EXAMPLE: The case $(k, \ell) = (\mathbb{Q}, \mathbb{Q}(\sqrt{-7})).$

Let $m = \mathbb{Q}(\zeta)$, where ζ is a primitive 7-th root of 1. Then m is a Galois extension of \mathbb{Q} , with cyclic Galois group generated by $\chi : \zeta \mapsto \zeta^3$.

$$s^2 = -7$$
 for $s = 1 + 2\zeta + 2\zeta^2 + 2\zeta^4$.

So m contains $\ell = \mathbb{Q}(s)$, and $\operatorname{Gal}(m/\ell) = \langle \varphi \rangle$, where $\varphi(\zeta) = \zeta^2$. Form

$$\mathcal{D} = \{a + b\sigma + c\sigma^2 : a, b, c \in m\},\$$

where $\sigma a \sigma^{-1} = \varphi(a)$ for all $a \in m$, and where

$$\sigma^3 = D = \frac{3+s}{4}.$$

Note that $\overline{D}D = 1$.

We have seen that \mathcal{D} is a division algebra. The proof uses the 2-adic valuation on \mathbb{Q} , and in fact shows that $\mathcal{D} \otimes_{\ell} \mathbb{Q}_2$ is a division algebra.

Recall: algebra homomorphism $\Psi : \mathcal{D} \to M_{3\times 3}(m)$ so that

$$\Psi(a+b\sigma+c\sigma^2) = \begin{pmatrix} a & b & c \\ D\varphi(c) & \varphi(a) & \varphi(b) \\ D\varphi^2(b) & D\varphi^2(c) & \varphi^2(a) \end{pmatrix}.$$

Recall: involution ι_0 of second kind on \mathcal{D} so that $\iota_0(\sigma) = \sigma^{-1}$ and $\iota(a) = \overline{a}$ for $a \in m$. We modify this:

Set
$$\iota(\xi) = W^{-1}\iota_0(\xi)W$$
. Then $\Psi(\iota(\xi)) = F^{-1}\Psi(\xi)^*F$ for

$$F = \begin{pmatrix} W & 0 & 0 \\ 0 & \varphi(W) & 0 \\ 0 & 0 & \varphi^2(W) \end{pmatrix},$$

where $W = \zeta + \zeta^{-1}$.

Note $W^3 + W^2 - 2W - 1 = 0$, $\varphi(W) = W^2 - 2$ and $\varphi^2(W) = 1 - W - W^2$.

We form the algebraic group G, with

$$G(\mathbb{Q}) = \{\xi \in \mathcal{D} : \iota(\xi)\xi = 1 \& \operatorname{Nrd}(\xi) = 1\}.$$

Recall reason for choice of ι : when we embed m in \mathbb{C} , mapping ζ to $e^{2\pi i/7}$, the images of W, $\varphi(W)$ and $\varphi^2(W)$ are > 0, < 0 and < 0. So if

$$\Delta = \begin{pmatrix} 0 & 0 & |\varphi^2(W)|^{1/2} \\ 0 & |\varphi(W)|^{1/2} & 0 \\ |W|^{1/2} & 0 & 0 \end{pmatrix},$$

then $\Delta^* F_0 \Delta = -F$.

So $g^*Fg = F$ iff $\tilde{g} = \Delta g \Delta^{-1}$ satisfies $\tilde{g}^*F_0 \tilde{g} = F_0$.

So

$$\mathcal{D} \xrightarrow{\Psi} M_{3\times 3}(m) \hookrightarrow M_{3\times 3}(\mathbb{C}) \xrightarrow{\Delta \cdot \Delta^{-1}} M_{3\times 3}(\mathbb{C})$$

maps G(k) in $G(k_v) \cong SU(2,1)$ for the one archimedean valuation v on $k = \mathbb{Q}$.

If $\Pi \subset PU(2,1)$ is the fundamental group of an fpp, commensurable with $\Lambda = \{g \in G(k) : g_v \in P_v \text{ for all } v \in V_f\}$ for this G. Then

$$\mathbf{3}^{\alpha-1}d_{k,\ell} = [\bar{\mathbf{\Gamma}}:\mathbf{\Pi}] \prod_{v\in\mathcal{T}} e'(P_v).$$

and $\alpha = 2$ (since we are in a division algebra case) and $d_{k,\ell} = 21$.

