Theorem [Baik and Lee 2016]

For T < 1,

FN
D'
(

1− 3T

4
+

T logT

2

)
+

1− T

2N2/3
TW1

For T > 1,

FN
D' 1

4T
+

T

2N
N (−α, 4α)

where α = − 1
2

log(1− T−2)

T = 1 is an open problem
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History: limiting free energy

SSK: Kosterlitz, Thouless, Jones (1976), Guionnet and Mäıda (2005),
Panchenko and Talagrand (2007)

General spin glass: Parisi formula (1980), Crisanti and Sommers formula
(1992)

Guerra (2003), Talagrand (2006), Panchenko (2014)
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History: fluctuations

SK for high temperature, T > 1: Gaussian, N−1 [Aizenmann, Lebowitz,
Ruelle 1987], [ Fröhlich and Zegarliński 1987], [Comets and Neveu 1995]

pure p-spin spin glass high temperature: Gaussian, N−p/2 [Bovier,
Kurkova, and Löwe 2002]

pure p-spin Spherical spin glass with p ≥ 3 zero temperature, T = 0:
Gumbel N−1 [Subag and Zeitouni 2017]

(spherical) spin glass with external field for all temperatures, T > 0:
Gaussian N−1/2 [Chen, Dey, Parchenko 2017] No phase transition!
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Random single integral formula

Lemma [Kosterlitz, Thouless, Jones 1976]

ZN = CN

∫ γ+i∞

γ−i∞
e

N
2
G(z)dz , G(z) = βz − 1

N

N∑
k=1

log(z − λk) with γ > λ1

Proof: By definition, ZN =
∫
‖σ‖=

√
N
eβσ

TMσdΩ(σ) =
∫
‖u‖=

√
N
eβ

∑
i λi u

2
i dΩ(u)

Let f (r) = rN/2−1
∫
‖u‖=1

er
∑

i λi u
2
i dω(u)

Laplace transform L(z) =
∫∞
0

e−zr f (r)dr =
∫
RN e−z

∑
y2i +

∑
λi y

2
i dNy

By Gaussian integral, L(z) =
∏N

i=1

√
π

z−λi

Inverse Laplace transform f (r) = 1
2πi

∫
erzL(z)dz

Jinho Baik University of Michigan Spherical Sherrington–Kirkpatrick model



Does the method of steepest-descent apply to random integrals? Yes, thanks to

Rigidity of eigenvalues [Erdös, Yau and Yin (2012)]

|λk − γk | ≤ k̂−1/3N−2/3+ε uniformly for 1 ≤ k ≤ N with high probability

where k̂ = min{k,N + 1− k} and γk is the classical location (i.e. quantile of

the semicircle law),
∫ 2

γk

√
4−x2

2π
dx = k

N
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Critical point of the random function G (z)

G ′(z) = β − 1

N

N∑
k=1

1

z − λk
, Re(z) > λ1

For β < 1, β −
∫ dσsc(x)

zc−x
' 0 implies that zc ' β + 1

β

For β > 1, zc = λ1 + O(N−1+ε) with high probability

Jinho Baik University of Michigan Spherical Sherrington–Kirkpatrick model



High temperature regime β < 1

We have, with zc = β + 1
β

,

G(zc) = βzc −
1

N

N∑
k=1

log(zc − λk)

For T > 1, a linear statistic gives fluctuations:

FN =
1

4T
+

T

2N

(
log(1− T−2)− LN

)
+ O(N−2+ε)

with high probability where

LN =
N∑
i=1

g(λi )− N

∫ 2

−2

g(x)dσsc(x)

with g(x) = 1
2

log
(
T + T−1 − x

)
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Low temperature regime β > 1/2

The critical point is close to a branch point

It still holds that log
[∫

e
N
2
G(z)dz

]
' N

2
G(zc)

Using zc = λ1 + O(N−1+ε) and noting λ1 = 2 + O(N−2/3+ε)

G(zc) = βzc −
1

N

N∑
i=2

log(zc − λi )−
1

N
log(zc − λ1)

' βλ1 −
1

N

N∑
i=2

[
log(2− λi ) +

1

2− λi
(λ1 − 2)

]
' βλ1 −

∫ 2

−2

log(2− s)dσsc(s)− (λ1 − 2)

∫ 2

−2

dσsc(s)

2− s

For T < 1, the largest eigenvalue gives the fluctuations:

FN =

(
1− 3T

4
+

T logT

2

)
+

1− T

2
(λ1 − 2) + O(N−1+ε)

with high probability
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Outline

(1) SSK model

(2) SSK+CW (Curie-Weiss)

H(σ) =
1

2
σTMσ +

m

2N

N∑
i,j=1

σiσj =
1

2
σT
(
M +

m

N
11T

)
σ

(3) SSK+external field
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SSK+CW

