
Constructing the algebras D and the involutions ι.

To a fake projective plane there is associated a pair (k, ℓ) of fields coming

from a short list. There is also an algebra D, an involution ι and a group

G, with

G(k) = {ξ ∈ D : ι(ξ)ξ = 1 & Nrd(ξ) = 1}.

D, ι and G must satisfy the properties:
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• G(kv)
∼= SL(3, kv) for all v ∈ Vf \ T0 which split in ℓ,

• G(kv)
∼= {g ∈ SL(3, kv(s)) : g∗Fvg = Fv} if v ∈ Vf does not split in ℓ,

• G(kv) is compact for v ∈ T0,

• G(kv)
∼= SU(2,1) for one archimedean place v on k, and

• G(kv)
∼= SU(3) for the other archimedean place v on k (if k 6= Q).

We know that T0 = ∅ if D = M3×3(ℓ), and that T0 is a specific singleton

if D is a division algebra.
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Corollary 6.6 in Chapter 10 of W. Scharlau “Quadratic and Hermitian

Forms”:

The above properties determine D and ι up to k-isomorphism or anti-

isomorphism.

Anti-isomorphism must be allowed here because given D, we can define

an “opposite” algebra Dop whose elements xop are in 1-1 correspondence

(xop ↔ x) with those of D, and in which for all x, y ∈ D and t ∈ ℓ,

xop + yop = (x+ y)op, txop = (tx)op, and xopyop = (yx)op.
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Suppose that ℓ is a field and that m is a Galois extension of ℓ of degree 3,

with Gal(m/ℓ) = 〈ϕ〉.

Fix some nonzero D ∈ ℓ, and form

D = {a+ bσ + cσ2 : a, b, c ∈ m},
which we can make into an associative algebra of dimension 9 over ℓ in

which

σ3 = D and σa = ϕ(a)σ for all a ∈ m.

The centre of D is ℓ. We shall see in a moment that D has no non-trivial

two-sided ideals — D is a central simple algebra.
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There is an ℓ-algebra homomorphism Ψ : D → M3×3(m) such that

Ψ(σ) =







0 1 0
0 0 1
D 0 0






and Ψ(a) =







a 0 0
0 ϕ(a) 0

0 0 ϕ2(a)






.

So if ξ = a+ bσ + cσ2 ∈ D, then

Ψ(ξ) =







a b c
Dϕ(c) ϕ(a) ϕ(b)

Dϕ2(b) Dϕ2(c) ϕ2(a)






.
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The reduced norm Nrd(ξ) of ξ is

det(Ψ(ξ)) = aϕ(a)ϕ2(a) +Dbϕ(b)ϕ2(b) +D2cϕ(c)ϕ2(c)

−D(aϕ(b)ϕ2(c) + ϕ(a)ϕ2(b)c+ ϕ2(a)bϕ(c)).

Then Nrd : D → ℓ, and Nrd(ξη) = Nrd(ξ)Nrd(η) for all ξ, η ∈ D.

An element ξ = a+ bσ + cσ2 of D is invertible if and only if Nrd(ξ) 6= 0,

in which case ξ−1 equals

1

Nrd(ξ)

(

(

ϕ(a)ϕ2(a)−Dϕ(b)ϕ2(c)
)

+
(

Dcϕ2(c)−bϕ2(a)
)

σ+
(

bϕ(b)−cϕ(a)
)

σ2
)

.
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Proposition. Either

(a) D ∼= M3×3(ℓ), or

(b) D is a division algebra.

Case (a) holds if and only if D is the norm Nm/ℓ(η) of an element η of m.

Proof. If D = Nm/ℓ(η), let

C =







η 0 0
0 1 0
0 0 1/ϕ(η)






.
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Let θ0, θ1 and θ3 be basis for m over ℓ. Form

Θ =







θ0 ϕ(θ0) ϕ2(θ0)

θ1 ϕ(θ1) ϕ2(θ1)

θ2 ϕ(θ2) ϕ2(θ2)





 .

Then

Θ−1 =







ζ0 ζ1 ζ2
ϕ(ζ0) ϕ(ζ1) ϕ(ζ2)

ϕ2(ζ0) ϕ2(ζ1) ϕ2(ζ2)





 ,

where Trace(θiζj) = δij.