 $k=\mathbb{Q},$ so $V_f=$ set of prime numbers. So $3^2\times 7=[\bar{\Gamma}:\Pi]\prod_{q\in\mathcal{T}}e'(P_q),$

and \mathcal{T} is a finite set of primes. If $q \in \mathcal{T}_0$, then $e'(P_q) = (q-1)^2(q+1)$. So q must be 2, and $e'(P_q) = 3$. So

$$3 \times 7 = [\overline{\Gamma} : \Pi] \prod_{q \in \mathcal{T}, q \neq 2} e'(P_q).$$

If $2 \neq q \in \mathcal{T}$ splits in ℓ then $q^2 + q + 1$ divides $e'(P_q)$ and so divides 21. This can't happen.

If $7 \neq q \in \mathcal{T}$ does not split in ℓ , then $q^2 - q + 1$ divides $e'(P_q)$ and so $q^2 - q + 1$ divides 21. So q = 3 or q = 5. Note 3, 5 can't both be in \mathcal{T} .

As $\mathcal{T}_0 = \{2\}$ and $\mathcal{T}_0 \subset \mathcal{T}$, 2 must be in \mathcal{T} . So

 $\mathcal{T} = \{2\}, \{2,3\} \text{ or } \{2,5\}.$

If q = 3 or 5, $q \in \mathcal{T}$ means that P_q is the stabilizer of a type 2 vertex of the building X_q .

The prime 7 ramifies in ℓ , and the building X_7 is a homogeneous tree, in which each vertex has 7 + 1 = 8 neighbours.

7 is not in \mathcal{T} , but P_7 can be the stabilizer of a type 1 vertex of X_7 , or the stabilizer of a type 2 vertex of X_7 . These two P_7 's are *not conjugate*. Set

 $\mathcal{T}_1 = \{q \in V_f : \bullet q \text{ doesn't split in } \ell, \text{ and } l$

• P_q is the stabilizer of a type 2 vertex of X_q .

The possibilities for \mathcal{T}_1 in this case are

 $\emptyset, \{7\}, \{3\}, \{3,7\}, \{5\}, and \{5,7\}.$

If $q \neq 2$ splits in ℓ , then $G(\mathbb{Q}_q) \cong SL(3, \mathbb{Q}_q)$.

We choose $P_q = SL(3, \mathbb{Z}_q)$ for all these q's. This is the stabilizer of the lattice class $[\mathbb{Z}_q^3]$ (a vertex of the building of $G(\mathbb{Q}_q)$).

If q does not split in ℓ , then $G(\mathbb{Q}_q) \cong \{g \in SL(3, \mathbb{Q}_q(s)) : g^*F'_qg = F'_q\}$ for an Hermitian F'_q .

We can arrange the isomorphism so that $F'_q \in GL(3, \mathfrak{o}_{\tilde{q}})$. Here \tilde{q} is the unique extension of q to ℓ , and $\mathfrak{o}_{\tilde{q}}$ is the valuation ring in $\ell_{\tilde{q}} = \mathbb{Q}_q(s)$.

This implies that the $\mathfrak{o}_{\tilde{q}}$ -lattice $\mathcal{L} = \mathfrak{o}_{\tilde{q}}^3$ in $\mathbb{Q}_p(s)^3$ is self-dual. That is:

$$\mathcal{L}' = \{ \boldsymbol{y} \in \mathbb{Q}_q(s)^3 : \boldsymbol{y}^* F_q' \boldsymbol{x} \in \mathfrak{o}_{\widetilde{q}} \text{ for all } \boldsymbol{x} \in \mathcal{L} \}$$

is equal to \mathcal{L} .

