50 Fake Planes: Finding enough elements of $\tilde{\Gamma}$

Donald Cartwright, University of Sydney
Tim Steger, Università degli Studi di Sassari

completing a project started by
Gopal Prasad, University of Michigan
Sai-Kee Yeung, Purdue University

25 February–1 March, 2019, Luminy
• We have a concrete division algebra \(\mathcal{D} \).

• We are interested in a certain arithmetic subgroup \(\bar{\Gamma} \subseteq P(\mathcal{D}^\times) \).

• We have conditions on \(g \in \mathcal{D}^\times \) which say which elements are in \(\bar{\Gamma} \).

• Somehow we find a few elements of \(\bar{\Gamma} \). Call that set \(A \).

For the calculations discussed here, we want to think of the elements of \(A \) as matrices in \(PU(2,1) \). This means using the map \(\mathbb{P}U(k) \to \mathbb{P}U(k_v) \cong PU(2,1) \) for a certain real place \(v \).

Concretely, our elements of \(A \) come as matrices, and all we need to do is (i) consider their entries as complex numbers, (ii) if \(k = \mathbb{Q}[\sqrt{b}] \), choose the appropriate sign for \(\sqrt{b} \), and (iii) conjugate by a matrix which converts the preserved form of signature (2,1) to the standard form of signature (2,1).
Let $0 \in B^2(\mathbb{C})$ be the origin. Let $d(\cdot, \cdot)$ be the invariant or hyperbolic distance on $B^2(\mathbb{C})$. We measure the "size" of $g \in \Gamma$ by $d(0, g(0))$. For purposes of size comparison, this is the same as using the Hilbert–Schmidt norm for matrices in $PU(2, 1)$.

Two days back, for one case, Cartwright explained a method for finding the elements of $\bar{\Gamma}$ in order of their size. However, in most cases, we have no reason to believe that the elements of \mathcal{A} are the smallest elements in $\bar{\Gamma}$.
Starting with A, and using inverses and products, we proceed to generate more elements of Γ.

- We maintain a list of the elements we have found.
- This list is initialized using A.
- We keep the list sorted by size.
- We fix an arbitrary limit N, say $N = 10000$ for the length of the list.
- When the list is full, and we have a new element to insert, we drop the last, that is biggest, element of the list.
- When all possible new elements have size that would put them beyond the end of the list, the algorithm terminates.

Discreteness of $\bar{\Gamma}$ guarantees that the algorithm terminates. In truth, my program generates new elements in batches, and updates the master list only after a batch is complete. Cartwright’s program may work differently.
Let S' be the set of elements on the final list. Choose r_1 so that

$$r_1 < \max\{d(0, g(0) ; g \in S')\}$$

and let

$$S = \{g \in S' ; d(0, g(0)) \leq r_1\}$$

Then S satisfies

- $d(0, g(0)) \leq r_1$ for $g \in S$.
- $S = S^{-1}$.
- If $g, h \in S$ and $d(0, gh(0)) \leq r_1$, then $gh \in S$.

From this point on, we work with S and forget about A. Let $\Gamma = \langle S \rangle \subset \bar{\Gamma}$. We hope $\Gamma = \bar{\Gamma}$, but for this lecture, we’ll just think about Γ. This is not the same group that was called Γ in earlier lectures and in [Prasad, Yeung, 2007].
We hope that

$$S = \{ g \in \Gamma ; \ d(0, g(0)) \leq r_1 \}$$

When is this true? How can we prove it?

Consider

$$\mathcal{F}_S = \{ z \in B(\mathbb{C}^2) ; \ d(z, 0) \leq d(z, g(0)) \text{ for every } g \in S \}$$

If one used all the elements of $g \in \Gamma$ instead of just $g \in S$, this would be a Dirichlet fundamental domain for Γ.

Let

$$r_0 = \max \{ d(0, z) ; \ z \in \mathcal{F}_S \}$$

the radius of \mathcal{F}_S.

As will be explained later, it is possible to calculate r_0 numerically. Elements $g \in S$ for which $d(0, g(0)) > 2r_0$ have no effect on \mathcal{F}_S.
If $r_0 = +\infty$, then something has gone wrong. Either

- Γ is not cocompact. Thus $\Gamma \neq \tilde{\Gamma}$ and $[\tilde{\Gamma} : \Gamma] = \infty$; or

- r_1 is too small, most likely because N was chosen too small; or

- because N was chosen too small, S does not contain all of $\{g \in \Gamma; d(0, g(0)) \leq r_1\}$.

The first possibility can easily arise, almost always because the original set A isn’t a generating set for $\tilde{\Gamma}$ or for a finite index subgroup of $\tilde{\Gamma}$. The last two possibilities can be dealt with in principle by increasing N, and this always worked in practice for the fake plane project.

Question: can one use methods anything like these in the case of non-uniform lattices?

Theorem: Suppose $S \subseteq PU(2,1)$ is a finite set satisfying

- $d(0, g(0)) \leq r_1$ for $g \in S$.
- $S = S^{-1}$.
- If $g, h \in S$ and $d(0, gh(0)) \leq r_1$, then $gh \in S$.

Let $\Gamma = \langle S \rangle$, let \mathcal{F}_S and r_0 be as above, and suppose:

- $r_1 > 2r_0$.

Then

$$S = \{ g \in \Gamma ; d(0, g(0)) \leq r_1 \}$$

Moreover, using S as the generators and all true identities of the form $g_1g_2g_3 = 1$ for $g_1, g_2, g_3 \in S$ as relations, we obtain a presentation of Γ.

This theorem is a close cousin of (a particular case of) Macbeath’s theorem. The key difference is that Macbeath uses a set like:

\[S' = \{ g \in \Gamma ; g(X) \cap X \neq \emptyset \} \]

whereas our hypotheses on \(S \) can be checked on \(S \) itself, without knowing a priori what the rest of \(\Gamma \) looks like. If it was possible to apply Macbeath’s theorem in our case, we would do so using \(X = \{ z ; d(0, z) \leq r_0 \} \).

The only properties of \(B(C^2) \) used in the proof are

- \(B(C^2) \) is simply connected (as in Macbeath’s theorem), and
- \(B(C^2) \) is a geodesic metric space.

From here on, assume the hypotheses of the theorem.

Lemma 1: \(\Gamma \) is generated by \(S_0 = \{ g \in S ; d(0, g(0)) \leq 2r_0 \} \).
Note: the remainder of the talk followed the proof of the theorem as found in [Cartwright, Steger, 2017]. It had many pictures, and was given on the chalkboards.