J := ΘC. Then JΨ(ξ)J−1 has entries in ℓ.

E.g., (JΨ(σ)J−1)ij = Trace(θiηϕ(ζj)).

So ξ 7→ JΨ(ξ)J−1 is a ℓ-linear algebra homomomorphism D → M3×3(ℓ).

It is clearly injective, and so an isomorphism, as dimensions match.
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If D is not equal to Nm/ℓ(η) for any η ∈ m, then

Nrd(1 + bσ) = 1+DNm/ℓ(b) and Nrd(1 + cσ2) = 1+D2Nm/ℓ(c)

cannot be zero for any b, c ∈ m. So any 1 + bσ or 1 + cσ2 is invertible.

So any nonzero element of D is invertible, and D is a division algebra.

Corollary. D is a central simple algebra over ℓ.
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Suppose ℓ = k(s), where s2 = −κ ∈ k.

We want an involution ι of the second kind on D.

Assume m normal extension of k. The conjugation automorphism ex-

tends to m. Then either

ϕ(a) = ϕ(ā) for all a ∈ m OR ϕ(a) = ϕ2(ā) for all a ∈ m.

Gal(m/k) is abelian in the first case, and non-abelian in the second case.
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Lemma. If Gal(m/k) is non-abelian, and if D ∈ ℓ satisfies D = D 6= 0,

then there is an involution of the second kind ι : D → D such that

ι(σ) = σ and ι(a) = ā for all a ∈ m.

Explicitly,

ι(a+ bσ + cσ2) = ā+ ϕ(̄b)σ + ϕ2(c̄)σ2.

Note that

Ψ(ι(ξ)) = F−1Ψ(ξ)∗F for F =







D 0 0
0 0 1
0 1 0





 .
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In each of the five k = Q cases (a = 1, p = 5),...,(a = 23, p = 2), we

can choose a field m as above, with Gal(m/k) non-abelian, and define D
using D = p. In each of these cases, there is a β ∈ ℓ so that β̄β = 2p.

Then

F =
1

2
∆∗F0∆ for ∆ =







β 0 0
0 1 1
0 1 −1





 .

If ι(ξ)ξ = 1 then

(∆Ψ(ξ)∆−1)∗F0(∆Ψ(ξ)∆−1) = F0.
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So if

G(k) = {ξ ∈ D : ι(ξ)ξ = 1 and Nrd(ξ) = 1},
then ξ 7→ ∆Ψ(ξ)∆−1 defines an injective homomorphism G(k) → SU(2,1).

In fact, G(kv)
∼= G(R) ∼= SU(2,1) for the one archimedean place v

on k = Q — see below.

We can take β = 3 + i in the case (a = 1, p = 5), β = 2 + s for

(a = 2, p = 3) and β = 2 for the other three cases.
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In the 5 cases (k, ℓ) in which k = Q and ℓ = Q(s), we can define m =

Q(s, Z), where Z satisfies P(Z) = 0 for a cubic monic P(X) ∈ Z[X].

s2 p P(X) ϕ(Z)

−1 5 X3 − 3X2 − 2 (s+3− (4s+1)Z + sZ2)/2

−2 3 X3 +X2 +2X − 2 (2(s− 1) + (3s− 2)Z + sZ2)/4

−7 2 X3 +3X2 +3 −(3(s+7)+ (9s+7)Z +2sZ2)/14

−15 2 X3 − 3X − 3 (4s+ (3s− 5)Z − 2sZ2)/10

−23 2 X3 −X − 1 (4s+ (9s− 23)Z − 6sZ2)/46

In each case Gal(m/ℓ) = 〈ϕ〉, and Gal(m/Q) is non-abelian.

In the case (a = 7, p = 2), we shall use a different cyclic simple algebra,

coming from a field m so that Gal(m/k) is abelian.
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Lemma. If Gal(m/k) is abelian, and if D ∈ ℓ satisfies D̄D = 1, then there

is an involution ι0 : D → D of the second kind such that

ι0(σ) = σ−1 and ι0(a) = ā for all a ∈ m.