Random symmetric matrix with non-zero mean (spiked random matrix)

Limiting free energy was obtained by [Kosterlitz-Thouless-Jones 1976]

Fluctuations including Spin–Ferro (m = 1 + aN−2/3) [Baik-Lee 2017]

Para–Ferro m = T + bN−1/2 [Baik-Lee-Wu 2018]

m

T

0 1

1

Spin glass

Paramagnetic

Ferromagnetic
λ1

N−2/3

TW1

linear statistics

N−1

Gaussian

λ1

N−1/2

Gaussian
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(1) SSK model

(2) SSK + CW

(3) SSK + external field

(a) Free energy

(b) Spin distribution
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SSK + external field

H(σ) = 1
2
σTMσ + hσTg

g = (g1, · · · , gN) is a standard normal vector

h is a coupling constant (strength of the external field)

(Chen, Dey, Panchenko 2017) Gaussian N−1/2 for all T > 0 if h > 0

On the other hand, if h = 0, there is a transition at T = 1

(Fyodorov and le Doussal 2014) For T = 0, the number of local max/min
of H(σ) has a transition when h = O(N−1/6)

Goal: Recover [CDP] result and study the free energy when h = HN−1/6
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Random integral formula

Let ui be a unit eigenvector associated to λi . We have the random integral
formula with

G(z) = βz − 1

N

N∑
i=1

log(z − λi ) +
h2β

N

N∑
i=1

n2
i

z − λi
, ni = uT

i g

For h > 0 and every β > 0,

G ′(z) ' β −
∫

dσsc(x)

z − x
− h2β

∫
dσsc(x)

(z − x)2

has the unique root zc > 2 since G ′(2) = −∞ and G ′(∞) = β > 0. Insert this
zc to G(z) and consider

N∑
i=1

n2
i

zc − λi
=

N∑
i=1

1

zc − λi
+

N∑
i=1

n2
i − 1

zc − λi

The first sum has fluctuations of O(1) from linear statistics. The second sum
has fluctuations of O(

√
N) by usual CLT. We recover [CDP] result.
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Conjecture [Baik, le Doussal, Wu 2019] For T < 1 and h = HN−1/6,

FN '
(

1− 3T

4
+

T logT

2
+

h2

2

)
+
F

N2/3

with high probability

Let {αi} be a GOE Airy point process (αi ∼ −(3πi/2)2/3 as i →∞) and let
{νi} be independent standard normal random variables. Let s > 0 be the
solution of the equation

1− T

H2
=
∞∑
i=1

ν2i
s + α1 − αi

Set (cf. [Landon and Sosoe 2019])

E(s) = lim
n→∞

(
n∑

i=1

ν2i
s + α1 − αi

−
∫ ( 3πn

2
)2/3

0

dx√
x

)

Then,

F D= (1− T )(s + α1) + H2E(s)

2
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Spin distribution: Overlap with the ground state O = |σ̂Tu1|

Gibbs moment generating function of O2 is

〈eβξNO2

〉 =
1

ZN

∫
eβξNO2

eβH(σ)dΩ(σ) =
1

ZN

∫
eξσ

T u1u
T
1 σ+β(

1
2
σTMσ+hσT g)dΩ(σ)

Since
NO2 = σTu1u

T
1 σ

we have

ξNO2 + H(σ) = σT

(
1

2
M + ξu1u

T
1

)
σ + hσTg

Thus,

〈eξO
2

〉 =
ZN |λ1 7→λ1+2ξ

ZN
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Conjecture [Baik, le Doussal, Wu 2019] For T < 1,

(σ̂Tu1)2 →


0 for h > 0

1− T − H2∑∞
i=2

ν2i
(s+α1−αi )

2 for h = HN−1/6

1− T for h = 0 (This is well-known)

Here, for h = HN−1/6, s > 0 is the solution of 1−T
H2 =

∑∞
i=1

ν2i
(s+α1−αi )

2

We can also compute the next order term. For example,

1− T − H2
∞∑
i=2

ν2i
(s + α1 − αi )2

+
2H
√
T

N1/6

[
N∑
i=2

n2
i

(a1 − ai )3

]1/2
N(0, 1)

The case of h = 0 is related to the work of [Sosoe and Vu 2018, Landon and
Sosoe 2019]
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Summary

1 Spherical spin glass is defined by random Gibbs measure on a sphere

2 Three Hamiltonians were considered: (1) SSK, (2) SSK + CW, (3) SSK
+ external field

3 There is a random integral formula (single-variable!) for the partition
function to which the method of steepest-descent is applicable using the
rigidity of the eigenvaues

4 The fluctuations of the free energy were obtained. There are interesting
transitional behaviors.

5 Spin distributions were also studied.

Thank you for attention!
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