
A matrix algebra example: C11.

Prasad and Yeung give the name C11 to the following pair (k, ℓ):

Let ℓ = Q(ζ), where ζ is a primitive 12-th root of 1.

ζ4 = ζ2 − 1, so [ℓ : Q] = 4.

Let k = Q(r) for r = ζ + ζ−1.

Then r2 = 3 and (ζ3)2 = −1. So k = Q(
√
3) and ℓ = Q(

√
3, i).
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Let

F =







−r − 1 1 0
1 1− r 0
0 0 1






.

Form the algebraic group G for which

G(k) = {g ∈M3×3(ℓ) : g∗Fg = F and det(g) = 1}.
So we are working with the involution

ι(x) = F−1x∗F,

as ι(x)x = 1 iff x∗Fx = F .
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Two embeddings k →֒ R, mapping r to +
√
3 and −

√
3, respectively.

For r = +
√
3, set

∆ =







r+1 −1 0
0 1 0

0 0
√
r+1





 .

Then ∆∗F0∆ = −(r+1)F , and so g∗Fg = F if and only if

g̃ = ∆g∆−1 satisfies g̃∗F0g̃ = F0.

So g 7→ g̃ gives an isomorphism G(kv)
∼= SU(2,1) for the archimedean

place v of k corresponding to the first embedding.
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Now let r = −
√
3 and

∆ =







r − 1 −1 0
0 1 0

0 0
√
−r − 1





 .

Then ∆∗∆ = −(r + 1)F , and so g∗Fg = F if and only if g̃ = ∆g∆−1

satisfies g̃∗g̃ = I.

So g 7→ g̃ gives an isomorphism G(kv)
∼= SU(3) for the archimedean place

v of k corresponding to the second embedding.
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In

3α−1dk,ℓ = [Γ̄ : Π]
∏

v∈T
e′(Pv), (∗)

α = 1 and T0 = ∅ (we’re in a matrix algebra case), and dk,ℓ = 864. So

864 = [Γ̄ : Π]
∏

v∈T
e′(Pv).

If v ∈ T , then

(a) q2v + qv +1 divides e′(Pv) if v splits in ℓ,

(b) q2v − qv +1 divides e′(Pv) if v does not split in ℓ.

If q ≥ 2, then q2+ q+1 never divides 864 and q2− q+1 divides 864 only

for q = 2.
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2 ramifies in k, as 2ok = p2 for p = (r+1)ok.

So there is only one 2-adic valuation v on k, and qv = 2.

So T = ∅ or T = {v} for this 2-adic v.

No v ∈ Vf ramifies in ℓ.

We consider in detail the case T = ∅. So equation (∗) is

864 = [Γ̄ : Π].
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An earlier diagram is in this case

SU(2,1) PU(2,1)

Γ

Λ 864 864

3

ϕ−1(Π)

Γ̄ = ϕ(Γ)

Π

ϕ

ϕ

ϕ

Here Π is the fundamental group of a hypothetical fake projective plane.
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Our strategy is to

• concretely realize Γ̄ and find a presentation for this group, then

• look for a subgroup Π of index 864 which is torsion-free and has

finite abelianization.

It will turn out that there is, up to conjugation, just one torsion-free

subgroup of index 864 in Γ̄, but its abelianization is Z2. So the ball

quotient

Π\B(C2)

is NOT a fake projective plane.
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When v ∈ Vf splits in ℓ, G(kv)
∼= SL(3, kv), and we can choose as our

parahoric subgroup

Pv = SL(3, ov).

When v does not split in ℓ = k(s),

G(kv) = {g ∈M3×3(kv(s)) : g∗Fvg = Fv and det(g) = 1},
and we can choose

Pv = {g ∈M3×3(oṽ) : g∗Fvg = Fv and det(g) = 1},
where ṽ is the unique extension of v to ℓ. Let

Λ = {g ∈ G(k) : gv ∈ Pv for all v ∈ Vf}.
Here gv is the image of g ∈ G(k) in G(kv).
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If g ∈ G(k) then g is a matrix with entries aαβ + ibαβ.

