Constructing the algebras D and the involutions ..

To a fake projective plane there is associated a pair (k, ¢) of fields coming
from a short list. There is also an algebra D, an involution ¢« and a group

G, with
G(k)={£e€eD:u(f)§ =1 & Nrd(&) = 1}.

D, « and G must satisfy the properties:



o G(ky) = SL(3,ky) for all v € V;\ To which split in ¢,

o G(ky) ={g € SL(3,kv(s)) : g"Fvg = Fy} if v € V; does not split in ¢,

e G(ky) is compact for v € Ty,

o G(ky) =SU(2,1) for one archimedean place v on k, and

o G(ky) = SU(3) for the other archimedean place v on k (if k = Q).

We know that 7o = 0 if D = M34«3(¥), and that 7g is a specific singleton
if D is a division algebra.



Corollary 6.6 in Chapter 10 of W. Scharlau “Quadratic and Hermitian
Forms':

The above properties determine D and ¢ up to k-isomorphism or anti-
Isomorphism.

Anti-isomorphism must be allowed here because given D, we can define
an “opposite” algebra D°P whose elements z°P are in 1-1 correspondence
(z°P « ) with those of D, and in which for all z,y € D and t € ¢,

%P + y°P = (z + y)°P, ta°P = (tx)°P, and z°Py°P = (yx)°P.



Suppose that 7 is a field and that m is a Galois extension of ¢ of degree 3,
with Gal(m/f) = ().

Fix some nonzero D € ¢, and form

D={a+ba—|—cc72:a,b,c€m},

which we can make into an associative algebra of dimension 9 over £ in
which

03=D and oca=p(a)o for all a € m.

The centre of D is £. We shall see in a moment that D has no non-trivial
two-sided ideals — D is a central simple algebra.



There is an ¢-algebra homomorphism W : D — M3z.3(m) such that

0 10 a O 0
V()= ]0 0 1 and W(a) =10 ¢(a) 0
D 0O 0 0 «?(a)

So if ¢ = a4+ bo + co? € D, then

a b C

V() = | Dp(c) wla)  »(b)
De?(b) Dy?(c) ¢°(a)



The reduced norm Nrd(£) of € is

det(W(£)) = ap(a)p?(a) + Dbp(b)p?(b) + D?cp(c)p?(c)
— D(ap(d)p?(c) + ¢(a)p?(b)e + ¢?(a)bp(c)).
Then Nrd : D — 4, and Nrd(én) = Nrd(£)Nrd(n) for all £,n € D.

An element £ = a + bo 4+ co? of D is invertible if and only if Nrd(¢) # 0,
in which case ¢~ 1 equals

Nr;(g) <(90(a)902(a)—D90(b)902(0))+(DC¢2(C)—6902(&))0+(bgo(b)—cgo(a))JQ).




Proposition. Either
(a) D= M3x3(£), or
(b) D is a division algebra.

Case (a) holds if and only if D is the norm Nm/e(’f]) of an element n of m.

Proof. If D = Nm/g(n), let

n O 0
C=1|01 O
0 0 1/¢(n)



Let 0p, 61 and 63 be basis for m over £. Form

0o »(00) ©%(6p)
© =01 ¢(01) ¢%(61)
02 p(02) ©2(62)
Then

Co C1 ¢
O =1 0) () ») |,
02 (o) ¢2(¢1) ¢2(¢2)

where Trace(@ig’j) = 52]
J = ©OC. Then JW(¢)J~1 has entries in .
E.g., (JW(o)J 1) = Trace(8ine(¢;)).

So & +— JW(&)J 1 is a ¢-linear algebra homomomorphism D — Mz 3(¥).
It is clearly injective, and so an isomorphism, as dimensions match.
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If D is not equal to Nm/E(T]) for any n € m, then

Nrd(14bo) =14 DN, ,,(b) and Nrd(1+co®) =1+ D?N,,(c)

cannot be zero for any b,c € m. So any 1+ bo or 1 + co? is invertible.
So any nonzero element of D is invertible, and D is a division algebra.

