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A fake projective plane is a smooth compact complex surface,

not biholomorphic to the complex projective plane P2C,

with Betti numbers 1, 0, 1, 0, 1.

Mumford, 1979:

• gave first example,

• showed number of fpp’s is finite.

Ishida and Kato, 1998, gave two examples.

Keum, 2006, gave an example.
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Gopal Prasad and Sai-Kee Yeung, 2007, showed

• all fpp’s fall into 41 “classes”.

• classes defined using unitary groups in either

– division algebras, or

– matrix algebras.

• 28 classes of division algebra type. All are non-empty.

• 13 classes of matrix algebra type. They conjectured these empty.

Classes involve: fields k and ℓ, with [ℓ : k] = 2, and extra data.

Either k = Q or dimQ(k) = 2.
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Tim Steger and I (2010):

(a) found all fpp’s in each class.

(b) showed matrix algebra classes are empty.

Altogether, there are 100 fpp’s (up to biholomorphism).

There are only 50 fpp’s up to homeomorphism. We give presentations

for each of the 50 fundamental groups.
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Set

F0 :=







1 0 0
0 1 0
0 0 −1






,

U(2,1) := {g ∈ M3×3(C) : g∗F0g = F0},

PU(2,1) = U(2,1)/Z, where Z = {tI : |t| = 1}.

PU(2,1) acts on B(C2) = {(z1, z2) : |z1|2 + |z2|2 < 1}.

Theorem (Klingler, Yeung). The fundamental group Π of an fpp is a

torsion-free cocompact arithmetic subgroup of PU(2,1).

So an fpp is a ball quotient B(C2)/Π for such a Π.
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Explaining “arithmetic”.

central simple algebra: a finite dimensional algebra A over a field ℓ

such that

• Centre of A is {t1 : t ∈ ℓ},

• no non-trivial proper two sided ideals.

Examples:

• Mn×n(ℓ),

• division algebras.
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Proposition. A central simple algebra ⇒

A ∼= Mn×n(D)

for some division algebra D over ℓ.

Corollary. A central simple algebra and dimℓA = 9 ⇒

A ∼= M3×3(ℓ) or A is a division algebra.
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When ℓ is a totally complex quadratic extension k(s) of a totally real

field k, an involution ι of the second kind on A is a map ι : A → A
such that

• ι(ι(ξ)) = ξ,

• ι(ξη) = ι(η)ι(ξ)

• ι(ξ + η) = ι(η) + ι(ξ), and

• ι(tξ) = t̄ ι(ξ),

for all ξ, η ∈ A and t ∈ ℓ. Here t̄ = a− bs if t = a+ bs ∈ ℓ.
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Example: A = M3×3(ℓ) and ι(x) = x∗.

Example: A = M3×3(ℓ), and

ι(x) = F−1x∗F,

where F ∈ GL(3, ℓ) and F ∗ = F .

Fact: Any involution of the second kind on M3×3(ℓ) has this form.

For this ι:

ι(x)x = 1 ⇔ x∗Fx = F.
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If A is a central simple algebra, there is a map Nrd : A → ℓ which

generalizes the determinant map det : Mn×n(ℓ) → ℓ.

Proposition. For any field L containing ℓ:

(a) A⊗ℓ L is central simple algebra over L,

(b) we can choose L and isomorphism f : A⊗ℓ L
∼= Mn×n(L).

(c) for L, f as in (b), define

Nrd(x) = det f(x) for x ∈ A,

This does not depend on the particular L and f we choose.
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Now when we say that the fundamental group Π of a fake projective

plane is arithmetic, we mean that

there are fields k and ℓ, with k totally real and ℓ a totally complex

quadratic extension of k, and there is a central simple algebra A of

dimension 9 over ℓ, and there is an involution ι of the second kind on A,

so that in the algebraic group G defined over k so that

G(k) = {ξ ∈ A : ι(ξ)ξ = 1 and Nrd(ξ) = 1},
there is principal arithmetic subgroup Λ of G(k) which is commensurable

with Π.

The term “principal arithmetic subgroup” will be explained later. It

involves the groups G(kv) for the places v of k.
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Explaining “commensurable”:

ϕ : SU(2,1) → PU(2,1) : the canonical map g 7→ gZ.

SU(2,1) PU(2,1)

ϕ−1(Π) Π

ϕ

ϕ
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We have a principal arithmetic subgroup Λ ⊂ G(k), and for one archimedean

place v of k we have an embedding

Λ ⊂ G(k) →֒ G(kv)
∼= G(R) ∼= SU(2,1).