Explicitly,

ι0(a+ bσ + cσ2) = ā+ D̄ϕ(c̄)σ + D̄ϕ2(̄b)σ2.

It is easy to check that

Ψ(ι0(ξ)) = Ψ(ξ)∗.

For reasons explained on the next slide, we shall use the involution

ι(ξ) = T−1ι0(ξ)T,

where T ∈ m and T̄ = T 6= 0. Then

Ψ(ι(ξ)) = F−1Ψ(ξ)∗F for F =







T 0 0
0 ϕ(T) 0

0 0 ϕ2(T)






.
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Embedding m in C, the images of T , ϕ(T) and ϕ2(T) are real because

ϕ(T) = ϕ(T̄ ) = ϕ(T).

If T > 0, ϕ(T) > 0 and ϕ2(T) < 0, then

F = ∆∗F0∆ for ∆ =









|T |1/2 0 0

0 |ϕ(T)|1/2 0

0 0 |ϕ2(T)|1/2









.

So ξ 7→ ∆Ψ(ξ)∆−1 is an injective homomorphism G(k) → SU(2,1).

In the cases (a = 7, p = 2), C2, C10, C18 and C20, we define

D = {a+ bσ + cσ2 : a, b, c ∈ m, where σ3 = D and σxσ−1 = ϕ(x)}
for the following m’s and D’s:
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name m v0 D ϕ

(a = 7, p = 2) Q(ζ7) 2 (3 + s)/4 ζ7 7→ ζ27

C2 k(ζ9) 2 (1 +
√
−15)/4 ζ9 7→ ζ49

C10 ℓ(W ) 2 rU/2 W 7→ 2−W −W2

C18 k(ζ9) 3 (r +1+ 2ω)/3 ζ9 7→ ζ49

C20 k(ζ7) 2 (3 +
√
−7)/4 ζ7 7→ ζ27

In case C2, k = Q(r), where r2 = 5 and ℓ = k(ω), where ω = ζ3,

In case C10, k = Q(r), where r2 = 2, ℓ = k(U), where U2 = (r+1)U − 2,

and W3 − 3W +1 = 0.

In case C18, k = Q(r), where r2 = 6, and ℓ = k(ω),

In case C20, k = Q(r) where r2 = 7, and ℓ = k(i).
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Having chosen m as above, with Gal(m/k) abelian, the subfield {a ∈ m :

ā = a} has the form k(W ), where W satisfies an equation Q(W ) = 0 for

some monic cubic Q(X) ∈ Z[X]. We choose T ∈ k(W ) as follows:

name W ϕ(W ) T

(a = 7, p = 2) ζ7 + ζ−1
7 W2 − 2 W

C2 ζ9 + ζ−1
9 2−W −W2 −2r + (r − 1)W +2W2

C10 W 2−W −W2 −r + (1− r)W +W2

C18 ζ9 + ζ−1
9 2−W −W2 3− 3r + rW + rW2

C20 ζ7 + ζ−1
7 W2 − 2 2+W − (4 + 3W +W2)/r

In the first and last cases, Q(X) = X3+X2−2X −1. In the other three

cases, Q(X) = X3 − 3X +1.
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The above choice is made so that, in the four cases k = Q(r), where

r2 = N (N = 5, 2, 6 or 7), and fixing a solution WR ∈ R of Q(X) = 0,

• embedding k(W ) in R by mapping r to +
√
N and W to WR, the

images of T , ϕ(T) and ϕ(T) DO NOT all have the same sign, and

• embedding k(W ) in R by mapping r to −
√
N and W to WR, the

images of T , ϕ(T) and ϕ(T) DO all have the same sign.

This implies that G(kv)
∼= SU(2,1) for the archimedean valuation v corre-

sponding to the first embedding, and G(kv)
∼= SU(3) for the archimedean

valuation v corresponding to the second embedding.
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Example. The case (a = 7, p = 2).

Let k = Q and ℓ = Q(s), where s2 = −7. Let m be the cyclotomic field

Q(ζ), where ζ is a primitive 7-th root of 1. Let

s = 1+ 2ζ +2ζ2 +2ζ4.