Corollary. D is a central simple algebra over /.



Suppose ¢ = k(s), where s2 = —k € k.
We want an involution ¢« of the second kind on D.

Assume m normal extension of k. The conjugation automorphism ex-
tends to m. Then either

o(a) =p(a) forallaem OR o(a) =¢?(a) for all a € m.

Gal(m/k) is abelian in the first case, and non-abelian in the second case.

10



Lemma. If Gal(m/k) is non-abelian, and if D € ¢ satisfies D = D # 0,
then there is an involution of the second kind ¢ : D — D such that

t(c) =0 and (a) =a for all a € m.
Explicitly,
(a4 bo + co?) = a+ p(b)o + 02 ()2

Note that

D
V() =F Iwe*F for F=|0
0

R OO
Or O
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In each of the five k = Q cases (a = 1,p = 5),...,(a = 23,p = 2), we
can choose a field m as above, with Gal(m/k) non-abelian, and define D
using D = p. In each of these cases, there is a 8 € ¢ so that 58 = 2p.
Then

. 30 0
F=>A*FpA for A=[01 1
2 01 —1

If (¢)¢ = 1 then

(Av(EOA Y Fy(av(Ea™h) = .
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So if
Gk)={€D:(§)§=1 and Nrd(&) =1},
then £ — AW (&) A1 defines an injective homomorphism G(k) — SU(2,1).

In fact, G(ky) = G(R) = SU(2,1) for the one archimedean place v
on k= Q — see below.

We can take 8 = 3 4+ 4 in the case (a = 1,p = 5), 8 = 2 + s for
(a =2,p=3) and B = 2 for the other three cases.
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In the 5 cases (k,¢) in which £ = Q and ¢ = Q(s), we can define m =
Q(s, Z), where Z satisfies P(Z) = 0 for a cubic monic P(X) € Z[X].

s2 | p P(X) p(Z)

-1 |5 X3 _-3Xx2_-2 (s+3—(4s+1)Z+s22)/2
—2 |3 X34+ X242X -2 (2(s — 1)+ (3s —2)Z + sZ2) /4
—7 | 2] X343X243 —(3(s+7)+(9s+7)Z 4+ 2522) /14
—15 | 2 X3 _-3X-3 (454 (3s —5)Z — 2s22)/10
—23 |2 X3 _XxX-1 (45 4+ (95 — 23)Z — 652°) /46

In each case Gal(m/¢) = (), and Gal(m/Q) is non-abelian.

In the case (a = 7,p = 2), we shall use a different cyclic simple algebra,
coming from a field m so that Gal(m/k) is abelian.
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Lemma. If Gal(m/k) is abelian, and if D ¢ ¢ satisfies DD = 1, then there
is an involution (g : D — D of the second kind such that

L' and g(a) =a for all a € m.

(o) =0~
Explicitly,

wo(a + bo + co?) = a+ Do(e)o + Dp?(b)o?.

It is easy to check that
W(g(6)) = W(E)".

For reasons explained on the next slide, we shall use the involution
(&) = T (9T,
where T € m and T =T # 0. Then

T O 0
V() =F IWE©O*F for F=|0 o(T) O
0 0 ¢2(T)
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Embedding m in C, the images of T, o(T) and ¢2(T) are real because
o(T) = o(T) = o(T).

If T >0, o(T) >0 and ©2(T) < 0, then

T|1/2 0 0
F=AFpA for A=| 0 |o(T)1/2 0
0 0 p2(M)|Y/?

So £ — AW(E)A~L is an injective homomorphism G(k) — SU(2,1).