Let Γ be the normalizer in SU(2,1) of Λ.

SU(2,1) PU(2,1)

Γ = N(Λ)

Λ

< ∞
< ∞

ϕ−1(Π) Π

ϕ

ϕ

For any other archimedean place v of k, we require

G(kv)
∼= SU(3).
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SU(2,1) PU(2,1)

Γ

Λ N N

3α

ϕ−1(Π)

Γ̄ = ϕ(Γ)

Π

ϕ

ϕ

ϕ

Prasad and Yeung showed that [Γ : Λ] is a power of 3.
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The Euler-Poincaré characteristic of an fpp is

1− 0+ 1− 0+ 1 = 3.

Hirzebruch Proportionality Theorem:

χ(B(C2)/Π) = 3vol(FΠ)

where vol is appropriately normalized hyperbolic volume on B(C2),

and FΠ is a fundamental domain for the action of Π on B(C2). So

1 = vol(FΠ) = m(PU(2, 1)/Π).
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For discrete subgroups Γ of G = PU(2,1), Haar measure µG on G induces

a G-invariant measure mG/Γ on G/Γ, so that

∫

G
f dµG =

∫

G/Γ
fΓ dmG/Γ,

where

fΓ(gΓ) =
∑

γ∈Γ
f(gγ).

If Γ1 ⊂ Γ2, then

m(G/Γ1) = [Γ2 : Γ1]m(G/Γ2).

Relation of mG/Γ on G/Γ to hyperbolic volume vol on B(C2):

m(G/Γ) = vol(FΓ)

where FΓ ⊂ B(C2) is a fundamental domain for the action of Γ.
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Prasad & Yeung mostly work with SU(2,1), not PU(2,1). Invariant

measures are set up so that

m(SU(2,1)/ϕ−1(Π)) =
1

3
m(PU(2,1)/Π),

(ϕ : SU(2,1) → PU(2,1) canonical map).

So if Π ⊂ PU(2,1) is the fundamental group of an fpp, then

m(SU(2,1)/ϕ−1(Π)) =
1

3
.

Prasad has formulas for the numbers m(SU(2,1)/Λ), where Λ is a prin-

cipal arithmetic subgroup of the group G(k).
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Use the two inclusions Λ ⊂ Γ and ϕ−1(Π) ⊂ Γ:

m(SU(2,1)/Λ) = [Γ : Λ]m(SU(2,1)/Γ) = 3αm(SU(2,1)/Γ)

and

1

3
= m(SU(2,1)/ϕ−1(Π)) = [Γ : ϕ−1(Π)]m(SU(2,1)/Γ).

Use [Γ : ϕ−1(Π)] = [Γ̄ : Π] to get

3α−1 = [Γ̄ : Π]m(SU(2,1)/Λ).
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Vf := set of non-archimedean places of the field k. Then Vf ↔

• set of non-trivial non-archimedean valuations on k, or

• set of prime ideals p in the ring ok of algebraic integers in k.

For v ∈ Vf , kv := corresponding completion of k.

Let (Pv)v∈Vf be a “coherent” family of “parahoric subgroups” Pv ⊂ G(kv).

A principal arithmetic subgroup of G(k) has the form

Λ =
∏

v∈Vf
Pv = {g ∈ G(k) : gv ∈ Pv for each v ∈ Vf}.

Here gv is image in G(kv) of g ∈ G(k).
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Prasad’s formula:

m(SU(2,1)/Λ) = µk,ℓ
∏

v∈T
e′(Pv),

where µk,ℓ is a rational number depending only on k and ℓ, where the

e′(Pv)’s are certain explicit integers, and where T ⊂ Vf is finite.

So if Π is the fundamental group of an fpp, then

3α−1 = [Γ̄ : Π]µk,ℓ
∏

v∈T
e′(Pv).

Corollary. The numerator of µk,ℓ is a power of 3.

We next explain the bounds Prasad and Yeung found for α.
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If v splits in ℓ, then either

(a) : G(kv)
∼= SL(3, kv), OR (b) : G(kv) is compact.

(b) only occurs if G comes from a division algebra D, and D⊗ℓ kv is still

a division algebra. This occurs for a finite nonzero number of v ∈ Vf .

T0 := set of v’s for which (b) holds.

If v ∈ T0, then v ∈ T , Pv = G(kv) and e′(Pv) = (qv − 1)2(qv +1).