So we can choose as our parahoric

$$P_q = \{g \in SL(\mathfrak{Z}, \mathfrak{o}_{\widetilde{q}}) : g^* F'_q g = F'_q \}.$$

This is the stabilizer in $G(\mathbb{Q}_q)$ of the "type 1" vertex $\mathfrak{o}_{\tilde{q}}^3$ of the building of $G(\mathbb{Q}_q)$ (which is a tree).

We set $P_2 = G(\mathbb{Q}_2)$. This is compact. Then

 $\Lambda = \{ g \in G(\mathbb{Q}) : g_q \in P_q \text{ for all primes } q \}$

is a principal arithmetic subgroup with " \mathcal{T}_1 " equal to \emptyset .

An earlier diagram is in this case

Here Π is the fundamental group of a hypothetical fake projective plane.

We want to find enough elements of Λ and its normalizer Γ to get a presentation of $\overline{\Gamma}$.

Let

$$\xi = \sum_{j=1}^{6} \sum_{k=0}^{2} a_{jk} \zeta^{j-1} \sigma^k \in \mathcal{D}$$

be in $G(\mathbb{Q})$. What are the conditions on the coefficients a_{jk} in order that $\xi \in \Lambda$?

As we need the normalizer Γ of Λ , so also we need to look at $\xi \in \mathcal{D}$ satisfying $\iota(\xi)\xi = 1$, but not necessarily $Nrd(\xi) = 1$.

Then $\xi_q \in GL(3, \mathbb{Q}_q)$ if q > 2 splits. When is it in $GL(3, \mathbb{Z}_q)$?

Also $\xi_q \in GL(3, \mathbb{Q}_q(s))$ and $\xi_q^* F_q' \xi_q = F_q'$ if q doesn't split. When is it in $GL(3, \mathfrak{o}_{\tilde{q}})$?

It turns out that if $q \neq 2, 7$, we simply need that the a_{jk} 's have no q's in their denominators. That is, $a_{jk} \in \mathbb{Q} \cap \mathbb{Z}_q$.

As $G(\mathbb{Q}_q)$ is compact for q = 2, we get no 2-adic condition. So 2's are allowed in the denominators of the a_{jk} 's.

The situation when q = 7 is more complicated.

Let's look at the case q = 7. It turns out that $m = \mathbb{Q}(\zeta)$ does not embed in $\mathbb{Q}_7(s)$.

We can find an $\eta \in \mathbb{Q}_7(s)$ so that $\overline{\eta}\eta = 1$ and $N_{\mathbb{Q}_7(\zeta)/\mathbb{Q}_7(s)}(\eta) = D$ (= (3+s)/4).

As the one 7-adic valuation v on $\ell = \mathbb{Q}(s)$ ramifies in m, we can't use the norm theorem from class field theory.

We can take $\eta = c - (8c^2 - 3c - 4)s/7$, where $c = 6 + 0 \times 7 + 1 \times 7^2 + 4 \times 7^3 + \cdots$ is the solution in \mathbb{Q}_7 of $16c^3 - 12c - 3 = 0$. Then $\bar{\eta}\eta = 1$ and

$$N_{\mathbb{Q}_7(\zeta)/\mathbb{Q}_7(s)}(\eta) = \eta^3 = D.$$

The isomorphism $G(\mathbb{Q}_7) \cong \{g \in SL(3, \mathbb{Q}_7(s)) : g^*F'g = F'\}$ is seen using Ψ and the isomorphism $\mathcal{D} \otimes_{\ell} \mathbb{Q}_7(s) \cong M_{3 \times 3}(\mathbb{Q}_7(s))$:

$$\mathcal{D} \xrightarrow{\Psi} M_{3\times 3}(m) \hookrightarrow M_{3\times 3}(\mathbb{Q}_7(\zeta)) \xrightarrow{J \cdot J^{-1}} M_{3\times 3}(\mathbb{Q}_7(\zeta)),$$

where $J = \Theta C$, and

$$C = \begin{pmatrix} \eta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/\varphi(\eta) \end{pmatrix} \quad \text{and} \quad \Theta = \begin{pmatrix} \theta_0 & \varphi(\theta_0) & \varphi^2(\theta_0) \\ \theta_1 & \varphi(\theta_1) & \varphi^2(\theta_1) \\ \theta_2 & \varphi(\theta_2) & \varphi^2(\theta_2) \end{pmatrix},$$