When v splits, then g ∈ Pv iff w(aαβ + ibαβ) ≥ 0 for both extensions w

of v to ℓ and all α, β.

When v doesn’t split, then g ∈ Pv iff ṽ(aαβ + ibαβ) ≥ 0 for the unique

extension ṽ of v to ℓ and all α, β.

An element t of ℓ is in oℓ = Z[ζ] if and only if w(t) ≥ 0 for all non-

archimedean valuations w on ℓ. So

Λ = {g ∈M3×3(Z[ζ]) : g∗Fg = F and det(g) = 1}.
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We also need to find matrices g with entries in Z[ζ] so that g∗Fg = F ,

without the condition det(g) = 1.

This will give us the normalizer Γ of Λ in SU(2,1).

If g ∈ M3×3(Z[ζ]) and g∗Fg = F , then det(g) ∈ Z[ζ] and |det(g)|2 = 1.

So det(g) = ζj for some j ∈ {0, . . . ,11}.

Mapping ζ to e2πi/12, the matrix ζ−j/3∆g∆−1 is then in SU(2,1) and

normalizes the image {∆h∆−1 : h ∈ Λ} of Λ in SU(2,1). So it is in Γ.

Fact: You get all elements of Γ in this way.
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Finding matrices g ∈M3×3(Z[ζ]) satisfying g∗Fg = F .

We use the action of U(2,1) on B(C2).

g.(z1, z2) = (z′1, z
′
2) means that g







z1
z2
1





 = c







z′1
z′2
1





 for some c.

This action preserves the hyperbolic metric, which is given by

cosh2(d(z, w)) =
|1− 〈z, w〉|2

(1− |z|2)(1− |w|2),

where 〈z, w〉 = z1w̄1 + z2w̄2 and |z|2 = 〈z, z〉.
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Comparing (3,3)-entries on both sides of g∗F0g = F0, we get

|g13|2 + |g23|2 = |g33|2 − 1, (“column 3 condition”)

so |g33| ≥ 1 for any g ∈ U(2,1).

If g = (gjk) ∈ U(2,1), then g.(0,0) = (g13/g33, g23/g33).

So column 3 condition ⇒

cosh2(d(0, g.0)) = |g33|2.
Writing 0 in place of (0,0).

g.0 = 0 ⇔ |g33| = 1.

So g.0 = 0 implies that g13 = 0 = g23. In fact, g.0 = 0 iff

g =







g11 g12 0
g21 g22 0
0 0 g33





 .
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The group of g ∈ M3×3(Z[ζ]) such that g∗Fg = F acts on B(C2): for

such g, g̃ = ∆g∆−1 is in U(2,1), and we set

g.z := g̃.z for z ∈ B(C2).

The subgroup {ζjI : j = 0, . . . ,11} acts trivially, and

Γ̄ ∼= {g ∈M3×3(Z[ζ]) : g∗Fg = F}/{ζjI : j = 0, . . . ,11}.

Note that g̃33 = g33, and so cosh2(d(0, g.0)) = |g33|2 is still valid.
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The column 3 condition for g satisfying g∗Fg = F is

|g13|2 + |g13 − (r − 1)g23|2 = (r − 1)(|g33|2 − 1).

So g.0 = 0 ⇔ |g33| = 1 ⇔ g13 = g23 = 0. Again, g.0 = 0 iff

g =







g11 g12 0
g21 g22 0
0 0 g33






.

Since g33 ∈ Z[ζ] and |g33|2 = 1, we have g33 = ζj for some j.
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Routine calculations show that

u =







ζ3 + ζ2 − ζ 1− ζ 0

ζ3 + ζ2 − 1 ζ − ζ3 0
0 0 1





 and v =







ζ3 0 0

ζ3 + ζ2 − ζ − 1 1 0
0 0 1





 ,

which have entries in Z[ζ], satisfy u∗Fu = F = v∗Fv and

u3 = I, v4 = I, and (uv)2 = (vu)2.