Here qv := size of residual field of kv.
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If v splits in ℓ and G(kv)
∼= SL(3, kv), then G(kv) acts on a building Xv

which is “of type Ã2” — it is a simplicial complex made up of vertices,

edges and triangles.

A parahoric subgroup is the stabilizer in G(kv) of a simplex.

If Pv is the stabilizer of a vertex, then v 6∈ T .

• If Pv is the stabilizer of an edge, then e′(Pv) = q2v + qv +1,

• If Pv is the stabilizer of a triangle, then e′(Pv) = (q2v + qv+1)(qv+1),

and in both these cases, v is in T .
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If v ∈ Vf does not split in ℓ = k(s), then

G(kv)
∼= {g ∈ SL(3, kv(s)) : det(g) = 1 and g∗Fvg = Fv}

for an Hermitian Fv ∈ GL(3, kv(s)). Now G(kv) acts on a building Xv

which is a tree — a simplicial complex made up of vertices and edges.

The vertices have two “types”, edges having one vertex of each type.

If v ramifies in ℓ, tree is homogeneous, each vertex has qv+1 neighbours.

If v does not ramify in ℓ, then

Each type 1 vertex has q3v +1 neighbours, each of type 2.

Each type 2 vertex has qv +1 neighbours, each of type 1.
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The group Pv is the stabilizer of a vertex or of an edge.

A non-split v belongs to T when

• Pv is the stabilizer of a type 2 vertex and v does not ramify. Then

e′(Pv) = (q3v +1)/(qv +1) = q2v − qv +1.

• Pv is the stabilizer of an edge. Then

(i) e′(Pv) = q3v +1 if v does not ramify, and

(ii) e′(Pv) = qv +1 if v ramifies in ℓ.

If v ramifies in ℓ and Pv is stabilizer of a vertex, v 6∈ T . N.B.: stabilizers

of type 1 vertices are not conjugate to stabilizers of type 2 vertices.

24



Let

β = ♯{v ∈ Vf : v splits in ℓ and Pv stabilizes a triangle}.
Prasad and Yeung (equation (0) in their §2.3) give the bound

3α ≤ hℓ,33
1+#T0+β,

where hℓ,3 is the order of the subgroup of the class group of ℓ consisting

of elements of order dividing 3.

v ∈ T ⇒ e′(Pv) ≥ 3, so

∏

v∈T
e′(Pv) ≥ 3#T0+β

and

µk,ℓ[Γ̄ : Π]3#T0+β ≤ µk,ℓ[Γ̄ : Π]
∏

v∈T
e′(Pv) = 3α−1 ≤ hℓ,33

#T0+β.

25



So

µk,ℓ[Γ̄ : Π] ≤ hℓ,3.

In particular,

µk,ℓ ≤ hℓ,3.

The rational number µk,ℓ equals

D
5/2
ℓ ζk(2)Lℓ|k(3)

(16π5)nDk
,

involving the absolute values Dk and Dℓ of the discriminants of k and ℓ,

and n = dimQ(k). Prasad and Yeung use µk,ℓ ≤ hℓ,3 to obtain strong

bounds on n, Dk and Dℓ.
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This allowed them to show that either

(a) k = Q and ℓ = Q(
√−a) for some a ∈ {1,2,3,5,6,7,11,15,19,23,31},

or

(b) (k, ℓ) is one of a list of 40 pairs C1, . . . , C40,
for all of which 2 ≤ dimQ(k) ≤ 4.

The numerator of µk,ℓ is power of 3 ⇒ several of the above excluded. In

particular, 25 of the 40 Ci’s were eliminated.

In the cases not eliminated, the numerator of µk,ℓ is equal to 1.

Writing µk,ℓ = 1/dk,ℓ,

3α−1dk,ℓ = [Γ̄ : Π]
∏

v∈T
e′(Pv). (∗)
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When k = Q, G must come from a division algebra D (see §4.1 of Prasad

& Yeung), and so the non-empty set T0 is in T .

Using this, they could eliminate more of the above possibilities.

For example, if k = Q and ℓ = Q(
√−a ) for a = 3, then µk,ℓ = 1/216 =

1/(23 × 33). So

3α+2 × 23 = [Γ̄ : Π]
∏

v∈T
e′(Pv)

is divisible by e′(Pv) = (qv − 1)2(qv + 1) for a v ∈ T0. If qv = 2n + 1 is

odd, then e′(Pv) = 8n2(n + 1) is divisible by 16. So qv must be even.

