
50 Fake Planes: Two floating-point calculations for F

Donald Cartwright, University of Sydney
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Recall that d(·, ·) stands for invariant distance on B(C2),

S ⊂ Γ̄ ⊂ PU(2, 1) is a finite set, and

F = FS = {z ∈ B(C2) ; d(0, z) ≤ d(g(0), z)) for g ∈ S}

When everything has gone well, F will be a fundamental

domain for Γ = 〈S〉.

We need to calculate two numbers associated to F:

r0 = radius(F) = max{d(0, z) ; z ∈ F}

vol(F) = covol(Γ)

The value of r0 is needed for several things. As discussed

yesterday, it is used to to verify that FS is really a fundamental

domain for Γ. Suppose this works out.

Obviously Γ = 〈S〉 ⊆ Γ̄, and if vol(F) <∞, then [Γ̄ : Γ] <∞. If we

can verify that covol(Γ) = vol(F) = covol(Γ̄), then Γ = Γ̄, which is

what we really want. For each Γ̄, the value of covol(Γ̄) is given

by [Prasad, Yeung, 2017].
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For z ∈ B(C2) we can write z = tu with t ≥ 0 and

|u| = (|u1|2 + |u2|2)1/2 = 1. This expresses z in polar coordinates

(t, u). For fixed u, the ray (tu)t≥0 is a geodesic. One has

d(0, tu) = arctanh(t) =
1

2
log

1 + t

1− t

(With this scaling one sees that d(0, z) ≈ |z| for |z| � 1.)

As noted briefly yesterday, F is star-like:

F ∩ {tu ; t ≥ 0} = {tu ; 0 ≤ t ≤ t(u)} where 0 < t(u) ≤ 1.

If t(u) = 1 for even a single value of u, then F is not cocompact,

and further calculation is useless. Otherwise the function t(u) is

used for both calculations. Clearly

r0 = radius(F) = arctanh t0 = arctanh
(
max
|u|=1

t(u)
)
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How does one calculate t(u)? For z, w ∈ B(C2) we use the

formula

cosh2(d(w, z)) =
|1− w∗z|2

(1− |w|2)(1− |z|2)
=
|1− (w̄1z1 + w̄2z2)|2

(1− |w|2)(1− |z|2)

Thus

d(0, z) ≥ d(w, z) ⇐⇒ 1

1− |z|2
≥ |1− w∗z|2

(1− |w|2)(1− |z|2)

⇐⇒ 1− |w|2 ≥ |1− w∗z|2 ⇐⇒ |w∗z|2 − 2 Re(w∗z) + |w|2 ≤ 0

We first note that for fixed w, this defines a convex set of z’s in

the Euclidean sense. Indeed, if w = ( s
0 ) the last condition

translates to

s2|z1|2 − 2 Re(sz1) + s2 ≤ 0

picking out a disk for z1 and putting no condition on z2.
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Now fix g ∈ S, let w = g(0), fix u ∈ C2 with |u| = 1, and let z = tu.

Then

d(0, tu) ≤ d(g(0), tu) ⇐⇒ t2|w∗u|2−2tRe(w∗u)+|w|2 ≥ 0 ⇐⇒ t ≤ tg(u)

where one solves the quadratic equation to calculate tg(u).

The formula for t(u) is then

t(u) = min
g∈S

tg(u)

5



Convexity Lemma: Suppose that |u| = |v| = |u′| = 1 and that

v lies on the geodesic arc from u to u′ in ∂B(C2). If

tg(u), tg(u′) ≤M , then tg(v) ≤M .

Proof. Let w = g(0). Then d(0, z) ≥ d(w, z) holds for z = Mu and

for z = Mu′. Suppose 0 ≤ a ≤ 1. By the convexity mentioned

above, d(0, z) ≥ d(w, z) holds also for z = M(au+ (1− a)u′). For

some such a, v = (au+ (1− a)u′)/|au+ (1− a)u′|. Thus

d(0,M |au+ (1− a)u′| v) ≥ d(w,M |au+ (1− a)u′| v)

which shows that tg(v) ≤M |au+ (1− a)u′| ≤M .
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Algorithm for calculating t0 = max|u|=1 t(u). Before starting, fix a

desired accuracy ε, say ε = 10−12.

• One maintains a list of simplexes of ∂B(C2).

• The list is initialized so that the simplexes cover ∂B(C2).