where $\theta_0, \theta_1, \theta_2$ is a basis of m over ℓ . We calculate that if $\xi \in \mathcal{D}$ and $\iota(\xi)\xi = 1$, its image in $M_{3\times 3}(\mathbb{Q}_7(s))$ is unitary with respect to

$$F'_{7} = J^{*-1}FJ^{-1} = \Theta^{*-1}C^{*-1}FC^{-1}\Theta^{-1}.$$

Because $\bar{\eta}\eta = 1$, we find that $C^* = C^{-1}$. As *C* is diagonal, it commutes with *F*. So $C^{*-1}FC^{-1} = F$.

Adroitly choosing $\theta_0 = s$, $\theta_1 = s(\zeta - 1)$ and $\theta_2 = (\zeta - 1)^2$, we find that $7J^{*-1}FJ^{-1}$ equals

$$F' = \begin{pmatrix} 3 & 3 & s \\ 3 & 2 & (1+s)/2 \\ -s & (1-s)/2 & 0 \end{pmatrix},$$

which has entries in \mathfrak{o}_{ℓ} and determinant 1.

Because F' is in $GL(3, \mathfrak{o}_{\overline{7}})$, the lattice $\mathfrak{o}_{\overline{7}}^3$ in $\mathbb{Q}_7(s)^3$ is self-dual.

Now suppose that $\xi \in \mathcal{D}$ and $\iota(\xi)\xi = 1$. Look at its image ξ_7 , which is a matrix with entries in $\mathbb{Q}_7(s)$ unitary with respect to F'.

As $\xi_7 = J\Psi(\xi)J^{-1}$, where $J = \Theta C$, is a matrix with entries in $\mathbb{Q}_7(s)$, we can write

$$\xi_{7} = \begin{pmatrix} x_{11} + y_{11}s & x_{12} + y_{12}s & x_{13} + y_{13}s \\ x_{21} + y_{21}s & x_{22} + y_{22}s & x_{23} + y_{23}s \\ x_{31} + y_{31}s & x_{32} + y_{32}s & x_{33} + y_{33}s \end{pmatrix},$$

where $x_{ij}, y_{ij} \in \mathbb{Q}_7$ for each i, j. Each of these is a linear combination of the coefficients a_{ij} 's of ξ . So we can write

$$x = Ma_{s}$$

where a and x are column vectors of length 18, made from the coefficients a_{ij} and from the numbers x_{ij} and y_{ij} , and where M is an 18×18 matrix with entries in \mathbb{Q}_7 . In this case, the entries of M are explicit polynomials in the $c \in \mathbb{Q}_7$ used in solving $N_{\mathbb{Q}_7(\zeta)/\mathbb{Q}_7(s)}(\eta) = D$.

 $\xi_7(\mathfrak{o}_7^3) = \mathfrak{o}_7^3 \iff \xi_7(\mathfrak{o}_7^3) \subset \mathfrak{o}_7^3 \iff \xi_7$ has entries in \mathfrak{o}_7 . In this case, $\mathfrak{o}_7 = \{x + ys : x, y \in \mathbb{Z}_7\} \subset \mathbb{Q}_7(s)$, and so $\xi_7(\mathfrak{o}_7^3) = \mathfrak{o}_7^3 \iff x_{ij}, y_{ij} \in \mathbb{Z}_7$ for all $i, j \iff x = Ma$ has entries in \mathbb{Z}_7 . If $L \in GL(18, \mathbb{Z}_7)$, then

Ma has entries in $\mathbb{Z}_7 \iff LMa$ has entries in \mathbb{Z}_7 . We can choose $L \in GL(18, \mathbb{Z}_7)$ so that $LM = \mathcal{E}$ is in "reduced row echelon form". Then

$$\xi_7(\mathfrak{o}_7^3) = \mathfrak{o}_7^3 \quad \Leftrightarrow \quad \mathcal{E}a \text{ has entries in } \mathbb{Z}_7.$$

We only need a 7-adic approximation M_7 (mod 49 is enough) to M to get \mathcal{E} . The following Magma commands give us \mathcal{E} .

