EXAMPLE: The case (k,4) = (Q,Q(v/—=7)).

Let m = Q(¢), where ( is a primitive 7-th root of 1. Then m is a Galois
extension of Q, with cyclic Galois group generated by x : ¢ — (3.

s2=—7 for s=1+42¢+2¢%+2¢%
So m contains £ = Q(s), and Gal(m/£) = (y), where ¢(¢) = ¢2. Form
D={a—|—ba+002 . a,b,c € m},

where gaoc™1 = p(a) for all a € m, and where

03:D=3+8.
4

Note that DD = 1.

We have seen that D is a division algebra. The proof uses the 2-adic
valuation on Q, and in fact shows that D ®, Qo is a division algebra.
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Recall: algebra homomorphism W : D — M3y.3(m) so that

a b C
W(a+bo+co?)=| Dp(c) wla)  o(b)
De?(b) Dy?(c) ¢?(a)

Recall: involution g of second kind on D so that ;g(¢) = ¢~ 1 and «(a) = a
for a € m. We modify this:

Set (&) = WL g(&)W. Then W((&)) = F~ W (&*F for

W O O
F=|0 W) o0 |,
0 0 p?(W)

where W = ¢ 4 ¢ 1.

Note W3+ W2—-2W —-1=0, o(W)=W2—-2and @2(W) =1-W — W?2.



We form the algebraic group G, with
G(Q) ={¢€D:u(6)¢ =1 & Nrd(¢) = 1}.

Recall reason for choice of .. when we embed m in C, mapping ¢ to 627”3/7,
the images of W, (W) and ¢2(W) are >0, < 0 and < 0. So if

0 0 2 (W)|1/2
A= 0 |pW)/2 0 ,
W |L/2 0 0

then A*FgA = —F.
So g*Fg = F iff § = AgA~1 satisfies §*Fy5 = Fj.

So

W A-NTL
D = M3x3(m) <= M34x3(C) — M343(C)

maps G(k) in G(ky) & SU(2,1) for the one archimedean valuation v
on k= Q.



If M C PU(2,1) is the fundamental group of an fpp, commensurable with
N={geG(k) : go€ P, forall ve V¢} for this G. Then

37t =[] ] €.
veT
and o = 2 (since we are in a division algebra case) and dj , = 21.

k= Q, so Vf — set of prime numbers. So
32 x7=[:N ] ¢Pp),
q<T
and 7 is a finite set of primes. If ¢ € Tg, then ¢/(P;) = (¢ — 1)?(¢ + 1).
So g must be 2, and €'(P;) = 3. So

3x7=I[T:N] [ €@.
q€T, q7F2



If 2 # g € T splits in £ then ¢2 + ¢ + 1 divides €¢/(P;) and so divides 21.
This can’'t happen.

If 7 # q € T does not split in ¢, then ¢ — ¢ + 1 divides ¢/(P;) and so
g2 — g+ 1 divides 21. So g =3 or ¢ = 5. Note 3, 5 can’'t both be in 7.

As To ={2} and 7o C 7, 2 must be in 7. So

T ={2}, {2,3} or {2,5}

If g=3 or 5, ¢ € T means that F, is the stabilizer of a type 2 vertex of
the building Xjg.



The prime 7 ramifies in ¢, and the building X7 is a homogeneous tree,
in which each vertex has 7 4+ 1 = 8 neighbours.

7 is not in 7, but P; can be the stabilizer of a type 1 vertex of X,, or the
stabilizer of a type 2 vertex of X;. These two P;'s are not conjugate.
Set

Ti={qeV; : e gdoesn't split in ¢, and
e P, is the stabilizer of a type 2 vertex of Xg}.
The possibilities for 77 in this case are

0, {7}, {3}, {3,7}, {5}, and {5,7}.



If ¢ # 2 splits in ¢, then G(Qq) = SL(3,Qy).

We choose Py, = SL(3,Zq) for all these ¢'s. This is the stabilizer of the
lattice class [Zg] (a vertex of the building of G(Qy)).

If ¢ does not split in ¢, then G(Qq) = {g € SL(3,Qq(s)) : g*Fq/g = Fé} for
an Hermitian F.

We can arrange the isomorphism so that Fé S GL(S,oC—j). Here q is the
unique extension of g to ¢, and og is the valuation ring in £z = Qq(s).

This implies that the oz-lattice £ = og.’ in Qp(s)3 is self-dual. That is:

L= {y € Qq(s)>: y*Flx € o7 for all z € L}

is equal to L.