They generate a group K of order 288 with this presentation.

Lemma. For the action of Γ̄ on B(C2), K is the stabilizer of the origin.
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We next find a presentation for Γ̄. Let

b=







1 0 0

−2ζ3 − ζ2 +2ζ +2 ζ3 + ζ2 − ζ − 1 −ζ3 − ζ2

ζ2 + ζ −ζ3 − 1 −ζ3 + ζ +1






.

This satisfies b∗Fb = F and det(b) = ζ4.

Theorem. The elements u, v and b generate Γ̄, and the relations

u3 = v4 = b3 = 1, (uv)2 = (vu)2, vb = bv, (buv)3 = (buvu)2v = 1.

give a presentation of Γ̄.

Note that (buv)3 = (buvu)2v = ζ−1I as matrices, but we are working

modulo {ζjI : j = 0, . . . ,11}.
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Finding b, and showing that u, v and b generate Γ̄.

For g ∈ U(2,1),

g∗F0g = F0 ⇔ F−1
0 g∗F0g = I ⇔ gF−1

0 g∗F0 = I ⇔ gF−1
0 g∗ = F−1

0 .

Also, F−1
0 = F0. Comparing (1,1) entries in gF0g

∗ = F0, we get

|g11|2 + |g12|2 = |g13|2 +1. (“row 1 condition”)

Lemma. If 5 complex numbers g11, g12, g13, g23 and g33 are given

satisfying the above column 3 and row 1 conditions, and if a θ ∈ C is

given with |θ| = 1, there is a unique g ∈ U(2,1) with the given 5 entries

and with det(g) = θ.
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Analogously, if g ∈M3×3(Z[ζ]) and g∗Fg = F , then

|g13|2 + |g13 − (r − 1)g23|2 = (r − 1)(|g33|2 − 1)

and

|g11|2 + |g11 + (r+1)g12|2 = (r+1)|g13|2 +2.

Lemma. If 5 numbers g11, g12, g13, g23 and g33 are given in ℓ = Q(ζ)

satisfying the above modified column 3 and row 1 conditions, and if

θ = ζj is given, there is a unique g ∈ M3×3(ℓ) with the given 5 entries

and with det(g) = θ.

If the given 5 numbers gij are all in Z[ζ], the numbers g21, g22, g31 and g32
are in ℓ = Q(ζ), but might not be in Z[ζ].
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Lemma. If α = a0 + a1ζ + a2ζ
2 + a3ζ

3 ∈ Z[ζ], then

|α|2 = P(α) +Q(α)r,

where P(α) and Q(α) are integers, and P(α) is a positive definite quadratic

form in a0, . . . , a3, and |Q(α)| ≤ 1
rP(α).

In fact, P(α) ≥ 1
2

∑

j a
2
j .

Proof. If α ∈ oℓ, then |α|2 = ᾱα ∈ ok = {p + qr : p, q ∈ Z}. The

automorphism ψ of ℓ mapping ζ to ζ5 maps r to −r and commutes with

conjugation. Apply ψ to both sides of |α|2 = P(α) +Q(α)r, and we get

|ψ(α)|2 = P(α)−Q(α)r. Hence

P(α) =
1

2

(

|α|2 + |ψ(α)|2
)

and Q(α) =
1

2r

(

|α|2 − |ψ(α)|2
)

≤ 1

r
P(α).
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The above column 3 condition for g ∈M3×3(Z[ζ]) with g∗Fg = F

has the form |α|2 + |β|2 = (r − 1)(|γ|2 − 1), with α, β, γ ∈ Z[ζ]. Write

|α|2 = P(α)+Q(α)r and similarly for β and γ. Equating coefficients of r

we get

P(α) + P(β) + P(γ) = 3Q(γ) + 1,

Q(α) +Q(β) +Q(γ) + 1 = P(γ).

So

P(γ) ≤ 1

r

(

P(α) + P(β) + P(γ)

)

+1 =
1

r

(

3Q(γ) + 1

)

+1

So

Q(γ) ≤ 1

r
P(γ) ≤ Q(γ) +

r+1

3
.

