The building X, on which G(ky) and G(ky) act, when v splits in .
K := nonarchimedean local field, with valuation w.

o ‘= {z € K :v(x) > 0}.

{z € K :v(x) > 0} equals mo.

q = log/mogl.

When K = ky, write o, for oy, , quv for q.



Any basis {v1,vo,v3} of K gives a lattice in K3:

L ={ayvy + apvpy + agvz : ay,az,a3 € ok}

E.g. {v1,v2,v3} = {e1,e0,e3} gives Lg 1= o3

Laty = set of lattices in K3.

g€ GL(3,K) & L€ Latgy = g(L) € Latg.

GL(3, K) acts transitively on Latg.

GL(3,0x) :={9g € GL(3,K) : g & g~ have entries in ogx}.
GL(3,0k) equals {g € GL(3,K) : g(Lg) = Lp}.

GL(3,0x) = {g € M3x3(0og) : v(det(g)) = 0}.

(1)



L1,L- € Latg equivalent if L, =tLq, some t e K*.

[£] := equivalence class of L.

X .= set of equivalence classes.

For g e GL(3,K), g.[L] .= [g(L)].

GL(3, K) acts transitively on Xy .

g=1tl = g.[C] = [L£] for all L € Latg.

PGL(3, K) acts transitively on X.

For i € {0,1,2}, [g(Lp)] € X has type @ if v(det(g)) =i (mod 3).

SL(3, K) acts transitively on {[£] € X : type([£]) = i}.



[£1] is adjacent to [Lo] if there are representatives £; of [£,;] for j = 1,2
so that

mwLq ; Lo ; Lq.
This implies
Lo G Ly G Lo,

SO adjacency is a symmetric relation. Adjacent lattice classes have dif-
ferent types.

Fact: Given [£] with type([£]) =4, and j # 1,

t{[M] € X, : [M] adjacent to [£] & type([M]) =4} = ¢*+q+ 1.

Proof: L/wL is a vector space of dimension 3 over the residual field
op/mog. Forv =12, 7L C M C L and type([M]) =i+ v (mod 3) iff
M/mL is a v-dimensional subspace.



[£1], [£2], [£3] form a chamber if there are representatives £; of [L;] for
7 =1,2,3 so that

71 S L3S Lo G L.

Each chamber contains one lattice class of each type.
Any pair of adjacent lattice classes lies in ¢ + 1 distinct chambers.
Any lattice class belongs to (¢2 + ¢+ 1)(¢+ 1) distinct chambers.

Xy Is a simplicial complex.



For g€ SL(3,K) and L € Laty, g.[£] = [£] iff g(L) = L.

For £ € Laty, {g € SL(3,K) : g(£L) = L} is a maximal compact
subgroup of SL(3, K).

Any maximal compact subgroup of SL(3, K) has this form.

There are three conjugacy classes of maximal compact
subgroups of SL(3, K), corresponding to the three types.

Any two maximal compact subgroups of SL(3, K) are
conjugate by an element of GL(3, K).



For i =1,2, SL(3,0x) acts transitively on

{[£] € X : [£] adjacent to [Lg] & type([L]) = i}.

For any edge containing [Lp], the stabilizer in SL(3, K) of
that edge has index ¢2 + ¢+ 1 in SL(3,05).

SL(3,0)) acts transitively on the set of chambers containing [Lg].

For any chamber containing [£Lp], the stabilizer in SL(3, K) of
that chamber has index (¢2 4+ g+ 1)(¢+ 1) in SL(3,0%).



We have seen that when v € V; \ To splits in ¢, then G(ky) = SL(3,ky).
The parahoric subgroups of G(ky,) are its subgroups corresponding to
the stabilizers of vertices, edges and chambers of X, := Xy, .

In particular,

Py ={g € SL(3,kyv) : g(03) = 03} = SL(3, 00).

is @ maximal parahoric subgroup of G(ky).
Given £ € D satisfying «(£)§ = 1, we need to understand when the image
&y of £ in GL(3, ky) under the map

D — D ®y kv = M3zx3(kv)

fixes the lattice class [03]. In particular, if ¢ € G(k) when does &, fix 037



bi,...,bg := basis of m over k.
cEeD = fzzawbz()']
¥,]
Form matrix B = (¢;(b;)), where Gal(m/k) = {¢1,...,ve}.

Fact: det(B)?2 ¢ ¢.

Lemma. bq,...,bg can be chosen so that v(det(B)2) = 0 for all v € Vi\To
which split in /4.