In the cases (a =7,p = 2), Cp, C10, C1g and Cyqg, we define
D= {a+ bo+ co® : a,b,c €m, where 03 =D and oxo~ ! = w(x)}

for the following m's and D’s:
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name m V0 D ©
(a=7,p=2) | Q7) | 2 (3+s)/4 (7 > (2
Co k(¢9) | 2 | (14++/-15)/4 o+ (o
C10 (W) | 2 rU/?2 Wis 2 —-W —W?
Cis k(C9) | 3 | (r+1+4+2w)/3 o+ (o
C20 k(¢7) | 2| B+V-T7)/4 (7 (2

In case Co, k = Q(r), where 72 =5 and ¢ = k(w), where w = (3,

In case Cqg, k = Q(r), where r2 =2, ¢ = k(U), where U2 = (r + 1)U — 2,
and W3 —-3W +1=0.

In case Cig, k = Q(r), where 2 =6, and ¢ = k(w),

In case Cop, k = Q(r) where r2 =7, and ¢ = k(i).
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Having chosen m as above, with Gal(m/k) abelian, the subfield {a € m :
a = a} has the form k(W), where W satisfies an equation Q(W) = 0 for
some monic cubic Q(X) € Z[X]. We choose T € k(W) as follows:

name W (W) T
(a=7,p=2) | &+¢GH| W2-2 w

Co Co+ (ot | 2-W W2 | —2r+ (r—1)W + 2W?

C10 11,7 2 W — W?2 —r 4+ (1 =)W + W?2

Cig Co+ (ot |2-W —W? 3—3r+rW 4+ riw2

Coo 7+ W22 |24 W — (443W +W2)/r

In the first and last cases, Q(X) = X3+ X2—-2X — 1. In the other three
cases, Q(X) = X3-3X +1.
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The above choice is made so that, in the four cases k = Q(r), where
r°=N (N =25, 2, 6 or 7), and fixing a solution Wi € R of Q(X) = 0,

e embedding k(W) in R by mapping r to +v/N and W to Wy, the
images of T', o(T) and o(T) DO NOT all have the same sign, and

e embedding k(W) in R by mapping r to —/N and W to Wy, the
images of T', o(T") and (T) DO all have the same sign.

This implies that G(ky) = SU(2,1) for the archimedean valuation v corre-
sponding to the first embedding, and G(k,) = SU(3) for the archimedean
valuation v corresponding to the second embedding.
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Example. The case (a =7,p = 2).

Let k= Q and ¢ = Q(s), where s2 = —7. Let m be the cyclotomic field
Q(¢), where ( is a primitive 7-th root of 1. Let

s =14 2¢+ 2¢%+ 2¢%.
Then s2 = —7. So L C m.

Now Gal(m/Q) is cyclic, generated by x : ¢ — ¢3, and ¢ = x2 : ¢ — (2
generates Gal(m/¢). Form the cyclic algebra D with this m and ¢, and
with
p=>F°%
4
Notice that DD = 1. Let's check that D is not the norm Ny, 70(n) of any

element n of m.
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The prime 2 splits in £, as 2 = pp for p= (1 —15)/2 € 0y.

D = (3+ s)/4 equals —p/p, so w(D) = +1 and w(D) = —1, where
w <> poy and w <> poy.

Alternatively, Q> contains a square root s, = 1—|—O><2—|—1><22—|—O><23—|—- .
of —7, and ve(a + bs) = us(a + ebs>), for ¢ = £1, define two distinct
extensions to ¢ of the 2-adic valuation us on Q.

Then vy (D) =1and v_(D) = —-1. SO w =wvy4 and w = v_.

Magma verifies that po,, is prime. SO w has a unique extension w to m.
Then @(n) = w(p(n)) = @(p?(n)) € Z for n € m. If D = N,, ,(n), then

1 = w(D) = @(D) = B(ne(n)e?(n)) = 3w(n),
a contradiction.
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We choose T'= ¢ + ¢~ 1, and use the involution

(&) =T ()T, where 1p(0) =01, and g(a) = a for a € m.