So v is the 2-adic valuation on k. This is inert in ℓ because −3 has no

square root in Q2. But the v’s in T0 have to split in ℓ.

So the case k = Q, ℓ = Q(
√
−3 ) is eliminated.
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Lemma. In each of the cases coming from a division algebra, the set T0
has just one element, and we can identify this element explicitly.

Proof. This is done case by case.

1. If dk,ℓ is not divisible by 16 and if v ∈ T0, then qv has to be even, and

so v is a 2-adic valuation. If there is only one 2-adic valuation on k, we

are done. Only in the case C21 (for which dk,ℓ = 12) are there two 2-adic

valuations, but neither of them splits.

2. No dk,ℓ is divisible by 162, and so there is at most one v ∈ T0 with

qv odd. For example, in the C3 case, dk,ℓ = 32. There is just one 2-adic

valuation on k in this case, but it ramifies in ℓ, and so is not in T0.
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Identifying the v in T0: E.g. in C3 case, we already know T0 consists of

a single p-adic valuation v for p odd.

Fact: q ≥ 3 odd & (q − 1)2(q +1) divides 3α−1 × 32 ⇒ q = 3, 5 or 7.

In C3 case, the primes 3 and 7 are inert in k, so qv = 9 and 49 for the

3-adic and 7-adic valuations, respectively.

Conclusion: v has to be the 5-adic valuation on k.

Prasad and Yeung could eliminate several cases (of those coming from

a division algebra) because there is no v ∈ Vf which splits in ℓ such that

(qv − 1)2(qv +1) divides 3α−1dk,ℓ.
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Lemma. No v ∈ Vf \ T0 which splits in ℓ can be in T . In particular, the

number β of v ∈ Vf which split in ℓ and for which Pv stabilizes a triangle

is zero.

Proof. A prime p divides LHS 3α−1dk,ℓ of (∗) ⇒ p = 2, 3, 5 or 7.

If q2v + qv +1 divides some 3α−1dk,ℓ, then qv ∈ {2,4}.

If v ∈ T \T0 splits in ℓ, then q2v + qv+1 divides e′(Pv), and so RHS of (∗).
So qv = 2 or 4. So v is 2-adic and q2v + qv + 1 = 7 or 21. Only in the

cases (k, ℓ) = (Q,Q(
√
−7 )), C20 and C31 does 7 divide dk,ℓ. In each of

these cases, there is just one 2-adic valuation on k, and it is in T0.
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Corollary. The number α appearing in (∗) satisfies

α =







1 in the matrix algebra case,

2 in the division algebra case.

Partial Proof. We have the bound 3α ≤ hℓ,33
1+♯T0+β, and we now know

that β = 0, and that ♯T0 = 1 in the division algebra case. By definition,

♯T0 = 0 in the matrix algebra cases. Now hℓ = 1 in all our cases except

C26 (when hℓ = 2 and so hℓ,3 = 1) and k = Q, ℓ = Q(
√
−23 ) (when

hℓ = 3 = hℓ,3). This shows that α ≤ 1 + ♯T0 holds except when k = Q

and ℓ = Q(
√
−23 ). The proof that α = 1 + #T0 = 2 also holds in that

special case, and that α ≥ 1 + #T0 in all our cases, is given in §5.4 of

Prasad-Yeung’s paper.
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The other method used by Prasad and Yeung to eliminate cases was

based on the following:

Lemma. Suppose that Π is a torsion-free subgroup of finite index in a

group Γ̄. Let K be a finite subroup of Γ̄. Then |K| divides [Γ̄ : Π].

Proof. There is an action gΠ 7→ kgΠ of K on the set Γ̄/Π of cosets.

No k ∈ K \ {1} can fix any gΠ. For kgΠ = gΠ implies that g−1kg ∈ Π,

contradicting the torsion-free hypothesis. So if Γ̄/Π is the union of s

K-orbits, then [Γ̄ : Π] = s|K|.

For example, in the case C31, dk,ℓ equals 147, and so the left hand side

of (∗) equals 3α−1 × 147 = 3α × 72. So the primes dividing [Γ̄ : Π] can

only by 3 and 7. Prasad and Yeung produce an element g of Γ̄ of order 2.

Applying the lemma to K = 〈g〉, we get a contradiction.
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Using the above methods, Prasad and Yeung were able to reduce the

possibilities for (k, ℓ) to the following:

Division algebra cases:

a) k = Q, ℓ = Q(
√−a ) for a ∈ {1,2,7,15,23}.

b) C2, C10, C18 and C20.

