A matrix algebra example: C11.

Prasad and Yeung give the name Cy1 to the following pair (k,¥£):
Let £ = Q(¢), where ( is a primitive 12-th root of 1.
(*=¢(¢2-1,s0 [¢:Q] = 4.

Let k = Q(r) for r = ¢+ ¢ 1.

Then 72 =3 and (¢3)2 = —1. So k= Q(v/3) and ¢ = Q(/3,4).



Let
—r —1 1 O
F = 1 1—7r O
0 0 1

Form the algebraic group G for which
G(k) ={g9 € M3y3(¢¥) : g*Fg = F and det(g) = 1}.
So we are working with the involution
(z) = Flz*F,
as v(x)x =1 iff z*Fx = F.



Two embeddings k <— R, mapping r to ++v/3 and —/3, respectively.

For r = 4++/3, set
r+1 -1 0

A = O 1 O
O O +vr—+1

Then A*FgA = —(r+ 1)F, and so g*Fg = F if and only if
§ = AgA~1 satisfies §*Fpg = Fp.

So g — g gives an isomorphism G(ky) = SU(2,1) for the archimedean
place v of k corresponding to the first embedding.



Now let r = —+v/3 and
r—1 —1 0

A=]| 0 1 0
O O v—r-—1
Then A*A = —(r + 1)F, and so ¢g*Fg = F if and only if § = AgA~1

satisfies g*g = 1.

So g — g gives an isomorphism G(ky) = SU(3) for the archimedean place
v of k corresponding to the second embedding.



In

3% g, = [F: 0] ] (P, (*)
veT

a=1and 7o =0 (we're in a matrix algebra case), and dj y = 864. SO

864 = [ : N] [] €().
veT
If v €7, then

(a) ¢2 + qv + 1 divides € (P,) if v splits in ¢,
(b) ¢2 — qv + 1 divides €/'(P,) if v does not split in ¢.

If ¢ > 2, then ¢2+ g+ 1 never divides 864 and ¢2 — ¢+ 1 divides 864 only
for g = 2.



2 ramifies in k, as 205, = p2 for p = (r + 1)o;.

So there is only one 2-adic valuation v on k, and gy, = 2.
So T =0 or T = {v} for this 2-adic v.

No v € V; ramifies in £.

We consider in detail the case 7 = (. So equation (%) is

864 = [l : M].



An earlier diagram is in this case

%)
SU(2,1) PU(2,1)
r R
3 ) M= ()
X \se64 864
. ¥
e~ 1(M) 1

Here I1 is the fundamental group of a hypothetical fake projective plane.



Our strategy is to
e concretely realize T and find a presentation for this group, then

e |look for a subgroup I1 of index 864 which is torsion-free and has
finite abelianization.

It will turn out that there is, up to conjugation, just one torsion-free
subgroup of index 864 in I, but its abelianization is 7Z2. So the ball
quotient

M\B(C?)
is NOT a fake projective plane.



When v € V; splits in ¢, G(ky) = SL(3,ky), and we can choose as our
parahoric subgroup

v — SL(3, U'U).

When v does not split in £ = k(s),

G(kv) = {g € M3x3(kv(s)) : g"Fvg = Fy, and det(g) = 1},
and we can choose
Py = {g € M3x3(03) : g"Fvg = Fy and det(g) = 1},
where v is the unique extension of v to £. Let
N={geG(k) : gv€ P forall v eV}
Here g, is the image of g € G(k) in G(ky).



If g € G(k) then g is a matrix with entries a,g + ib,g.

When v splits, then g € P, iff w(aaﬁ + ibaﬁ) > 0 for both extensions w
of v to £ and all o, 5.

When v doesn't split, then g € P, iff E(aaﬁ —+ ibaﬁ) > 0 for the unique
extension v of v to ¢ and all o, 5.

An element t of £ is in op = Z[(] if and only if w(t) > 0 for all non-
archimedean valuations w on /. So

A= {g€ Msy3(Z[]) : ¢"Fg = F and det(g) =1},
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We also need to find matrices g with entries in Z[(] so that ¢*Fg = F,
without the condition det(g) = 1.

This will give us the normalizer I of A in SU(2,1).