• For each vertex u of this decomposition, one calculates t(u)

and uses those values to calculate tmax, the largest such

value.

• From time to time we subdivide a simplex into 8 smaller

simplexes. Whenever we do this, we calculate the values

t(u) for the new vertices, and use them to update tmax.
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• We work with the simplexes on the list one at a time.

• Our attention is on one such simplex. Let u be its central

point and find g ∈ S so that t(u) = tg(u). If we have

tg(v) ≤ tmax + ε for each vertex of this simplex, then

t(v) ≤ tg(v) ≤ tmax + ε for every point v in the simplex: we

can just discard this simplex.

• Otherwise, we subdivide the simplex into 8 simplexes, add

them to the end of our list, and drop the original simplex.

• The algorithm terminates when the list is empty.

At termination tmax ≤ t0 ≤ tmax + ε.

To make this calculation mathematically rigorous, one would

have to use interval arithmetic throughout. All I did was add

something like 10−6 to tmax and use that as an upper bound

on t0.
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How about vol(H)? Of course, this is to be calculated using the

invariant volume element. In polar coordinates (t, u) with z = tu,

that volume element is:

dV (z) =
2

π2

t3

(1− t2)3
dt dΘ(u)

where Θ is the usual invariant measure on the unit 3-sphere, so

Θ(∂B(C2)) = 2π2.

Thus ∫
F
dV (z) =

2

π2

∫
|u|=1

∫ t(u)

0

t3

(1− t2)3
dt dΘ(u)

=
1

2π2

∫
|u|=1

t(u)4

(1− t(u)2)2
dΘ(u)
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I used an extremely simple hand-written numerical method to

calculate the last integral. This procedure lacks mathematical

rigor. But the offense is minimal. Remember that

vol(F) = covol(Γ) = [Γ̄ : Γ] covol(Γ̄).

Consider one actual example where covol(Γ̄) = 1/3. Thus, vol(F)

is necessarily an integral multiple of 1/3. The numerical

integration gave:

0.333327467996977

for the volume. I don’t think it’s worth considering the

possibility that this is a really bad approximation to 2/3 instead

of a reasonably good approximation to 1/3.

Still, if someone wanted to fill in this gap, the Convexity Lemma

could be used to get a rigorous upper estimate on the integral.

This concludes my confession.
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50 Fake Planes: The invariant volume element

Why is the invariant volume element what it is? Why is it

normalized as it is?

Suppose U(2, 1) preserves the sesquilinear form given by(−1 0 0
0 −1 0
0 0 1

)
. Denote the form by 〈·, ·〉.

We identify B(C2) with the projectivized version of

{z ∈ C3 ; 〈z, z〉 > 0} via:
z1

z2

1

 ∈ C3 ↔

z1

z2

 ∈ B(C2)
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Consider the matrix gr =
(

cosh r 0 sinh r
0 1 0

sinh r 0 cosh r

)
∈ U(2, 1) and calculate:

gr ·
(

w1
w2
1

)
=

(
(cosh r)w1+sinh r

w2

(sinh r)w1+cosh r

)
gr ( w1

w2
) =

(
((cosh r)w1+sinh r)/((sinh r)w1+cosh r)

w2/((sinh r)w1+cosh r)

)
= ( z1

z2 )

gr(0) = gr ( 0
0 ) = ( tanh r

0 )

∂(z1, z2)/∂(w1, w2)|w=0 =
(

1/ cosh2 r 0
0 1/ cosh r

)
|det ∂(z1, z2)/∂(w1, w2)|w=0|2 = sech6 r

The last number gives the ratio between Euclidean 4-volume

for z and Euclidean 4-volume for w. If we normalize by setting

dV (w) = dVEuclid(w) at w = 0, then invariance of dV forces

dV (z) = (cosh6 r) dVEuclid(z) at z = ( tanh r
0 )

dV (z) =
dVEuclid(z)

(1− t2)3
at z = ( t

0 ).
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Since rotations in U(2) preserve both dV and dVEuclidean,

dV (z) =
dVEuclid(z)

(1− t2)3
whenever |z| = t.

If we use polar coordinate (t, u) for z = tu with |u| = 1, then

dVEuclidean(z) = t3 dt dΘ(u) dV (z) =
t3

(1− t2)3
dt dΘ(u)
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What about the normalization? The Hirzebruch proportionality

principle says that we should calculate the normalization by

looking at the compact form of B(C2), namely P 2(C).