Then s2 = −7. So ℓ ⊂ m.

Now Gal(m/Q) is cyclic, generated by χ : ζ 7→ ζ3, and ϕ = χ2 : ζ 7→ ζ2

generates Gal(m/ℓ). Form the cyclic algebra D with this m and ϕ, and

with

D =
3+ s

4
.

Notice that D̄D = 1. Let’s check that D is not the norm Nm/ℓ(η) of any

element η of m.
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The prime 2 splits in ℓ, as 2 = ρρ̄ for ρ = (1− s)/2 ∈ oℓ.

D = (3 + s)/4 equals −ρ/ρ̄, so w(D) = +1 and w̄(D) = −1, where

w ↔ ρoℓ and w̄ ↔ ρ̄oℓ.

Alternatively, Q2 contains a square root s2 = 1+0×2+1×22+0×23+· · ·
of −7, and vǫ(a + bs) = u2(a + ǫbs2), for ǫ = ±1, define two distinct

extensions to ℓ of the 2-adic valuation u2 on Q.

Then v+(D) = 1 and v−(D) = −1. So w = v+ and w̄ = v−.

Magma verifies that ρom is prime. So w has a unique extension w̃ to m.

Then w̃(η) = w̃(ϕ(η)) = w̃(ϕ2(η)) ∈ Z for η ∈ m. If D = Nm/ℓ(η), then

1 = w(D) = w̃(D) = w̃(ηϕ(η)ϕ2(η)) = 3w̃(η),

a contradiction.
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We choose T = ζ + ζ−1, and use the involution

ι(ξ) = T−1ι0(ξ)T, where ι0(σ) = σ−1, and ι0(a) = ā for a ∈ m.

Then

Ψ(ι(ξ)) = F−1Ψ(ξ)∗F for F =







T 0 0
0 ϕ(T) 0

0 0 ϕ2(T)






.

Embed m into C, mapping ζ to e2πi/7. Then T > 0, ϕ(T) = T2 − 2 < 0

and ϕ2(T) = 1− T − T2 < 0. Let

∆ =









0 0 |ϕ2(T)|1/2
0 |ϕ(T)|1/2 0

|T |1/2 0 0









.

Then ∆∗F0∆ = −F , so g∗Fg = F iff g̃ = ∆g∆−1 satisfies g̃∗F0g̃ = F0.
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So far: for each of the 9 pairs (k, ℓ), we have defined

• a cyclic algebra D,

• an involution ι on D.

In each case, D is a division algebra. The proof: as in the case

(a = 7, p = 2), using w(D) 6= 0 for the two extensions w of the v0 ∈ T0.

Tricky case: C18. Here v0 is the one 3-adic valuation on k = Q(r), r2 = 6.

This splits in ℓ, and the two extensions w of v0 ramify in m.
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We need to find G(kv) for the various places v of k.

We start from one of our nine (D, ι).

If K is a field containing k, then by definition,

G(K) = {ξ ∈ D ⊗k K : ιK(ξ)ξ = 1 and NrdK(ξ) = 1}
(see §1.2 in [PY]). Because ι : D → D is k-linear, it induces a unique

K-linear map ιK : D ⊗k K → D ⊗k K. It is an anti-automorphism.

We can define NrdK using Ψ : D → M3×3(m). This induces ΨK :

D ⊗k K → M3×3(m ⊗k K), and we set NrdK(ξ) = det(ΨK(ξ)). Then

NrdK : D ⊗k K → ℓ⊗k K, and it is multiplicative.
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We also need the adjoint group Ḡ. We can define this by setting

Ḡ(K) = {α ∈ Autℓ(D ⊗k K) : ιK◦α = α◦ιK}.
for any field K containing k. Here α ∈ Autℓ(D ⊗k K) means that α is an

automorphism of the K-algebra D ⊗k K which is also ℓ-linear.