Matrix algebra cases:

(c) C1, C3, C8, C11, C18 and C21.

They conjectured that there are no fake projective planes arising from

the matrix algebra cases. Tim and I confirmed this conjecture.
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Division algebra cases. T0 = {v0} for the p-adic v0 ∈ Vf , for p below:

name k ℓ p dk,ℓ

(a = 1, p = 5) Q Q(
√
−1 )) 5 96

(a = 2, p = 3) Q Q(
√
−2 ) 3 16

(a = 7, p = 2) Q Q(
√
−7 ) 2 21

(a = 15, p = 2) Q Q(
√
−15 ) 2 3

(a = 23, p = 2) Q Q(
√
−23 ) 2 1

C2 Q(
√
5) k(

√
−3 ) 2 135

C10 Q(
√
2) k(

√

−5+ 2
√
2 ) 2 3

C18 Q(
√
6) k(

√
−3 ) 3 48

C20 Q(
√
7) k(

√
−1 ) 2 21
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Matrix algebra cases: T0 = ∅.

name k ℓ dk,ℓ

C1 Q(
√
5) Q(ζ5) 600

C3 Q(
√
5) Q(

√
5, i) 32

C8 Q(
√
2) Q(

√
2, i) 128

C11 Q(
√
3) Q(

√
3, i) 864

C18 Q(
√
6) Q(

√
6, ζ3) 48

C21 Q(
√
33) Q(

√
33, ζ3) 12

Here ζn is a primitive n-th root of 1.
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In the division algebra cases, we can divide both sides of the equation (∗)
by e′(Pv0) = (qv0 − 1)2(qv0 +1) for the v0 ∈ T0, obtaining

3dk,ℓ/e
′(Pv0) = [Γ̄ : Π]

∏

v∈T \T0
e′(Pv). (†)

We’ve seen v ∈ T \T0 ⇒, v doesn’t split in ℓ. So v inert in ℓ or v ramifies

in ℓ. In inert case:

• e′(Pv) = q2v − qv +1 if Pv stabilizes a type 2 vertex, and

• e′(Pv) = q3v +1 = (q2v − qv +1)(qv +1) if Pv stabilizes an edge.

Fact: If q 6∈ {1,2,3,5}, then q2−q+1 is divisible by a prime p 6∈ {2,3,5,7}.
For q = 2, 3 and 5, q2 − q +1 equals 3, 7 and 21, respectively.
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Division algebra cases. Possibilities for inert v ∈ T \ T0:

name qv0 3dk,ℓ/e
′(Pv0) v

(a = 1, p = 5) 5 3 –

(a = 2, p = 3) 3 3 –

(a = 7, p = 2) 2 21 3,5

(a = 15, p = 2) 2 3 –

(a = 23, p = 2) 2 1 –

C2 4 9 –

C10 2 3 –

C18 3 9 2

C20 2 21 3+,3−
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We also list the v ∈ Vf which ramify in ℓ:

name qv0 3dk,ℓ/e
′(Pv0) v

(a = 1, p = 5) 5 3 2

(a = 2, p = 3) 3 3 2

(a = 7, p = 2) 2 21 7

(a = 15, p = 2) 2 3 3,5

(a = 23, p = 2) 2 1 23

C2 4 9 3

C10 2 3 17−
C18 3 9 –

C20 2 21 –
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Example. In the C18 case, k = Q(r) with r2 = 6, and dk,ℓ = 48. In the

division algebra case, α = 2, and so equation (∗) tells us that

32 × 24 = [Γ̄ : Π]
∏

v∈T
e′(Pv).

The only prime powers q for which (q − 1)2(q + 1) divides 32 × 24 are

q = 2 and q = 3. The primes 2 and 3 ramify in k, so there is only

one 2-adic valuation on k, and only one 3-adic valuation. The 2-adic

valuation is inert in ℓ, and so cannot be in T0. So T0 = {v0} for the one

3-adic valuation v0 on k. Then (qv0 − 1)2(qv0 +1) = 24, and (†) reads

9 = [Γ̄ : Π]
∏

v∈T \T0
e′(Pv).

The only possibility for a v ∈ T \ T0 such that e′(Pv) divides 9 is the one

2-adic valuation.
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For the one 2-adic valuation v, for which qv = 2, Pv could stabilize an

edge, and e′(Pv) = q3v +1 = 9. Equation (†) then tells us that

T = {2,3} and [Γ̄ : Π] = 1.