If g € M3x3(Z[¢]) and ¢*Fg = F, then det(g) € Z[¢] and |det(g)|?2 = 1.
So det(g) = ¢J for some j € {0,...,11}.

Mapping ¢ to e2™/12 the matrix (~7/3AgA~1 is then in SU(2,1) and
normalizes the image {ARA~L:h e A} of Ain SU(2,1). Soitisin I.

Fact: You get all elements of [" in this way.
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Finding matrices g € M3y3(Z[(]) satisfying ¢g*Fg = F..

We use the action of U(2,1) on B(C?).

/

g.(21,22) = (21,25) means that g |z | =c |25 for some c.
1 1
This action preserves the hyperbolic metric, which is given by
|1 T <Zaw>|2

cosh?(d(z, w)) =

(1 = [212)(1 — |w|?)’

where (z,w) = z1W1 + 2zows and |z]2 = (z, z).
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Comparing (3, 3)-entries on both sides of g*Fpyg = Fy, we get
91317 + l923]° = lgs3|® — 1, (“column 3 condition”)

SO |g33| > 1 for any g € U(2,1).

If g = (g;1) € U(2,1), then ¢.(0,0) = (913/933,923/933)-
So column 3 condition =

cosh?(d(0,4.0)) = |g33|*.
Writing O in place of (0,0).
90=0 < |g33 =1
So ¢g.0 = 0 implies that gj3 = 0 = g»3. In fact, ¢g.0 = 0 iff

g11 912 O
g= 1921 g22 O
O O g33
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The group of g € M3.3(Z[¢]) such that ¢*Fg = F acts on B(C?): for
such g, § = AgA~1isin U(2,1), and we set

g.z :=g.z for ze B(C?).

The subgroup {¢I:j=0,...,11} acts trivially, and

M2 {g € M3x3(Z[)) : g"Fg =F}/{¢’T: j=0,...,11}.

Note that §33 = ¢33, and so cosh?(d(0, g.0)) = |g33|? is still valid.
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The column 3 condition for g satisfying ¢*Fg = F' is

913]% + lg13 — (r — 1)g23|? = (r — 1)(Jg33]* — 1).

S0 g.0=0<¢ |g33] =1 < g13 = go3 = 0. Again, ¢g.0 = 0 iff

g11 912 O
g= 1921 g2 O
O O g33

Since g33 € Z[¢] and |g33|2 = 1, we have g33 = ¢J for some j.
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Routine calculations show that

G+¢-¢ 1-¢ 0 ¢? 0 0
u=|¢34+¢2-1 ¢—=¢3 0|l andv=|¢34+¢2-¢-1 1 0],
0 0 1 0 0 1

which have entries in Z[(], satisfy v*Fu = F = v*Fv and
w3=1, v* =1, and (w)? = (vu)?.

They generate a group K of order 288 with this presentation.

Lemma. For the action of I on B(C?2), K is the stabilizer of the origin.
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We next find a presentation for I'. Let

1 0 0
b=|-2C3-¢"+20+2 P+ -C-1 ¢
¢Z+¢ -¢3-1  —C+¢+1

This satisfies b*Fb = F and det(b) = ¢*.

Theorem. The elements u, v and b generate I, and the relations

wI =0t =83=1, (w)? = (vu)?, vb=bv, (buv)> = (buvu)?v = 1.

give a presentation of T.

Note that (buv)3 = (buvu)?v = ¢~1I as matrices, but we are working
modulo {¢/I:j=0,...,11}.
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Finding b, and showing that «, v and b generate I'.

For g c U(2,1),
g Fog=Fg & Fy'g*Fog=1 & gF 'g*Fo=1 & gF;lg*=F;t
Also, Fo_l = Fy. Comparing (1,1) entries in gFpg* = Fy, we get

g11]° + |g12/° = |913/° + 1. (“row 1 condition™)

Lemma. If 5 complex numbers g11, 912, 913, g23 and g33 are given
satisfying the above column 3 and row 1 conditions, and if a 8 € C is

given with |#| = 1, there is a unique g € U(2,1) with the given 5 entries
and with det(g) = 6.
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Analogously, if g € M3y3(Z[(]) and g*Fg = F, then

9131° + l913 — (r — 1)g23|* = (r — 1)(|g33]|* — 1)

and

lg111° + lg11 + ( + 1)g12? = (r + 1)|g13]% + 2.