T hen

T 0 0
V() =F IWEO*F for F=|0 o(T) O
0 0 *(T)

Embed m into C, mapping ¢ to €2™/7. Then T >0, o(T) =T2 -2 < 0
and @2(T) =1—-T -T2 < 0. Let

0 0 ©2(T)|1/2
A=| 0 [|p(T)/? 0
T|1/2 0 0

Then A*FgA = —F, so g*Fg = F iff § = AgA~1 satisfies §*Fpg = Fp.
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So far: for each of the 9 pairs (k,£), we have defined

e a cyclic algebra D,

e an involution + on D.

In each case, D is a division algebra. The proof: as in the case
(a=7,p=2), using w(D) % 0 for the two extensions w of the vg € 7.

Tricky case: C1g. Here vg is the one 3-adic valuation on k = Q(r), r2 = 6.
This splits in £, and the two extensions w of vg ramify in m.
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We need to find G(ky) for the various places v of k.
We start from one of our nine (D,.).

If K is a field containing k, then by definition,

GK) = {6 €D@p K 1 1x(€)6 =1 and Nrdg(€) = 1}

(see §1.2 in [PY]). Because ¢ : D — D is k-linear, it induces a unique
K-linear map 1 : D K - D K. It is an anti-automorphism.

We can define Nrdyg using W : D — Msy3z(m). This induces Wy
DR, K - M3zyz(m ®;, K), and we set Nrdx(¢) = det(Wg(£)). Then
Nrdzx : DR K — £ ®; K, and it is multiplicative.
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We also need the adjoint group G. We can define this by setting
G(K)={ac Auty(D®i K) : txoo = aorg}.

for any field K containing k. Here a € Auty(D ®; K) means that « is an
automorphism of the K-algebra D ®; K which is also ¢-linear.

Fact:
Gk)Z{eD:u(&)éE=1}/{tl : tet & Tt =1}

This is because any automorphism of D is of the form a : n+— gng—l for
some invertible ¢ € D (Skolem-Noether Theorem). Then toax = avor Means
that ()¢ = c1 for some ce k. Let & = c£/Nrd(€). Then a(n) = ghne! 1
for all n, and (&")¢ = 1.
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The form of G(ky) depends on whether or not v splits in £ = k(s). Recall
that s2 = —k for some k € k, and
v splits in £ & ¢ embeds in k, < —k has a square root in ky.

For any field K containing k,

(i) If{— K, then /@, K = K& K.

(i) If £ <4 K, then £ ®, K = K(s), a field.

In (i), the isomorphismis 1®x+s®y — (z+ ysk,xr — ysi), where sg is
the image of s under an embedding ¢ — K.

In (ii), the isomorphismis 1@z + s® y — = + ys.

26



Let D denote one of our 9 division algebras D.

Proposition. If v € Vf splits in ¢, then either
(1) G(ky) 2 SL(3,ky), G(ky) 2 PGL(3,ky), and D ®y ky = Mzy3(ky), Or
(2) G(ky) and G(ky) are compact, and D ®y k, is a division algebra,

and (2) only happens for the one v € 7p.

We heavily use the explicit form of these isomorphisms, so give some
details of the proof.
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As ¢ C ky, we can form D ®p ky,. The map £ — (& 1(&€)°P) is k-linear
D — D & D°P, and so induces

h:D ks — (D®pky) ® (D Ry ky)°P,

and we get the commutative diagram

D @y, ky h (D Qg k) & (D @y ky)OP

Ly (z,y°P) = (y,2°P)
h op

D Ry, ky (D ®y ko) ® (D ®y kv)

and the map h is an isomorphism of ky,-algebras.
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We also get a commutative diagram

D @y, ko h  (D®yky) ® (D @y ky)OP
Nrdy, (z,y°P) — (Nrd(z), Nrd(y))
f
Q. ky kv @ kv

where f(1®r x4+ s®ry) = (z + svy,x — spy), Where s, € £ is the image
of s.