*M*₇:=Matrix(IntegerRing(49),18,18,[...]);

```
\mathcal{E}:=EchelonForm(M_7);
```

We used the order

 $a_{10}, \ldots, a_{60}, a_{11}, \ldots, a_{61}, a_{12}, \ldots, a_{62}$

for the coefficients of ξ .

We get:

	(1)	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	3	6)
	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	6
	0	0	1	0	0	0	0	0	0	0	0	5	0	0	0	0	4	0
	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	0	2	2
	0	0	0	0	1	0	0	0	0	0	0	6	0	0	0	0	3	5
	0	0	0	0	0	1	0	0	0	0	0	3	0	0	0	0	0	2
	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2	3
	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	6	2
-	0	0	0	0	0	0	0	0	1	0	0	3	0	0	0	0	5	4
•	0	0	0	0	0	0	0	0	0	1	0	4	0	0	0	0	6	2
	0	0	0	0	0	0	0	0	0	0	1	5	0	0	0	0	2	3
	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0
	0/	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7)

 $\mathcal{E} =$

•

To summarize:

For each prime $q \neq 2$ which splits in ℓ , let $P_q = SL(3, \mathbb{Z}_q)$.

For each prime q which does not split in ℓ , let $P_q = \{g \in SL(3, \mathfrak{o}_{\tilde{q}}) : g^*F'_qg = F'_q\}.$

Let
$$\Lambda = \{\xi \in G(\mathbb{Q}) : \xi_q \in P_q \text{ for all } q \neq 2\}.$$

The elements ξ of Λ are the

$$\xi = \sum_{j=1}^{6} \sum_{k=0}^{2} a_{jk} \zeta^{j-1} \sigma^k \in \mathcal{D}$$

such that $\iota(\xi)\xi = 1$, $\operatorname{Nrd}(\xi) = 1$, $a_{j,k} \in \mathbb{Z}[1/2, 1/7]$ for all j, k, and such that $\mathcal{E}a$ has entries in \mathbb{Z}_7 .

The image $\overline{\Gamma}$ of the normalizer Γ of Λ is isomorphic to the group of elements ξZ , where $Z = \{t1 : t \in \ell \& \overline{t}t = 1\}$, where ξ has the form

$$\xi = \sum_{j=1}^{6} \sum_{k=0}^{2} a_{jk} \zeta^{j-1} \sigma^{k} \in \mathcal{D}$$

such that $\iota(\xi)\xi = 1$, $a_{j,k} \in \mathbb{Z}[1/2, 1/7]$ for all j, k, and such that $\mathcal{E}a$ has entries in \mathbb{Z}_7 .

We find elements of Λ and $\overline{\Gamma}$ using the Cayley transform and a computer search.

If $\eta \in \mathcal{D}$ and $\iota(\eta) = -\eta$, then $\eta \neq 1$, so that $1 - \eta$ is invertible. Let $\xi = (1 + \eta)(1 - \eta)^{-1} \in \mathcal{D}$. Then $\iota(\xi)\xi = 1$. Conversely, if $\iota(\xi)\xi = 1$ and $\xi \neq -1$, then $\eta = (\xi - 1)(\xi + 1)^{-1}$ satisfies $\iota(\eta) = -\eta$.

For

$$\eta = \sum_{j=1}^{6} \sum_{k=0}^{2} s_{jk} \zeta^{j-1} \sigma^k \in \mathcal{D},$$

the condition $\iota(\eta) = -\eta$ imposes 9 linear conditions on the 18 rational numbers s_{ik} . This allows us to eliminate 9 of these variables.

In order to work with integer coefficients, we look at $(d1 + \eta)(d1 - \eta)^{-1}$, where $d \ge 1$ is an integer.

Looking for elements ξ of Λ , we need $\operatorname{Nrd}(\xi) = 1$, and so $\operatorname{Nrd}(d1 + \eta) = \operatorname{Nrd}(d1 - \eta)$. This imposes a condition $\operatorname{cond}_a = 0$ on the s_{jk} 's, where cond_a is a cubic polynomial in d and the 9 non-eliminated s_{jk} 's.