If v is the 2-adic valuation, and Pv merely stabilizes a type 2 vertex, then

e′(Pv) = q2v − qv +1 = 3. Equation (†) now tells us that

T = {2,3} and [Γ̄ : Π] = 3.

If v is the 2-adic valuation, and Pv stabilizes a type 1 vertex, then v 6∈ T ,

and Equation (†) tells us that

T = {3} and [Γ̄ : Π] = 9.
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There are two other cases (k, ℓ) in which Pv can be the stabilizer of an

edge. When v ramifies in ℓ and Pv is the stabilizer of an edge, then

e′(Pv) = qv +1. In the cases

(a = 1, p = 5) and (a = 2, p = 3),

the 2-adic valuation on k = Q ramifies in ℓ, and qv + 1 = 3 divides

3dk,ℓ/e
′(Pv0) = 3.
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We may assume that each Pv is the stabilizer of a vertex.

Recall that Λ had the property that ϕ−1(Π) ⊂ NSU(2,1)(Λ). Suppose

that Λ =
∏

v∈Vf Pv, and that all the Pv’s are maximal except for v =

v1. Replace Pv1 by a maximal P ′
v1

⊃ Pv1. Leaving all the other Pv’s

unchanged, we get a principal arithmetic group Λ′ such that Λ ⊂ Λ′.

Then ϕ−1(Π) ⊂ NSU(2,1)(Λ
′) (see the end of §2.2 in [PY]).

So we may assume that each Pv is maximal for each v ∈ Vf .
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These maximal Pv’s are the maximal compact subgroups of G(kv).

When v ∈ Vf \ T0 splits in ℓ, there are 3 conjugacy classes of maximal

compact subgroups in G(kv)
∼= SL(3, kv), but only one conjugacy class

if you allow conjugation by elements of Ḡ(kv)
∼= PGL(3, kv).

If v ∈ Vf \T0 does not split in ℓ, there are 2 conjugacy classes of maximal

compact subgroups in G(kv), and still two conjugacy classes even if you

allow conjugation by elements of Ḡ(kv).

If Pv is the stabilizer of a vertex xv and if P ′
v is the stabilizer of another

vertex x′v in the building Xv, then Pv can only be conjugated into P ′
v by

an element of G(kv) if xv and x′v have the same type.

In this case, v is in T only when that type is 2.
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We use the following set in describing the classification of the fpps:

Definition. T1 := the set of v ∈ Vf \ T0 which do not split in ℓ for which

Pv is the stabilizer of a type 2 vertex.

If v ∈ T1, then either v ∈ T \ T0 or v ramifies in ℓ.

Proposition. (Proposition 5.3 on [PY]). If Λ =
∏

v∈Vf Pv and Λ′ =
∏

v∈Vf P
′
v are two principal arithmetic subgroups of G(k), with each Pv

and P ′
v maximal, and if the set T1 is the same for both, then Λ′ and Λ

are conjugate by an element of Ḡ(k).
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For each v ∈ Vf such that v splits in ℓ, pick a vertex xv ∈ Xv. For each

v ∈ Vf which does not split, pick a type 1 vertex xv and a type 2 vertex

x′v. Let

ΛT1 = {g ∈ G(k) : g ∈ Pv for all v ∈ Vf},
where

Pv =







the stabilizer of x′v if v ∈ T1,
the stabilizer of xv if v ∈ T \ T1.

One has to assume that the choices made give a coherent family of

parahoric subgroups.

So up to conjugation by an element of Ḡ(k), ΛT1 is independent of the

choices made of the xv’s and x′v’s.
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For example, if (k, ℓ) is (a = 15, p = 2), then dk,ℓ = 3. Equation (∗)
reads

9 = [Γ̄ : Π]
∏

v∈T
e′(Pv).

The only prime power q such that (q − 1)2(q +1) divides 9 is q = 2. So

T0 = {2}, and

3 = [Γ̄ : Π]
∏

v∈T , v 6=2

e′(Pv).

So T = T0 = {2}. However, the primes 3 and 5 ramify in ℓ, and so there

are 4 possibilities for T1:

T1 = ∅, {3}, {5}, or {3,5}.
If Π is the fundamental group of an fpp coming from this pair (k, ℓ), then

a conjugate of ϕ−1(Π) is commensurable with ΛT1 for one of these four

T1’s. So we have four “classes” of fpps coming from (k, ℓ).
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