So we can choose as our parahoric
P, ={ge€ SL(3,05) :g"F,g=F,}.
This is the stabilizer in G(Qq) of the “type 1" vertex og’ of the building
of G(Qq) (which is a tree).
We set P, = G(Q»). This is compact. Then

N={g9 € G(Q) :gq€ P, for all primes q}

is a principal arithmetic subgroup with “7J7" equal to 0.



An earlier diagram is in this case

)
SU(2,1) PU(2,1)
r N
0 %) = SO(F)
Py 21 21
) ©
e~ 1) 1

Here Il is the fundamental group of a hypothetical fake projective plane.

We want to find enough elements of A and its normalizer [ to get a
presentation of I".



Let

6 2 .
e=> Y apilofeD

j=1k=0
be in G(Q). What are the conditions on the coefficients aji in order that
EeN?

As we need the normalizer I' of A, so also we need to look at £ € D
satisfying «(£)€ = 1, but not necessarily Nrd(§) = 1.

Then &, € GL(3,Qq) if ¢ > 2 splits. When is it in GL(3,%Z)?

Also &; € GL(3,Qq(s)) and &y F & = F, if g doesn’t split. When is it in
GL(S,OC']")?
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It turns out that if ¢ # 2,7, we simply need that the ajk’s have no ¢’'s in
their denominators. That is, aj, € QN Zg.

As G(Qq) is compact for ¢ = 2, we get no 2-adic condition. So 2's are
allowed in the denominators of the aj;'s.

The situation when g = 7 is more complicated.
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Let's look at the case ¢ = 7. It turns out that m = Q(¢{) does not embed
in Q7(s).

We can find an n € Q7(s) so that »» = 1 and N@7(g)/@7(s)(77) = D
(= (3+5)/4).

As the one 7-adic valuation v on £ = Q(s) ramifies in m, we can't use
the norm theorem from class field theory.

We can take n = ¢c—(8¢?2—3c¢—4)s/7, where ¢ = 64+0x7+1x724+4x73+- -
is the solution in Q7 of 16¢3 —12¢—3=0. Then 7in =1 and

Ny () /@7 (s)(M) = 1° = D.
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The isomorphism G(Q7) £ {g € SL(3,Q7(s)) : g*F'g = F'} is seen using
W and the isomorphism D ®; Q7(s) = M3+«3(Q7(s)):

DY Mays(m) = Maxs(Q7(0)) L% Msys(Q7(O),

where J = &©C, and

n O 0 0o ©(80) ¥2(60)
C=10 1 0 and © = (617 ¢(01) ©3(071) ],
0 0 1/¢(n) 0> ©(02) ©2(02)

where 6qp,601,60> is a basis of m over £. We calculate that if &£ € D and
()€ =1, its image in M343(Q7(s)) is unitary with respect to

F=g"trj = o et rcte 1.
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Because 7p = 1, we find that C* = C~1. As C is diagonal, it commutes
with F. So ¢*"1FCc-1 =F.

Adroitly choosing g = s, 81 = s(¢ — 1) and 6> = (¢ — 1)2, we find that
7J*1FJ=1 equals

3 3 S
F/: 3 2 (1+3)/2 ’
—s (1—3s)/2 0

which has entries in oy and determinant 1.
Because F’ is in GL(3,05), the lattice o% in Q7(s)3 is self-dual.

Now suppose that £ € D and «(§)§ = 1. Look at its image &7, which is a
matrix with entries in Q-(s) unitary with respect to F”.
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As &7 = JW(&)J~ 1, where J = ©C, is a matrix with entries in Q7(s), we
can write
r11 + Y118 T12 + Y128 *13 + Y13S

§7 = | To1 T+ Y218 To2 + Y228 T3+ Y235 |,
r31 + Y318 32 + Y328 x33 + Y33S

where z;;,y;; € Q7 for each 4,j5. Each of these is a linear combination of
the coefficients a;;'s of . SO we can write

x = Ma,

where a and x are column vectors of length 18, made from the coeffi-
cients a;; and from the numbers z;; and y;;, and where M is an 18 x 18
matrix with entries in Q7. In this case, the entries of M are explicit
polynomials in the ¢ € Q7 used in solving N@7(C)/@7(s)(”) = D.
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fﬂo%) = o% & 57(0%) C o% & &7 has entries in os.
In this case, 05 = {x +ys:z,y € Z7} C Q7(s), and so
£7(0%) = o% < xy5,Yi €4y foralle,j < x = Ma has entries in Zz.
If L € GL(18,Z7), then

Ma has entries in Z7 <&  LMa has entries in Zz.