Fact:

Ḡ(k) ∼= {ξ ∈ D : ι(ξ)ξ = 1}/{t1 : t ∈ ℓ & t̄t = 1}.
This is because any automorphism of D is of the form α : η 7→ ξηξ−1 for

some invertible ξ ∈ D (Skolem-Noether Theorem). Then ι◦α = α◦ι means

that ι(ξ)ξ = c1 for some c ∈ k. Let ξ′ = cξ/Nrd(ξ). Then α(η) = ξ′ηξ′−1

for all η, and ι(ξ′)ξ′ = 1.
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The form of G(kv) depends on whether or not v splits in ℓ = k(s). Recall

that s2 = −κ for some κ ∈ k, and

v splits in ℓ ⇔ ℓ embeds in kv ⇔ −κ has a square root in kv.

For any field K containing k,

(i) If ℓ →֒ K, then ℓ⊗k K ∼= K ⊕K.

(ii) If ℓ 6 →֒ K, then ℓ⊗k K ∼= K(s), a field.

In (i), the isomorphism is 1⊗ x+ s⊗ y 7→ (x+ ysK, x− ysK), where sK is

the image of s under an embedding ℓ → K.

In (ii), the isomorphism is 1⊗ x+ s⊗ y 7→ x+ ys.
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Let D denote one of our 9 division algebras D.

Proposition. If v ∈ Vf splits in ℓ, then either

(1) G(kv)
∼= SL(3, kv), Ḡ(kv)

∼= PGL(3, kv), and D ⊗ℓ kv
∼= M3×3(kv), or

(2) G(kv) and Ḡ(kv) are compact, and D ⊗ℓ kv is a division algebra,

and (2) only happens for the one v ∈ T0.

We heavily use the explicit form of these isomorphisms, so give some

details of the proof.
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As ℓ ⊂ kv, we can form D ⊗ℓ kv. The map ξ 7→ (ξ, ι(ξ)op) is k-linear

D → D ⊕Dop, and so induces

h : D ⊗k kv → (D ⊗ℓ kv)⊕ (D ⊗ℓ kv)
op,

and we get the commutative diagram

D ⊗k kv (D ⊗ℓ kv)⊕ (D ⊗ℓ kv)
op

D ⊗k kv (D ⊗ℓ kv)⊕ (D ⊗ℓ kv)
op

h

h

ιkv (x, yop) 7→ (y, xop)

and the map h is an isomorphism of kv-algebras.
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We also get a commutative diagram

D ⊗k kv (D ⊗ℓ kv)⊕ (D ⊗ℓ kv)
op

ℓ⊗k kv kv ⊕ kv

h

f

Nrdkv (x, yop) 7→ (Nrd(x),Nrd(y))

where f(1 ⊗k x + s ⊗k y) = (x + svy, x − svy), where sv ∈ ℓ is the image

of s.

So if ξ ∈ D ⊗k kv and h(ξ) = (x, yop), then

ιkv(ξ)ξ = 1 ⇔ yx = 1, and

Nrdkv(ξ) = 1 ⇔ Nrd(x) = Nrd(y) = 1.
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Corollary. If v splits in ℓ, then

G(kv)
∼= {x ∈ D ⊗ℓ kv : Nrd(x) = 1},

{ξ ∈ D ⊗k kv : ιkv(ξ)ξ = 1} ∼= (D ⊗ℓ kv)
×.

and

Ḡ(kv)
∼= (D ⊗ℓ kv)

×/k×v .

Note that D⊗ℓ kv is a central simple algebra of dimension 9 over kv, and

so is isomorphic to M3×3(kv) or is a division algebra.
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Recall embedding Ψ : D → M3×3(m).

Case a: the embedding ℓ →֒ kv extends to an embedding m →֒ kv.

Then

D Ψ−→ M3×3(m) →֒ M3×3(kv)

induces isomorphisms

D ⊗ℓ kv
∼= M3×3(kv), G(kv)

∼= SL(3, kv), and Ḡ(kv)
∼= PGL(3, kv).

Moreover

{ξ ∈ D ⊗k kv : ιkv(ξ)ξ = 1} ∼= GL(3, kv).

So we get an embedding ξ 7→ ξv of {ξ ∈ D : ι(ξ)ξ = 1} in GL(3, kv) which

maps G(k) into SL(3, kv). Here ξv is the image of Ψ(ξ) in M3×3(kv).
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Case b: When m = k(s, Z) does not embed in kv, then m⊗ℓ kv
∼= kv(Z)

is a field which is a cubic Galois extension of kv, and D⊗ℓ kv is the cyclic

simple algebra {a+ bσ + cσ2 : a, b, c ∈ kv(Z)}.