Lemma. If 5 numbers g11, 912, 913, 923 and g3z are given in £ = Q(¢)
satisfying the above modified column 3 and row 1 conditions, and if
6 = ¢J is given, there is a unique g € Msy3(¢) with the given 5 entries
and with det(g) = 6.

If the given 5 numbers g;; are all in Z[¢], the numbers go1, goo, g31 and gzo
are in £ = Q(¢), but might not be in Z[(].
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Lemma. If @ = ag + a1¢ + as¢? + a3¢3 € Z[¢], then

a? = P(a) + Q(a)r,

where P(a) and Q(«) are integers, and P(«) is a positive definite quadratic
form in aqg,...,a3, and |Q(a)| < %P(a).

Ly~ 2
In fact, P(a) > 53 as.
Proof. If a € oy, then |a|° = aa € o, = {p+qr : p,q € Z}. The
automorphism  of £ mapping ¢ to ¢ maps r to —r and commutes with
conjugation. Apply ¥ to both sides of |a|?2 = P(a) 4+ Q(«a)r, and we get
1 ()|? = P(a) — Q(a)r. Hence

P() = (loP+ (@) and Q@) = (ja - [$()?) < ~P(a).
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The above column 3 condition for g € M3y3(Z[(]) with ¢*Fg = F
has the form |a|2 4+ |82 = (r — 1)(|y]? — 1), with «,8,v € Z[¢]. Write
la|?2 = P(a) + Q(a)r and similarly for 8 and . Equating coefficients of r
we get
P(a) + P(B) + P(v) =3Q(v) + 1,
Qa) +Q(8) +Q(v) + 1 = P(v).

So
P() < H(P(@) + P(3) + P()) +1=(3Q(:) +1) +1
So
Q(v) < %P(v) <Q(v) + H?: L

Now d(0, ¢.0) < B implies that |g33|? < cosh?(B) and so

2P(g33) < P(933)+7Q(g33)+(r+1)/r = |g33|°+ (r+1)/r < cosh?(B)+2.
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So if d(0,¢g.0) < B and if gaz = ap + a1 + ax¢? + a3(3, then

Y a* <2P(g33) < cosh?(B) + 2.
J

So, for moderate B, we can very quickly list the set of 5-tuples g11, 912,
g13, go3 and g33 in Z[(] satisfying the column 3 and row 1 conditions, and
also |g33|2 < coshQ(B), and then for each of the 12 possible determinants
6 = (7 check whether the uniquely determined ¢ satisfying det(g) = 6
and ¢g*Fg = F has entries in Z[(].
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Let
do=0<d; <dop <:--

be the distinct values taken by d(0,g.0), g € F. So coshQ(dn) = pn + gnr
for certain integers p, and ¢g,. The first few p, + qnr's are:

1, 2+4+r, 44+2r, 64+3r, 7+ 4r, 11 4+6r, ...

The (3,3)-entry of the matrix bis —¢34+¢+1. We find that |b33|? = 2+
So d(0,b.0) =dy <d(0,g.0) forallgel\ K.

The set of g € T such that d(0, ¢g.0) = dy is the double coset KbK.

The set of g € T such that d(0, g.0) = d» is the double coset Kbu~1bK.
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For the first few n, we can form
Sp={g el :d(0,g.0) <dp}.

Then

K=5CS CSyCcS3C---, and [|JSp=T.

n

Now form

Fn ={z € B(C?) : d(0, z) < d(g.0, 2) for all g € Sp}.
T hese satisfy

B(C®)=FogD>F1DFaD--- and (Fn=Fr.
Let

rn = max{d(0,z) : z € Fp} and rg = max{d(0,z):z ¢ Fr}.
So
CO=1rQg2T1 =272 2> """
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Lemma. If d, > rn, then S, generates I'.
Proof. Suppose that (Sp) S I'. Choose h € T\ (Sy) with d(0, h.0) minimal.
If g € Sn, then g~ th ¢ (Sy), and so

d(0, h.0) < d(0, (g~ th).0) = d(g.0,h.0) for all g € Sh.