Example. In (a = 7,p = 2) case, m = Q[¢], where { = (7. Choose
bi,...,bg = 1,¢,..., 2. Then det(B) = 72%s for s = 1 4+ 2¢ 4+ 2¢2 4+ 2¢4,
so det(B)2 = —7°. So v(det(B)?) = 0 unless v = u7.



Proposition. If «(§)§ =1, and v € Vf\% splits in ¢, then
&,(013)) = 013) & ai; € kNoy for all 4, 5.
When m — ky, the calculations only involve the matrix B.

When m % ky, we also need the following:

Lemma. If v € V§\ Tg splits in £, but m ¥+ ky, there is an ny € ky(Z) such
that Ny, (z)/k, () = D. Moreover, 9(ny) = 0.

Reasons: Embed ¢ in ky, then extend to m = 4(Z) — ky(Z). This gives
valuation v on k,(Z) extending v. The image of D € ¢ in k, satisfies
v(D) = 0. Case by case we see ky(Z) is an unramified extension of k.
Now apply norm theorem from local class field theory.
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When v € Vy \ 7o splits in £ but m < ky, the isomorphism D ®, ky, =
M3 3(ky) involves conjugation by J, = ©C,. Here C, is diagonal matrix

with diagonal entries n,, 1 and 1/¢(ny), and © = (gpi(ej)) for some basis
0o, 01,60> of m over L.

Lemma. 6g,61,60> can be chosen in oy, and so that v(det(®)) = 0 for all
v € V;\ To which split in 2.

Example. In (a = 7,p = 2) case, m = Q[(], where { = (7. Choose
0g,01,0> = 1,(,¢2. Then det(®) = —s. So 5(©) = 0 unless v = u7.
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The building X, when v does not split in Z.

K := non-archimedean local field, with valuation v, as before.

L := K(s), a separable quadratic extension of K.

The automorphism a + bs — a — bs of L is denoted = — x.

v := unique extension to L of w.

or, ' ={x € L:v(x) >0}, and {z € L :v(x) > 0} equals wyo7.

When K = ky, where v € V; does not split in ¢, L = kv(s) is the com-

pletion ¢5 of ¢ with respect to the unique extension v of v to ¢, and we
write oz for oy,.
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f: L3 x L3 — L: a nondegenerate sesquilinear form on L3.

Then f <> a nonsingular Hermitian matrix F':

f(z,y) = y*Faz,

where x = x1e1 + xo2eo + xr3e3 and y = yieq1 + yoeo + y3es.

T he unitary group of F'is
Up=1{g9:L>—= L3 : f(gz,gy) = f(z,y) for all z,y € L3}.
Up = {g € M3x3(L) : g"Fg = F}.

SUpR = {g € M3x3(L) : g*Fg = F and det(g) = 1}.
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For £ € Laty,

£/={x€L3:f(a:,y)€oL for all y € L} (2)

is again a lattice, called the dual lattice of £ with respect to f.

Then
(LY =L and L1 CLy < L5CL].

For Lo =03 and g € GL(3, L),

(9(£0)) = (¢"F) " (Lo). (3)
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Let

Laty = {£ € Laty : £ = L},
and

- AN / /
Laty = {(M, M") : M € Laty and 7 M G M & M’}
(M, M") € Lat, iff the lattice classes [M] and [M’] are adjacent in the
building X; of SL(3,L).
L € Laty and (M, M) € Lat, are called adjacent if
L ; M ; L.
This means that
TLCTM S MEL,

so that [£], [M] and [M’] form a chamber in X;.
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Using (3), we see that
Lo € Llat; & FeGL(3,0p).

If ge Up and L € Laty, then

o (g(L)) =g(L),

e g fixes L iff g fixes L/,

e if L € Laty, then ¢g(£) € Laty, and

o if (M, M) € Laty, then (g(M), g(M')) € Lat,.

So Ugr acts on each of the sets Lat; and Lats.
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Lemma. Suppose that F € GL(3,07) so that Lo = o% is in Laty. Let
g € GL(3,K), and M = g(£Lg). Then (M, M) is in Lat,, and is adjacent
to Lo if and only if

(a) If g has entries in o,

(b) If g~ ! has entries in o7,

(c) If g*Fg has entries in oy,

(d) If 7(¢g*Fg)~1 has entries in oy,

(e) If 5(det(q)) = o(x).
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Lemma. Let g € Ur. Then

(a) If £ € Latq, then g(£) = L if and only if g(£) C L.

(b) If (M, M’) € Laty, then g(M) = M if and only if g(M) C M.