When D = Nkv(Z)/kv(ηv) of some ηv ∈ kv(Z), D ⊗ℓ kv
∼= M3×3(kv), the

isomorphism induced by

D Ψ−→ M3×3(m) →֒ M3×3(kv(s))
Jv · J−1

v−→ M3×3(kv(s)),

where Jv = ΘCv for

Cv =







ηv 0 0
0 1 0
0 0 1/ϕ(ηv)





 and Θ =







θ0 ϕ(θ0) ϕ2(θ0)

θ1 ϕ(θ1) ϕ2(θ1)

θ2 ϕ(θ2) ϕ2(θ2)





 ,

and θ0, θ1, θ2 is a basis of m over ℓ.
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We again have isomorphisms

D ⊗ℓ kv
∼= M3×3(kv), G(kv)

∼= SL(3, kv), Ḡ(kv)
∼= PGL(3, kv),

and

{ξ ∈ D ⊗k kv : ιkv(ξ)ξ = 1} ∼= GL(3, kv).

Again we have an embedding ξ 7→ ξv of {ξ ∈ D : ι(ξ)ξ = 1} in GL(3, kv)

mapping G(k) into SL(3, kv). Now ξv is the image of JvΨ(ξ)J−1
v in

M3×3(kv).
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To see that D is a norm when v 6= v0 splits in ℓ, and m 6 →֒ kv, we use the

following theorem from local class field theory (see Weil “Basic Number

Theory”, pp. 225–226):

Theorem. If K is a non-archimedean local field, and if L is a cyclic

extension of K of degree n, then the image of L× under the norm map

NL/K : L× → K× has index n in K×. When L is an unramified cyclic

extension, then that image equals {x ∈ K× : v(x) ≡ 0 (mod n)}.

If v 6= v0 splits in ℓ and m 6 →֒ kv, then by choice of D we have w(D) = 0 for

both extensions w of v to ℓ. Moreover, neither w ramifies in m, as we see

checking case by case. So the extension kv(Z) of kv = ℓw is unramified,

and so Nkv(Z)/kv(ηv) = D for some ηv ∈ kv(Z), by the theorem.
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If v = v0, then m 6 →֒ kv, by choice of m, and w(D) 6= 0 by choice of D,

for both extensions w of v0 to ℓ. Assuming that w does not ramify in m,

the theorem shows that D is not a norm.

There is only one case when w ramifies: C18. Here k = Q(r), where

r2 = 6, and v0 is the unique 3-adic valuation on k (3 ramifies in k).

This splits in ℓ since 3 = (ω − 1)(ω̄ − 1). The extensions w and w̄

corresponding to p = (ω − 1)oℓ and p̄ both ramify in m = k(ζ9) because

Nm/ℓ(ζ9 − 1) = ω − 1.

In the C18 case, we carefully identify the index 3 subgroup of k×v0 which

is the image of the norm map, and show that D is not in that image.
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If D is not a norm, then D ⊗ℓ kv is a division algebra over the local field

kv, and so

G(kv)
∼= {ξ ∈ D ⊗ℓ kv : Nrd(ξ) = 1}

is compact. To see this, let ξ1, . . . , ξ9 be a basis for D ⊗ℓ kv, and let

ov = {t ∈ kv : |t|v ≤ 1}. Here |t|v = q
−v(t)
v . Then ov is compact, and hence

so is

S = {
∑

ν
tνξν : tν ∈ ov for all ν, and |tν|v = 1 for at least one ν}.

Now Nrd(ξ) 6= 0 for all ξ 6= 0, since D⊗ℓkv is a division algebra. So there

is a number m > 0 so that |Nrd(ξ)|v ≥ m for all ξ ∈ S. Now suppose that

ξ =
∑

ν tνξν satisfies Nrd(ξ) = 1. Let T = max{|tν|v : ν = 1, . . . ,9}. Then

cξ ∈ S for some c ∈ kv satisfying |c|v = 1/T . Hence |c|3v = |Nrd(cξ)|v ≥ m.