Now d(0, g.0) ≤ B implies that |g33|2 ≤ cosh2(B) and so

2P(g33) ≤ P(g33)+rQ(g33)+(r+1)/r = |g33|2+(r+1)/r < cosh2(B)+2.
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So if d(0, g.0) ≤ B and if g33 = a0 + a1ζ + a2ζ
2 + a3ζ

3, then

∑

j

a2j ≤ 2P(g33) < cosh2(B) + 2.

So, for moderate B, we can very quickly list the set of 5-tuples g11, g12,

g13, g23 and g33 in Z[ζ] satisfying the column 3 and row 1 conditions, and

also |g33|2 ≤ cosh2(B), and then for each of the 12 possible determinants

θ = ζj check whether the uniquely determined g satisfying det(g) = θ

and g∗Fg = F has entries in Z[ζ].
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Let

d0 = 0 < d1 < d2 < · · ·
be the distinct values taken by d(0, g.0), g ∈ Γ̄. So cosh2(dn) = pn+ qnr

for certain integers pn and qn. The first few pn+ qnr’s are:

1, 2+ r, 4 + 2r, 6+ 3r, 7+ 4r, 11 + 6r, . . .

The (3,3)-entry of the matrix b is −ζ3+ζ+1. We find that |b33|2 = 2+r.

So d(0, b.0) = d1 ≤ d(0, g.0) for all g ∈ Γ̄ \K.

The set of g ∈ Γ̄ such that d(0, g.0) = d1 is the double coset KbK.

The set of g ∈ Γ̄ such that d(0, g.0) = d2 is the double coset Kbu−1bK.
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For the first few n, we can form

Sn = {g ∈ Γ̄ : d(0, g.0) ≤ dn}.
Then

K = S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · · , and
⋃

n
Sn = Γ̄.

Now form

Fn = {z ∈ B(C2) : d(0, z) ≤ d(g.0, z) for all g ∈ Sn}.
These satisfy

B(C2) = F0 ⊃ F1 ⊃ F2 ⊃ · · · and
⋂

n
Fn = FΓ̄.

Let

rn = max{d(0, z) : z ∈ Fn} and rΓ̄ = max{d(0, z) : z ∈ FΓ̄}.
So

∞ = r0 ≥ r1 ≥ r2 ≥ · · ·
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Lemma. If dn ≥ rn, then Sn generates Γ̄.

Proof. Suppose that 〈Sn〉 $ Γ̄. Choose h ∈ Γ̄\〈Sn〉 with d(0, h.0) minimal.

If g ∈ Sn, then g−1h 6∈ 〈Sn〉, and so

d(0, h.0) ≤ d(0, (g−1h).0) = d(g.0, h.0) for all g ∈ Sn.

Hence h.0 ∈ Fn. But then d(0, h.0) ≤ rn, and by hypothesis rn ≤ dn.

Hence h ∈ {g ∈ Γ̄ : d(0, g.0) ≤ dn} = Sn, a contradiction.
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Lemma. If dn ≥ 2rn, then

(a) Fn = FΓ̄ and rn = rΓ̄.

(b) the set Sn of generators, together with the relations g1g2g3 = 1 which

hold for g1, g2, g3 ∈ Sn, form a presentation for Γ̄.

Proof of (a): Suppose that z ∈ Fn \ FΓ̄. As z 6∈ FΓ̄, there must exist a

g ∈ Γ̄ such that d(g.0, z) < d(0, z). But using d(0, z) ≤ rn, we have

d(0, g.0) ≤ d(0, z) + d(z, g.0) < 2d(0, z) ≤ 2rn ≤ dn,

so that g ∈ Sn. But then d(g.0, z) < d(0, z) contradicts z ∈ Fn.

(b) follows from a general result about group actions on topological

spaces due to MacBeath. (see Theorem I.8.10 in Bridson & Häfliger’s

book).
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Calculation. For this (C11, ∅) case,

r1 = r2 = · · · = 1

2
d2 =

1

2
cosh−1(1 +

√
3),

so that we take n = 2 in the two lemmas.