So if £ € DRy ky and h(€) = (x,y°P), then

g, ()¢ =1 & yr=1, and
Nrdg (§) =1 < Nrd(z) = Nrd(y) = 1.
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Corollary. If v splits in £, then
G(ky) ={x € DQyky : Nrd(x) = 1},

{€€eDRrky : 1, () =1} = (D Ryky)”™.
and

G(ky) 2 (D ®p ko)~ /K.

Note that D ®y ky is a central simple algebra of dimension 9 over k,, and
so is isomorphic to M3y3(ky) or is a division algebra.
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Recall embedding W : D — M3y 3(m).
Case a: the embedding ¢ — k, extends to an embedding m — ky.

Then
D 2 Mzyz(m) < Mays(ky)
induces isomorphisms
D Qpky = Mayz(ky), G(ky) = SL(3,ky), and G(ky) = PGL(3,ky).
Moreover
{£ €Dk kv 1 1,(£)6 =1} = GL(3, kv).

So we get an embedding £ — & of {£ €D : (&) =1} in GL(3, ky) which
maps G(k) into SL(3,ky). Here & is the image of W(§) in M3y3(ky).
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Case b: When m = k(s, Z) does not embed in ky, then m ®p ky = ky(Z2)
is a field which is a cubic Galois extension of ky, and D ®y ky is the cyclic
simple algebra {a + bo + co? : a,b,c € ky(Z)}.

When D = NkU(Z)/kv(nU) of some ny € kv(Z), D ®p ky = M3y3(ky), the
Isomorphism induced by

W Jo -yt
D — Mzy3(m) — M3zy3(kv(s)) —~— Mzx3(kv(s)),

where J, = (), for

ny O 0 0o ©(60) »*(60)
Chb=10 1 0 and © =101 ¢(01) ©2(61) |,
0 0 1/¢(m) 02 ©(62) %(62)

and 6g,01,0- is a basis of m over /.
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We again have isomorphisms

D ®p kv = May3(kv), G(kv) = SL(3,kv), G(kv) = PGL(3,ky),
and
{£ €D kv @ g, (§)§ =1} = GL(3, kv).

Again we have an embedding £ — &, of {£ € D :1(§)§ = 1} in GL(3, ky)
mapping G(k) into SL(3,k,). Now &, is the image of J,Ww(&)J,; 1 in
M3><3(kv)-
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To see that D is a norm when v # vg splits in £, and m ¥ k,, we use the
following theorem from local class field theory (see Weil “Basic Number
Theory”, pp. 225—-226):

Theorem. If K is a non-archimedean local field, and if L is a cyclic
extension of K of degree n, then the image of L* under the norm map
Np kg @ L™ — K has index n in K*. When L is an unramified cyclic
extension, then that image equals {x € K* : v(z) =0 (mod n)}.

If v #& vg splits in £ and m ¥ k,, then by choice of D we have w(D) = 0 for
both extensions w of v to £. Moreover, neither w ramifies in m, as we see
checking case by case. So the extension k,(Z) of ky, = 4y is unramified,
and so Nkv(Z)/kv(nU) = D for some n, € ky(Z), by the theorem.
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If v = vg, then m % ky, by choice of m, and w(D) #= 0 by choice of D,
for both extensions w of vg to £. Assuming that w does not ramify in m,
the theorem shows that D is not a norm.

There is only one case when w ramifies: Cig. Here k = Q(r), where
r2 = 6, and vo is the unique 3-adic valuation on k (3 ramifies in k).
This splits in ¢ since 3 = (w—1)(w —1). The extensions w and w
corresponding to p = (w — 1)oy and p both ramify in m = k({g) because
Nypjo(Go—1) =w — 1.