The elements ξ of Γ satisfy $\operatorname{Nrd}(\xi) = \pm D^n$ for some integer n, and it is enough to look for elements satisfying $\operatorname{Nrd}(\xi) = D$. So we want $\operatorname{Nrd}(d1 + \eta) = D\operatorname{Nrd}(d1 - \eta)$. This imposes a condition $\operatorname{cond}_b = 0$ on the s_{jk} 's, where cond_b is another cubic polynomial in d and the 9 noneliminated s_{jk} 's.

Whenever we find s_{jk} 's satisfying cond_a or cond_b, we calculate the coefficients a_{jk} of $\xi = (d1 + \eta)(d1 - \eta)^{-1}$, looking for a_{jk} 's satisfying the above arithmetic conditions. The cubic equations $\operatorname{cond}_a = 0$ or $\operatorname{cond}_b = 0$ are time consuming to check. Fortunately, there are strong necessary conditions on the s_{jk} 's which can be checked after a quadratic polynomial (the bitrace of $\Psi(\eta)$) in the s_{jk} 's has been calculated. So cond_a and cond_b are calculated only for s_{jk} 's in a tiny proportion of the search space.

This is especially important in cases when $k \neq \mathbb{Q}$, and we have 36 rational coefficients to start with, and still have 18 variables after the condition $\iota(\eta) = -\eta$ is imposed.

Running, overnight say, two programs, one imposing $\text{cond}_a = 0$ and the other $\text{cond}_b = 0$, we get a few hundred elements of $\overline{\Gamma}$. One may verify that each element found is a word in z and b, where

$$z = \zeta + 0\sigma + 0\sigma^2,$$
$$b = \alpha + \beta\sigma + \gamma\sigma^2$$

for

$$\alpha = \frac{1}{7} \left(0 + 4\zeta + 5\zeta^2 + 3\zeta^3 - 2\zeta^4 - 3\zeta^5 \right)$$

$$\beta = \frac{1}{7} \left(7 + 5\zeta - 6\zeta^2 + 2\zeta^3 + 8\zeta^4 - 2\zeta^5 \right)$$

$$\gamma = \frac{1}{7} \left(7 + \zeta + 3\zeta^2 + 6\zeta^3 + 3\zeta^4 - 6\zeta^5 \right).$$

(b equals $(d1 + \eta)(d1 - \eta)^{-1}$ with d = 7 and $|s_{ij}| \le 12$ for all i, j.)

So it seems that $\overline{\Gamma}$ is generated by z and b (more exactly, by $z\mathcal{Z}$ and $b\mathcal{Z}$). We prove this (and more) as follows. To see that $\overline{\Gamma}$ is generated by z and b as follows.

1) Starting from the outcome of our search programs, and a number d_1 (to be chosen later) we form a set S of elements g of $\overline{\Gamma}$ satisfying $d(g.0,0) \leq d_1$ which we arrange in order of increasing d(g.0,0).

2) We enlarge S if necessary, so that

- whenever $g \in S$, also $g^{-1} \in S$, and
- whenever $g, g' \in S$ and $d((gg').0, 0) \leq d_1$ also gg' is in S.

3) We form

$$\mathcal{F}_S = \{ z \in B(\mathbb{C}^2) : d(z, 0) \le d(z, g.0) \text{ for all } g \in S \}.$$

Note that $\mathcal{F}_S \supset \mathcal{F}_{\overline{\Gamma}}$, where

$$\mathcal{F}_{\overline{\Gamma}} = \{ z \in B(\mathbb{C}^2) : d(z, 0) \le d(z, g. 0) \text{ for all } g \in \overline{\Gamma} \}.$$

4) We numerically calculated the normalized hyperbolic volume vol(\mathcal{F}_S). We compare this with the known value of vol($\mathcal{F}_{\overline{\Gamma}}$) (= 1/864 in this case).