So the set S2 = K ∪ KbK ∪ Kbu−1bK generates Γ̄, and the relations

g1g2g3 = 1, where the gi’s are in S2, give a presentation for Γ̄.

So u, v and b generate Γ̄. The relations listed in the above theorem are

these relations g1g2g3 = 1, cleaned-up.
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So: does there exist a Π ≤ Γ̄ with

Π torsion-free, [Γ̄ : Π] = 864 and Π/[Π,Π] finite?

Magma’s LowIndexSubgroups(Γ̄, 864) does not work—864 is too big.

We wrote a specialized C program to answer this.

Theorem. There is, up to conjugacy, just one torsion-free subgroup Π

of index 864 in Γ̄. It satisfies Π/[Π,Π] ∼= Z2.

Corollary. There are no fake projective planes belonging to this class.

However, B(C2)/Π is a new compact surface with Euler characteristic 3.
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The main idea behind the C program is this: Let Π ≤ Γ̄ be torsion-free,

with [Γ̄ : Π] = 864.

Lemma. Consider the action of Γ̄ acts on the coset space Γ̄/Π. If

1 6= g ∈ Γ̄ has finite order, then g’s action has no fixed points.

Proof. If g(hΠ) = hΠ, then h−1gh ∈ Π.

29



Lemma. Suppose that T is a finite set of size n, and that ϕ : Γ̄ →
Perm(T) is a group homomorphism so that

• (g, t) 7→ ϕ(g)(t) gives a transitive action of Γ̄ on T ,

• for each g ∈ Γ̄\{1} of finite order, the permutation ϕ(g) has no fixed

points.

Then for any t0 ∈ T , Π = {g ∈ Γ̄ : ϕ(g)(t0) = t0} is a torsion-free

subgroup of Γ̄ of index n.

Proof. If T = {t0, . . . , tn−1}, for each i pick gi ∈ Γ̄ so that ϕ(gi)(t0) = ti.

Then Γ̄ = ∪igiΠ.
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If Π exists, it has a transversal of the form T = Kt0 ∪ Kt1 ∪ Kt2. We

want to define ϕ : Γ̄ → Perm(T), i.e., an action of Γ̄ on T .

We may assume that the action of each k ∈ K is : k.(k′ti) = (kk′)ti.

In particular, the action of u and v gives known permutations U and V

of T , and these satisfy U3 = V 4 = id and (UV )2 = (V U)2.

The action of the generator b gives a permutation B of T with no fixed

points and satisfying

B3 = id, BV = V B, (BUV )3 = id and (BUV U)2V = id.

A back-track search was run to find all possible B’s. These were found,

and corresponding Π’s formed. Magma checked they were all conjugate,

and that Π/[Π,Π] ∼= Z2.
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Theorem. Writing j = (uv)2, the three elements

vubju−1, u−1j−1bj2 and u2vbuj−2

of Γ̄ generate a torsion-free subgroup Π of index 864, with Π/[Π,Π] ∼= Z2.
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We checked that Π is torsion-free as follows:

(1) g ∈ Γ̄ of finite order ⇒ ∃ x ∈ B(C2) such that g.x= x.

(2) W.l.o.g. x ∈ FΓ̄.

(3) x ∈ FΓ̄ ⇒ d(0, g.0) ≤ d(0, x) + d(x, g.x) + d(g.x, g.0) ≤ 2rΓ̄.

(4) d(0, g.0) ≤ 2rΓ̄ ⇒ g ∈ K ∪ KbK ∪ Kbu−1bK.

We get a short list g1, . . . , gn of conjugacy class representatives of ele-

ments of finite order. Next we pick a transversal t1, . . . , t864 for Π, e.g.,

K ∪Kb ∪Kb2.

We need only check that tigjt
−1
i 6∈ Π for i = 1, . . . ,864, and j = 1, . . . , n.
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