Hence h.0 € F,. But then d(0,h.0) < rn, and by hypothesis r, < d.
Hence h € {g € I :d(0,g9.0) <dp} = Sp, a contradiction.
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Lemma. If d, > 2rn, then
(@) Fn=Fr and rn = 1.

(b) the set S, of generators, together with the relations g19>93 = 1 which
hold for g1, g, g3 € Sn, form a presentation for I.

Proof of (a): Suppose that z € F \ Fr. As z & Fr, there must exist a
g € T such that d(g¢.0,z) < d(0, z). But using d(0, 2) < rn, we have

d(0,9.0) <d(0,z) +d(z,9.0) < 2d(0, z) < 2r, < dn,
so that g € S,,. But then d(g¢.0,2) < d(0, z) contradicts z € Fy,.

(b) follows from a general result about group actions on topological
spaces due to MacBeath. (see Theorem 1.8.10 in Bridson & Hafliger's
book).
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Calculation. For this (C11,0) case,

1 1
TH =T =" = §d2 = ECOSh_l(l +\/§),

so that we take n = 2 in the two lemmas.

So the set 5 = KU KbK U Kbu 1bK generates I, and the relations
g19293 = 1, where the g;'s are in S», give a presentation for I".

So u, v and b generate . The relations listed in the above theorem are
these relations g1go93 = 1, cleaned-up.
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So: does there exist a M < T with

M torsion-free, [ :M] =864 and N/[N,N] finite?

Magma’'s LowIndexSubgroups(l", 864) does not work—864 is too big.
We wrote a specialized C program to answer this.

Theorem. There is, up to conjugacy, just one torsion-free subgroup [T
of index 864 in . It satisfies M/[M, N] £ Z~°.

Corollary. There are no fake projective planes belonging to this class.
However, B((CQ)/I‘I is a new compact surface with Euler characteristic 3.
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The main idea behind the C program is this: Let N < T be torsion-free,
with [ : M] = 864.

Lemma. Consider the action of I acts on the coset space /M. If
1 # g € I has finite order, then g's action has no fixed points.

Proof. If g(hM) = kM, then h=1gh € N.
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Lemma. Suppose that T is a finite set of size n, and that ¢ : [ —
Perm(T") is a group homomorphism so that

e (g,t) — ©(g)(t) gives a transitive action of I on T,

e for each g € '\ {1} of finite order, the permutation ¢(g) has no fixed
points.

Then for any tg € T, M = {g € T : p(9)(tg) = tg} is a torsion-free
subgroup of I of index n.

Proof. If T = {tg,...,t,_1}, for each i pick g; € ' so that ¢(g;)(tg) = t;.
Then [ = U;g;11.
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If I exists, it has a transversal of the form T' = Ktg U Kt1 U Kto. We
want to define ¢ : T — Perm(T), i.e., an action of " on T.

We may assume that the action of each k € K is : k.(k't;) = (kk')t;.

In particular, the action of v and v gives known permutations U and V
of T, and these satisfy U3 = V% = id and (UV)? = (VU)?Z.

The action of the generator b gives a permutation B of T' with no fixed
points and satisfying

B3=id, BV=VB, (BUV)3 =id and (BUVU)?V = id.

A back-track search was run to find all possible B's. These were found,
and corresponding Il's formed. Magma checked they were all conjugate,
and that M/[M, N] £ z2.
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Theorem. Writing j = (uv)?, the three elements

fuubju_l, u_lj_lbj2 and uzvbuj_2

of [ generate a torsion-free subgroup N of index 864, with M/[M, N] £ 72
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We checked that I is torsion-free as follows:

(1) g € T of finite order = 3 = € B(C?2) such that g.z = z.

(2) W.l.o.g. =z € Fr.

(3) x € Fp = d(0,9.0) <d(0,x) + d(zx,g9.x) + d(g.x,g.0) < 2rg.

(4) d(0,9.0) <2rr = g€ K U KbK U Kbu1bK.

We get a short list g1,...,gn Of conjugacy class representatives of ele-
ments of finite order. Next we pick a transversal t1,...,tggaq for I, e.g.,
KUKbU Kb2.

We need only check that tz-gjtz-_l Il fori=1,...,864, and j=1,...,n.
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