In the C1g case, we carefully identify the index 3 subgroup of k,fjo which
is the image of the norm map, and show that D is not in that image.
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If D is not a norm, then D ®y ky is a division algebra over the local field
ky, and so

G(ky) ={§ € DQ®yky: Nrd(§) =1}
is compact. To see this, let &1,...,&9 be a basis for D ®y ky, and let

op = {t € ky : |t|]o < 1}. Here |t|y, = qv_”(t). Then o, is compact, and hence
SO IS

S={> _t& 1ty €0, for all v, and [t,|y = 1 for at least one v}.
1%

Now Nrd(&) %= O for all £ # 0, since D®yky is a division algebra. So there
is @ number m > 0 so that |[Nrd(£)|y > m for all £ € S. Now suppose that
£ =>,t,& satisfies Nrd(¢) = 1. Let T = max{|tv|v : v =1,...,9}. Then
c¢ € S for some c € ky satisfying |c|y = 1/T. Hence |c|; = |Nrd(c€) |y > m.
Hence T = 1/|cly < 1/mY/3. So {£ € D®/ky : Nrd(¢) = 1} is closed and
bounded, and so compact.
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G(ky) and G(ky) when v does NOT split in #.

For a basis &1,...,& of D over ¢, setting

h(z v Qr xy + Z(Sfu) Rk yu> — qu Xy (zv + syv)

we get an isomorphism, and setting

Z(Z v ®p v+ ) (&) ®y y”) =2 (&) & (2 — syw)

v

we get an involution of the second kind, and the commutative diagram

D ®i. ky D Qy ky(s)
Ly U

h
D ®i. ko D &y kv(s)

37



and also the commutative diagram

DRk — I D, ky(s)

Nrdg, Nrd

€®k‘ k’U kU(S)

where now f is the isomorphism 1® x4+ s® y — x + sy.
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Corollary. If v does not split in £, then

G(kv) ={£ €D ®rku(s) 1 (6§ =1 & Nrd(§) = 1}.

and
Glky) Z2{ceDRpkp(s) @ T(&)E=1}/{tl : tcky(s) & Tt = 1}.
D Qyky(s) = Mzx3(ky(s)) or D®yky(s) is a division algebra.
It is never a division algebra, as noted in §2.2 of [PY]. We can also see

this using theorem about norms, and explicit calculations when v ramifies

in m.
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The isomorphism D ®j ky(s) = M3y3(ky(s)) induces isomorphisms
G(ky) = {¢£ € SL(3,ku(s)) : g'F,9 = F,},
G(ky) 2 {g € GL(3,kv(s)) : ¢g"Flg=F)}/{t1l : t € ky(s) & Tt =1}
and

{E €D ko 1 1, ()6 =1} 2 {g € GL(3,ku(s)) : g*Fjg=F}

for a suitable Hermitian F! € GL(3,ky(s)). In particular, we have an
embedding & — &, of

{eeD : ()¢ =1} into {g€ GL(3,ky(s)) : ¢g°Flg = F)}.
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The matrix F! depends on whether or not m embeds in ky(s).

Case a: the embedding ¢ = k(s) — ky(s) extends to an embedding
m — ky(s). Then

D L Msys(m) <= Mayz(ko(s))

induces the above isomorphisms, with F) the image of F € Mszy3(m)
in M3yx3(kv(s)).

In particular, if v is an archimedean place of k, then ¢ does not embed
in ky, = R, but m = k(s,W) embeds in ky(s) = C. After a further
conjugation by the matrix we called A above, we may assume that
Fl = Fy, if k =Q, or that F/ = F, for one v and F = I for the other v,
when k = Q(r).
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Case b: the field m does not embed in ky(s). Then writing m = k(s, Z2),
m®pky(s) is the field ky(s, Z), and D®yky(s) is isomorphic to M3y 3(kv(s)).

As W (&) is unitary with respect to a matrix F, J,W(¢)J, 1 is unitary with
respect to

Fl =7 pJtl=0"tcr TR0 lo !,
where Fy is the image of F' € M3y3(m) in M3y3(kv(s,Z)).

42