Hence T = 1/|c|v ≤ 1/m1/3. So {ξ ∈ D ⊗ℓ kv : Nrd(ξ) = 1} is closed and

bounded, and so compact.
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G(kv) and Ḡ(kv) when v does NOT split in ℓ.

For a basis ξ1, . . . , ξ9 of D over ℓ, setting

h

(

∑

ν
ξν ⊗k xν +

∑

ν
(sξν)⊗k yν

)

=
∑

ν
ξν ⊗ℓ (xν + syν)

we get an isomorphism, and setting

ι̃

(

∑

ν
ξν ⊗k xν +

∑

ν
(sξν)⊗k yν

)

=
∑

ν
ι(ξν)⊗ℓ (xν − syν)

we get an involution of the second kind, and the commutative diagram

D ⊗k kv D ⊗ℓ kv(s)

D ⊗k kv D ⊗ℓ kv(s)

h

h

ιkv ι̃
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and also the commutative diagram

D ⊗k kv D ⊗ℓ kv(s)

ℓ⊗k kv kv(s)

h

f

Nrdkv Nrd

where now f is the isomorphism 1⊗ x+ s⊗ y 7→ x+ sy.
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Corollary. If v does not split in ℓ, then

G(kv)
∼= {ξ ∈ D ⊗ℓ kv(s) : ι̃(ξ)ξ = 1 & Nrd(ξ) = 1}.

and

Ḡ(kv)
∼= {ξ ∈ D ⊗ℓ kv(s) : ι̃(ξ)ξ = 1}/{t1 : t ∈ kv(s) & t̄t = 1}.

D ⊗ℓ kv(s)
∼= M3×3(kv(s)) or D ⊗ℓ kv(s) is a division algebra.

It is never a division algebra, as noted in §2.2 of [PY]. We can also see

this using theorem about norms, and explicit calculations when v ramifies

in m.
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The isomorphism D ⊗ℓ kv(s)
∼= M3×3(kv(s)) induces isomorphisms

G(kv)
∼= {ξ ∈ SL(3, kv(s)) : g∗F ′

vg = F ′
v},

Ḡ(kv)
∼= {g ∈ GL(3, kv(s)) : g∗F ′

vg = F ′
v}/{t1 : t ∈ kv(s) & t̄t = 1}

and

{ξ ∈ D ⊗k kv : ιkv(ξ)ξ = 1} ∼= {g ∈ GL(3, kv(s)) : g∗F ′
vg = F ′

v}
for a suitable Hermitian F ′

v ∈ GL(3, kv(s)). In particular, we have an

embedding ξ 7→ ξv of

{ξ ∈ D : ι(ξ)ξ = 1} into {g ∈ GL(3, kv(s)) : g∗F ′
vg = F ′

v}.
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The matrix F ′
v depends on whether or not m embeds in kv(s).

Case a: the embedding ℓ = k(s) →֒ kv(s) extends to an embedding

m →֒ kv(s). Then

D Ψ−→ M3×3(m) →֒ M3×3(kv(s))

induces the above isomorphisms, with F ′
v the image of F ∈ M3×3(m)

in M3×3(kv(s)).

In particular, if v is an archimedean place of k, then ℓ does not embed

in kv
∼= R, but m = k(s,W ) embeds in kv(s)

∼= C. After a further

conjugation by the matrix we called ∆ above, we may assume that

F ′
v = F0, if k = Q, or that F ′

v = F0 for one v and F ′
v = I for the other v,

when k = Q(r).
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Case b: the field m does not embed in kv(s). Then writing m = k(s, Z),

m⊗ℓkv(s) is the field kv(s, Z), and D⊗ℓkv(s) is isomorphic to M3×3(kv(s)).

As Ψ(ξ) is unitary with respect to a matrix F , JvΨ(ξ)J−1
v is unitary with

respect to

F ′
v = J∗

v
−1FvJ

−1
v = Θ∗−1C∗

v
−1FvC

−1
v Θ−1,

where Fv is the image of F ∈ M3×3(m) in M3×3(kv(s, Z)).
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