(c) If (M, M) € Laty, then g(M') = M’ if and only if g(M") Cc M.
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There is a building B associated with SUg. This is a very special case of
results of Bruhat and Tits (see §10.1 in Bruhat-Tits “Groupes Réductifs
sur un corps local I. Données radicielles valuées”, Publ. Math. I.H.E.S.
41 (1972), 5—251, and §1.15 in Tits, “Reductive groups over local
fields”, Proc. Amer. Math. Soc. Symp. Pure Math. 33 (1979),
29—69. In this case, the building B is a tree.

Theorem. With the above notation, the set Laty U Laty, together with
the above adjacency relation, forms a tree 7T'. This tree is homogeneous
of degree g+ 1 when L is a ramified extension of K, and is bihomogeneous
when L is an unramified extension of K, each v € Laty having q3 + 1
neighbors, and each v € Lat, having g+ 1 neighbors. It is isomorphic to
the Bruhat Tits building B associated with SUp.

Elements of Lat; are called vertices of type 2 of this tree.
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Assume now K =k, and L = ky(s), where v € Vr does not split in £.

We have seen that

G(kv) 2 {g € SL(3,kv(s)) : g*Flg= F}}

for some invertible Hermitian F),.

Lemma. In each case, we can arrange that Fqﬁ € GL(3,0;), so that o% 1S
a type 1 vertex of X,.

Recall: W(u(¢)) = F~ 1w (¢)*F for either

T 0 0
OR F=1|0 o(T) O

0 0 (D)
for D defined using m so that Gal(m/Q) is non-abelian and o satisfying
03 = p OR for D defined using m so that Gal(m/Q) is abelian and ¢
satisfying o3 = D, respectively.

p
F=10
O

= O O
o O
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Recall: v := unique extension of v to Y.
05 ;= {x € Uz = ky(s) : v(x) > 0}.
F' has entries in m.

When v € V; does not split in £, and m — kv(s) = ¢35, F! is just the image
of F' under the embedding M3zy3(m) — M3zy3(ky(s)).

Example: (a = 7,p = 2). F has diagonal entries T, o(T), ¢2(T), where
T=(+ ¢t €om Cop and det(F) = N, ,(T) = 1.
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When v € V; does not split in £, and m ¥ ky(s) = €5, F), is coJi 1 FuJy 1,
where F, is the image of F in M3y3(kv(s,Z)), and J, = ©C,, as before.

Lemma. We can choose 7y € ku(s,Z) so that N (5,2) /v (3)(7771) = D so
that ny = ny when D = D, and so that nvnw = 1 when DD = 1.

When the extension v of v to v ramifies in m, we need to make case by
case calculations.

Example: (a = 7,p = 2). The 7-adic valuation on k£ = Q does not split
in £ = Q(s) (where s2 = —7) — it ramifies there. Its unique extension
to £ («» sop) ramifies in m = Q(¢), where ¢ = (7, because Nm/g(g‘—l) = s.
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We cannot use the norm theorem to show that D = (3+s)/4 is a norm
Nio(s.2) /ke(s) (M) When v is the 7-adic valuation.

However:

Hensel's Lemma shows that 16¢3 — 12¢—3 = 0 holds for a unique ¢ € Q7.
Then n = ¢+ (8¢2 — 3¢ — 4)s/7 is in Q7(s) C Q7(s,Z) = ky(s,Z) and
satisfies 777 = 1 and Ny_czy . (n) = 1> = D.

In cases like this when DD = 1 and nvmy = 1, the matrix Cy has inverse
C; and so

I g t=e o r,c et equals @ lE,071

The choice of the basis 6g,01,0> of m over £ used to define © can be
made independent of v. If ¢, is constant, the matrix F] = cvjjj_lFUJ;l
has entries in ¢ and is independent of v.
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Example: (a = 7,p = 2). If we choose 0p,01,0> = 1,(,(? as before, the
o* 1p,e~-1 is not in GL(3,05) for the 7-adic valuation v. We choose
instead g = s, 01 = s(¢ — 1) and 6> = (¢ — 1)2, and find that

3 3 S
7R =70l 1= 3 2 (1+3s)/2],
—s (1—-3s)/2 0

which has entries in oy C 05 and determinant 1.