We can choose L € GL(18,Z7) so that LM = &£ is in ‘“reduced row
echelon form” . Then

57(02) = o% < Ea has entries in Z7.
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We only need a 7-adic approximation M; (mod 49 is enough) to M to
get £. The following Magma commands give us £.

Mz:=Matrix(IntegerRing(49),18,18,[...]1);
£:=EchelonForm(M7);

We used the order

aig,---,460,211,---,461,212;---,062

for the coefficients of &.
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We get:
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To summarize:
For each prime g #% 2 which splits in ¢, let P, = SL(3,Z).

For each prime ¢ which does not split in £, let P, = {g € SL(3,05) :
9" Fag = Fg}.

Let A ={£ € G(Q) : & € P, for all g #= 2}.

The elements & of A are the

6 2
Z Z ajkg“j_lak €D
=0

=1k
1, aj € Z[1/2,1/7] for all j,k, and such

3

J
such that ()€ = 1, Nrd(&)
that £a has entries in Z7.
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The image T of the normalizer T of A is isomorphic to the group of
elements £Z, where Z={tl:t € /¢ & tt = 1}, where £ has the form

6 2 .
e=Y Y apilofeD

j=1k=0
such that «(§)§ = 1, a; € Z[1/2,1/7] for all j,k, and such that £a has
entries in Z7.
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We find elements of A and I using the Cayley transform and a computer
search.

If n € D and «(n) = —n, then n # 1, so that 1 — n is invertible. Let
E= (1471 —n)"1eD. Then ()¢ = 1. Conversely, if «(£)é = 1 and
£ # —1, then n= (£ — 1)(¢ + 1)1 satisfies «(n) = —n.

For
6 2 .
n= > > sjkCJ_lak e D,
7=1k=0
the condition «(n) = —n imposes 9 linear conditions on the 18 rational

numbers s;i. This allows us to eliminate 9 of these variables.

In order to work with integer coefficients, we look at (d1 +n)(dl —n)~ 1,
where d > 1 is an integer.
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Looking for elements £ of A, we need Nrd(£) = 1, and so Nrd(dl +n) =
Nrd(d1 — n). This imposes a condition cond, = 0 on the s;.'s, where
condg, is a cubic polynomial in d and the 9 non-eliminated sjk’s.

The elements & of I satisfy Nrd(¢) = D" for some integer n, and
it is enough to look for elements satisfying Nrd(¢) = D. So we want
Nrd(dl + n) = DNrd(dl — n). This imposes a condition cond, = 0 on
the sjk’s, where cond, is another cubic polynomial in d and the 9 non-
eliminated s;;'s.

Whenever we find sjk’s satisfying cond, or cond,, we calculate the co-

efficients aj, of £ = (d1 4+ n)(d1l — n)~1, looking for a;'s satisfying the
above arithmetic conditions.
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The cubic equations cond, = 0O or cond, = 0 are time consuming to
check. Fortunately, there are strong necessary conditions on the sjk’s
which can be checked after a quadratic polynomial (the bitrace of W(n))
in the s;;.’'s has been calculated. So cond, and cond,, are calculated only
for sjk’s in a tiny proportion of the search space.

This is especially important in cases when k # @, and we have 36 rational

coefficients to start with, and still have 18 variables after the condition
t(n) = —n is imposed.
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Running, overnight say, two programs, one imposing cond, = 0 and the
other cond, = 0, we get a few hundred elements of . One may verify

that each element found is a word in z and b, where

2 =( + 00 + 002,
b=a—|—60—|—702

for
o= 2 (0+4¢ +5¢ +3¢3 - 2¢* - 3¢%)

1
B =(7+5¢-6¢2+2¢° +8¢* — 2¢°)
1
v=2(T+ ¢+3¢%+6¢%+3¢* ~6¢°).
(b equals (d1 +n)(dl —n)~1 with d =7 and |s;;| < 12 for all i,j.)

So it seems that " is generated by z and b (more exactly, by zZ and b2).

We prove this (and more) as follows.
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To see that I is generated by z and b as follows.

1) Starting from the outcome of our search programs, and a number
di (to be chosen later) we form a set S of elements g of I satisfying
d(g.0,0) < dy which we arrange in order of increasing d(g.0,0).

2) We enlarge S if necessary, so that

e whenever g € S, also g~ 1 € S, and

e whenever g,¢' € S and d((gg").0,0) < d7 also gg’ is in S.
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3) We form

Fg = {z € B(C?) :d(z0) < d(zg¢.0) for all g € S}.

Note that Fg¢ D Fg, where

Fr={z¢ B((CQ) :d(2,0) <d(z,9.0) for all g € T'}.