Lemma. If $vol(\mathcal{F}_S) < 2vol(\mathcal{F}_{\overline{\Gamma}})$, then $\overline{\Gamma}$ is generated by S.

Now suppose that d(z,0) is bounded on \mathcal{F}_S , and we can calculate $r_0(S) = \sup\{d(z,0) : z \in \mathcal{F}_S\}.$

Theorem. Suppose that S satisfies 1) and 2) above, and that S generates $\overline{\Gamma}$. If $d_1 > 2r_0(S)$, then S is the set of all $g \in \overline{\Gamma}$ such that $d(g.0,0) \leq d_1$.

Corollary 1. Under the hypotheses of the theorem, the set \mathcal{F}_S is equal to the Dirichlet fundamental domain $\mathcal{F}_{\overline{\Gamma}}$ of $\overline{\Gamma}$.

Corollary 2. Under the hypotheses of the theorem, the set S, together with all the relations $g_1g_2g_3 = 1$, where each g_i is in S, forms a presentation of the group $\overline{\Gamma}$.

In this case, the elements of $\overline{\Gamma}$ can be divided into double cosets KgK, where $K = \langle z \rangle$. We form

$$S = \bigcup_{i=0}^{8} Ka_{i}K \cup \bigcup_{i=1}^{6} Kb_{j}K \cup \bigcup_{i=1}^{6} Kb_{j}^{-1}K,$$

where $Nrd(a_i) = 1$ and $Nrd(b_j) = D$ for each i, j, and $a_0 = id$. So S has $7 + 8 \times 49 + 6 \times 49 + 6 \times 49 = 987$ elements.

Here a_1, \ldots, a_8 are

$$\overline{D}b^3$$
, Db^{-3} , bz^2b^{-1} , $bz^{-2}b^{-1}$, and
 $\overline{D}bz^{-1}b^2$, $Db^{-2}zb^{-1}$, $bzb^{-2}zb$, $b^2z^5b^{-1}zb^{-1}$,

and b_1, \ldots, b_6 are

$$Db^{-2}$$
, b , b^2zb^{-1} , $\overline{D}b^3z^5b$, $\overline{D}bz^5b^2z^5b$, and $Db^{-3}zb$.

We apply the lemma and the theorem to confirm that $\overline{\Gamma}$ is generated by z and b, and get the presentation

Ē

$$= \langle z, b | z^{7}, (b^{-2}z^{1})^{3}, (b^{2}z^{-2}b^{2}z^{2})^{3}, (b^{2}z^{-2}b^{2}z^{4})^{3}, b^{3}z^{-2}b^{-1}z^{2}b^{-2}z^{1}, b^{3}z^{1}b^{3}z^{3}bz^{2}b^{-1}z^{-1}, b^{3}z^{2}b^{2}z^{-2}b^{-1}z^{-1}b^{-3}z^{1}b^{-1}z^{-1} \rangle.$$

Magma shows via the command

LowIndexSubgroups(G,<21,21>); that up to conjugacy there are 3 subgroups of index 21. $\Pi_a = \langle b^3, \ zbz^{-1}b^{-1}z, \ (bz^{-1})^3, \ zb^{-1}z^{-2}b \rangle,$ $\Pi_b = \langle b^3, \ z^2b^{-1}zb, \ zbz^2b^{-1} \rangle,$ $\Pi_c = \langle b, \ z^{-1}b^{-2}z^{-1}, \ zbzbz^{-1} \rangle.$

The abelianization $\Pi/[\Pi,\Pi]$ is finite in each case, equalling

$$C_2^4$$
, C_{14} , and $C_2 \times C_{42}$, respectively

Check that each Π is torsion free is easy using;

 $g \in \overline{\Gamma}$ torsion \Rightarrow g is conjugate to an element of S.

What happens if we replace $P_7 = \{g \in SL(3, \mathfrak{o}_{\tilde{7}}) : g^*F'g = F'\}$ (which is the stabilizer in $G(\mathbb{Q}_7)$ of the type 1 vertex $\mathcal{L} = \mathfrak{o}_{\tilde{7}}^3$ of the building X_7), by the stabilizer of a type 2 vertex?