So for the case (a = 7,p = 2), whenever v € V; does not split in ¢, and
m does not embed in ky(s),

G(kv) 2 {g € SL(3,kv(s)) : g"F'g = F'}

for the above F' € SL(3,0), and the lattice o2 C ky(s)3 is a type 1 vertex
of the building Xy.
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Let £ € D satisfy (§)§ = 1. As before, let bq,...,bg be a basis of m
over k, and write

£ = Zaijbiaj.
1,J
Suppose that v € Vf does not split in £, and let & € UFé be the image
of &, under the inclusion

D < D ®ykv(s) = M3x3(ku(s)).
Proposition. If v(det(B)) = 0 and if v(det(®)) = 0, then

{U(og’) = og’ iff  a;; € kNoy for all 4, ;.
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et us define the principal arithmetic subgroup A so that
e P, = SL(3,0,) Whenever v € T \ Tg splits in ¢,
e Py, ={gec SL(3,053) : g*F/g = F!} whenever v does not split in ¢,
o Py, = G(kyy) if To = {vo}.
Let £ € G(k) CD. So £ € A\ iff
o £,(03) = 03 whenever v € T\ Tg splits in ¢,

e £(02) = 02 whenever v does not split in ¢,

26



Example. (a = 7,p = 2) case. We choose by,...,bg = 1,(,...,¢° and
0g,01,0o = s,s(¢C —1),(¢ — 1)2 as before. Then ¥(det(B)) = 0 and
v(det(©)) = 0 for all v € V¢ \ Tg except v = uz. Writing

£=ajbio?,
0,
§v € Py for all v #up,u7 < a;; € QN Zp for all primes p #= 2,7
& a;; € Z[1/2,1/7] for each 4, j.

When v = uo, the condition &, € P, always holds.

In the case v = u7, when is & € P,?
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Taking v = u7, & equals JyW(&)J, 1, where J, = ©C,. This is a matrix
with entries in ky(s) = Q7(s), and we can write

r11 + Y118 T12 + Y125 *13 + Y13S
v = [ 221 + Y215 Too + Y225 23 + Y23S
r31 + Y318 32 + Y328 *33 + Y33S

where x;;,y;; € Q7 for each i,j5. Each of these is a linear combination of
the coefficients a;;'s of {&. So we can write

x = Ma,

where a and x are column vectors of length 18, made from the coeffi-
cients a;; and from the numbers z;; and y;;, and where M is an 18 x 18
matrix with entries in Q7. In this case, the entries of M are explicit
polynomials in the ¢ € Q7 used in solving N@7(S,Z)/@7(s)(77) = D.
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Ev(02) =03 o  £(2) Coi & & has entries in oz
In this case, o5 ={x 4+ ys:xz,y € Z7} C Q7(s), and so
&J(og’) = og’ S Ty, Y € Ly for all<,7 << @ = Ma has entries in Z7.
If L € GL(18,7Z7), then

Ma has entries in Z7 <&  LMa has entries in Z7.

We can choose L € GL(18,Z7) so that LM = &£ is in ‘“reduced row
echelon form” . Then

&)(o%) — o% &  Ea has entries in Zy.

29



We only need a 7-adic approximation M; (mod 49 is enough) to M to
get £. The following Magma commands give us £.

Mz:=Matrix(IntegerRing(49),18,18,[...]1);
£:=EchelonForm(M7);

We used the order

ajg;---,460,211,---,a61,212;---,062

for the coefficients of &.
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We get:

(1000000D000O040000 3 6)

6025232423031130”
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O OO 10000000000 0o0O0oO0o
OO 1000000000000 O0oO0o
eoRoNeohohohohohohoNoNoNoRoNGNGNGNG)
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To summarize:

For each v € Vf \ 7o which splits in ¢, let =, be the vertex [og’] of Xy.

3

v

For each v & Vf which does not split in ¢, let xy be the type 1 vertex o
of Xy.

Let A ={£ € G(k) : &.wy = zp fOr all v e Ve \ To}.

This is a principal arithmetic subgroup in which each P, is maximal, and
no x,'s are of type 2. So the set we call 77 is 0 here.

The elements & of A are the

6 2 _ _
£ = Z Z ai7j<-z—1o_j cD
1=15=0

such that «(§)§ = 1, Nrd(§) = 1, a;; € Z[1/2,1/7] for all 4,5, and such
that £a has entries in Z7.
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We want to find elements not only of A but of its normalizer I" in SU(2,1).
Recall equation (x):

30 Ly = [F 1) [ ¢(P)
veT
In the case (a =7,p = 2), with 73 =0, 7 equals 7o = {2}, and the term
e/(Py) for the 2-adic v is (2 —1)?(2+ 1) = 3. Also, dy =21 and a = 2.
We get [ : N] = 21.

We can identify T with
{¢=3a;;¢""To) €D (e =1,
a; ; € Z[1/2,1/7] for all 4,37,
Ea has entries in Z7}/Z,
where Z ={tl :tef & tt = 1}.
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