If G = U(2, 1), then Gcomp = U(3). The form preserved by Gcomp

is the one given by
(

1 0 0
0 1 0
0 0 1

)
. In analogy with the noncompact

case, we obtain P 2(C) as the projectived version of

{z ∈ C3 ; 〈z, z〉 > 0} = C3 ∼ {0}. The above calculations can be

repeated with little change. In place of the matrix gr used there

we use
(

cos r 0 sin r
0 1 0

− sin r 0 cos r

)
∈ U(3). If once again we use polar

coordinates (t, u) for z = tu with |u| = 1 the result is:

dVcomp(z) =
t3

(1 + t2)3
dt dΘ(u)

This formula doesn’t work for the line at infinity, but that isn’t

a problem since we intend to integrate the volume form.
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Before integrating, I redefine the form using what turns out to

be the right proportionality constant:

dVcomp(z) =
2

π2

t3

(1 + t2)3
dt dΘ(u)

Then ∫
P 2(C)

dVcomp(z) =
2

π2

∫
|u|=1

∫ +∞

0

t3

(1 + t2)3
dt dΘ(u)

=
2

π2

∫
|u|=1

1

4

t4

(1 + t2)2

∣∣∣∣t=+∞

t=0

dΘ(u)

=
1

2π2

∫
|u|=1

dΘ(u) = 1

So for P 2(C), with the volume form normalized as above, Euler

characteristic χ = 3 corresponds to volume 1.
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The Hirzebruch principle says that if we use the same

normalization in the noncompact case, namely:

dVcomp(z) =
2

π2

t3

(1− t2)3
dt dΘ(u)

then also in this case Euler characteristic χ = 3 corresponds to

volume 1. Fake planes should have volume 1; their fundamental

groups should have covolume 1.

However, we’re not done yet, because we’ve omitted a crucial

detail in the statement of Hirzebruch’s principle. We have to

use the canonical identification between the tangent spaces

of B(C2) and P 2(C) at their respective origins.
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Let

GC = GL(3,C) gC = gl(3,C)

G = U(2, 1) g = u(2, 1)

Gcomp = U(3) gcomp = u(3)

K = U(2)× U(1) k = u(2)⊕ u(1)

It is crucial that G,Gcomp ⊂ GC and likewise for the Lie algebras.
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We have B(C2) ∼= G/K and P 2(C) ∼= Gcomp/K. Let

p =
{( 0 0 z1

0 0 z2
z̄1 z̄2 0

)}
ip =

{( 0 0 iz1
0 0 iz2
iz̄1 iz̄2 0

)}
=
{( 0 0 w1

0 0 w2
−w̄1 −w̄2 0

)}

Then g = k⊕ p and this identifies p with the tangent space at the

origin of G/K ∼= B(C2). Similarly gcomp = k⊕ ip and this identifies

ip with the tangent space at the origin of Gcomp/K ∼= P 2(C).
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Specifically, the tangent vector at the origin of B(C2)

corresponding to
( 0 0 z1

0 0 z2
z̄1 z̄2 0

)
∈ p is obtained as

d

dr
exp

( 0 0 rz1
0 0 rz2

r̄z1 r̄z2 0

)
(0) =

d

dr
exp

( 1 0 rz1
0 1 rz2

r̄z1 r̄z2 1

)
(0) =

d

dr
( rz1
rz2 ) = ( z1

z2 )

A nearly identical calculation shows that the tangent vector at

the origin of P 2(C) corresponding to
( 0 0 iz1

0 0 iz2
iz̄1 iz̄2 0

)
∈ ip is simply(

iz1
iz2

)
.

Conclusion: the canonical identification between the tangent

spaces at the origins of B(C2) and P 2(C) is, up to a factor of i,

the obvious identification coming from the inclusion

B(C2) ⊂ P 2(C).
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This means that

dV (z) =
2

π2

1

(1− |z|2)3
dVEuclidean(z) on B(C2)

and dVcomp(z) =
2

π2

1

(1 + |z|2)3
dVEuclidean(z) on P 2(C)

match at the respective origins. That is what the definition

requires, so our little calculation is complete.

[Prasad, 1989] gives a formula for the normalized volume form

which is valid for all semisimple groups. If one traces back and

works out the meaning of the notations in that formula, it is

not hard to apply in simple cases like this one.
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