Let

$$c = \begin{pmatrix} 1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\mathcal{M} = c(\mathfrak{o}_{\overline{7}}^3)$ is again a lattice in $\mathbb{Q}_7(s)^3$. Now det(c) = s, and

 $c^*F'c$, $s(c^*F'c)^{-1}$, c, and sc^{-1} have entries in $\mathbb{Z}[s] \subset \mathbb{Z}_7[s]$.

This means that

$$s\mathcal{M}' \subsetneqq \mathcal{M} \subsetneqq \mathcal{M}'$$
 and $s\mathcal{L} \subsetneqq \mathcal{M} \subsetneqq \mathcal{L}$.

So the pair $(\mathcal{M}, \mathcal{M}')$ is a type 2 vertex of the building X_7 , and is adjacent to the type 1 vertex \mathcal{L} .

If $g^*F'g = F'$, then $g(\mathcal{M}) = \mathcal{M}$ iff $g(\mathcal{M}') = \mathcal{M}'$. Form $P'_7 = \{g \in G(\mathbb{Q}_7) : g(\mathcal{M}) = \mathcal{M}\}.$

Form the principal arithmetic subgroup Λ' which is the same as before, except that P_7 is replaced by P'_7 . Let

$$\xi = \sum_{j=1}^{6} \sum_{k=0}^{2} a_{jk} \zeta^{j-1} \sigma^k \in \mathcal{D}$$

satisfy $\iota(\xi)\xi = 1$. Let ξ_7 be its image in $\{g \in GL(3, \mathbb{Q}_7(s)) : g^*F'g = F'\}$. When does $\xi_7(\mathcal{M}) = \mathcal{M}$?

We find that this holds iff $\mathcal{E}'a$ has entries in \mathbb{Z}_7 , where \mathcal{E}' is an 18×18 matrix, a little different from \mathcal{E} .

$$\mathcal{E}' =$$

and

The same method shows that $\overline{\Gamma}$ is again generated by z (as before) and an element b (different from previous b), and has presentation

$$\begin{split} \bar{\Gamma} &= \langle \ z, \ b \ | \\ b^3 &= 1, \\ z^7 &= 1, \\ (bz^{-2}bz^{-1})^3 &= 1, \\ b^{-1}zbz^2bz^2b^{-1}z^{-1}bz^2b^{-1}z &= 1, \\ bz^2b^{-1}z^{-1}bz^{-1}bz^{2}b^{-1}z^{-1}bz^{-3} &= 1, \\ bz^2bzbz^{-2}b^{-1}zbz^{-1}bz^{-2}b^{-1}z^2 &= 1 \rangle. \end{split}$$

The relations here hold modulo scalars. For example, $b^3 = D1$.

One can show that Λ is generated by z and bzb^{-1} .

Magma gives 4 index 21 subgroups of $\overline{\Gamma}$:

$$\begin{split} \Pi_{a} &= \langle bzb^{-1}z^{-2}, \ bz^{-1}b^{-1}z^{2}, \ zbz^{3}b^{-1} \rangle, \\ \Pi_{b} &= \langle zbz^{-1}b^{-1}, \ z^{3}bzb^{-1}, \ z^{2}b^{-1}z^{-1}b, \ zb^{-1}zbz \rangle, \\ \Pi_{c} &= \langle zbz^{-1}b^{-1}, \ z^{2}bz^{2}b^{-1}, \ zb^{-1}zbz \rangle, \\ \Pi_{d} &= \langle zb^{-1}, \ z^{-3}b, \ b^{-1}zbzb \rangle. \end{split}$$

all are torsion-free with finite abelianization.

So there are 4 fake projective planes in the class $(a = 7, p = 2, \{7\})$.

 $\Pi = \Pi_d$ is the fundamental group of Mumford's original example, since

- $N_{\overline{\Gamma}}(\Pi) = \Pi$, which means that $Aut(B(\mathbb{C}^2)/\Pi)$ is trivial, and
- there is a surjective homomorphism $\overline{\Gamma} \to PSL(2, \mathbb{F}_7)$.