4) We numerically calculated the normalized hyperbolic volume vol(Fg).
We compare this with the known value of vol(Fr) (= 1/864 in this case).

Lemma. If vol(Fg) < 2vol(Fr), then I is generated by S.
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Now suppose that d(z,0) is bounded on Fg, and we can calculate

ro(S) = sup{d(z,0) : z € Fg}.

Theorem. Suppose that S satisfies 1) and 2) above, and that S genera-
tes M. If d1 > 27¢(S), then S is the set of all g € T such that d(g.0,0) < d7.
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Corollary 1. Under the hypotheses of the theorem, the set Fg is equal to
the Dirichlet fundamental domain F= of T.

Corollary 2. Under the hypotheses of the theorem, the set S, together
with all the relations g19093 = 1, where each g, is in S, forms a presen-

tation of the group T.
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In this case, the elements of I can be divided into double cosets K¢gK,
where K = (z). We form

8 6 6
_ —1
S=|J Ka;K U |J KbjK U [ Kb; 'K,
1=0 1=1 1=1
where Nrd(a;) = 1 and Nrd(b;) = D for each 4,5, and ag = id. SO S has
7T+ 8 X494+ 6 X494+ 6 X 49 = 987 elements.

Here aq,...,ag are
D3, Db 3, 221, b22p" L and
Dbz"12, Db22b71, b2b~22b, b2z 12071,
and bl,...,b6 are

Db~ 2, b, b2zb~ 1 Db32°b, Dbz°b%2°b, and Db 32b.
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We apply the lemma and the theorem to confirm that IC is generated by
z and b, and get the presentation

[ = (z2,b|
27,
(=221,
(02272b2,2)3
(02272p2,4)3
b3z_2b_122b_221,
b3zlb3z3b22b_1z_l,
b322b222b Lz p 32T,
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Magma shows via the command

LowIndexSubgroups(G,<21,21>);
that up to conjugacy there are 3 subgroups of index 21.
<b3, bz 2, (b2 1)3, zb_lz_2b>,
Ny = (b3, 2°b~12b, 2zbz2b 1),
Me= (b, 271672271, zbzbz71).

The abelianization /[N, M] is finite in each case, equalling

Mg

C§, Ci1a, and Cs x Cyo, respectively.

Check that each I1 is torsion free is easy using;

g € torsion = g is conjugate to an element of S.
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What happens if we replace P; = {g € SL(3,05) : g*F'g = F'} (which is
the stabilizer in G(Q7) of the type 1 vertex £ = o% of the building X7),
by the stabilizer of a type 2 vertex?

Let

1 0O
c= |0 s O
O 01

Then M = c(02) is again a lattice in Q7(s)3. Now det(c) = s, and
FFle, s(c*F'c)™1, ¢, and sc™! have entries in Z[s] C Z7[s].
This means that
sM'CME M and sLSMEL.

So the pair (M, M’) is a type 2 vertex of the building X+, and is adjacent
to the type 1 vertex L.

32



If g*F'g = F’, then g(M) = M iff g(M') = M’'. Form

P; = {g € G(Q7) : g(M) = M}.

Form the principal arithmetic subgroup A’ which is the same as before,
except that Py is replaced by P;. Let

6 2
e=> Y ap?lofeD

j=1k=0

satisfy «(§)§é = 1. Let &7 be its image in {g € GL(3,Q7(s)) : g*F'g = F'}.
When does &7(M) = M?

We find that this holds iff £a has entries in Z7, where £ is an 18 x 18
matrix, a little different from £&.
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and
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The same method shows that I© is again generated by z (as before) and
an element b (different from previous b), and has presentation

T =1(z b]
b3 =1,
z7=1,

(bz%b2"1)3 =1,

b 120220220 127 h%0 1 = 1,

bz2b Lo h1p22p 13 = 1,
bz2bzbz 2b lzbz bz 72122 = 1).

The relations here hold modulo scalars. For example, b3 = D1.
One can show that A is generated by z and bzb—1.
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Magma gives 4 index 21 subgroups of I:

(bzb_lz_Q, bz~ 1o 122 zbz3b_1>,
(zbz_lb_l, z3bzb_1, sz_lz_lb, zb_lzbz>,
MNe = <zbz_1b_1, 22b2°b~ 1L, zb_lzbz>,

(zb= 1, 273b, b~ 1z020).

all are torsion-free with finite abelianization.

So there are 4 fake projective planes in the class (a =7,p = 2,{7}).

M =T1, is the fundamental group of Mumford’s original example, since
e Nz(M) =T, which means that Aut(B(C?)/N) is trivial, and

e there is a surjective homomorphism I — PSL(2,F;).
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