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• We have a concrete division algebra D.

• We are interested in a certain arithmetic subgroup

Γ̄ ⊆ P (D×).

• We have conditions on g ∈ D× which say which elements

are in Γ̄.

• Somehow we find a few elements of Γ̄. Call that set A.

For the calculations discussed here, we want to think of the

elements of A as matrices in PU(2, 1). This means using the

map PU(k)→ PU(kv) ∼= PU(2, 1) for a certain real place v.

Concretely, our elements of A come as matrices, and all we

need to do is (i) consider their entries as complex numbers, (ii)

if k = Q[
√
b], choose the appropriate sign for

√
b, and (iii)

conjugate by a matrix which converts the preserved form of

signature (2, 1) to the standard form of signature (2, 1).
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Let 0 ∈ B2(C) be the origin. Let d(·, ·) be the invariant or

hyperbolic distance on B2(C). We measure the “size” of g ∈ Γ

by d(0, g(0)). For purposes of size comparison, this is the same

as using the Hilbert–Schmidt norm for matrices in PU(2, 1).

Two days back, for one case, Cartwright explained a method

for finding the elements of Γ̄ in order of their size. However, in

most cases, we have no reason to believe that the elements

of A are the smallest elements in Γ̄.
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Starting with A, and using inverses and products, we proceed to

generate more elements of Γ.

• We maintain a list of the elements we have found.

• This list is initialized using A.

• We keep the list sorted by size.

• We fix an arbitrary limit N , say N = 10 000 for the length of

the list.

• When the list is full, and we have a new element to insert,

we drop the last, that is biggest, element of the list.

• When all possible new elements have size that would put

them beyond the end of the list, the algorithm terminates.

Discreteness of Γ̄ guarantees that the algorithm terminates. In

truth, my program generates new elements in batches, and

updates the master list only after a batch is complete.

Cartwright’s program may work differently.
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Let S′ be the set of elements on the final list. Choose r1 so that

r1 < max{d(0, g(0) ; g ∈ S′}

and let

S = {g ∈ S′ ; d(0, g(0)) ≤ r1}

Then S satisfies

• d(0, g(0)) ≤ r1 for g ∈ S.

• S = S−1.

• If g, h ∈ S and d(0, gh(0)) ≤ r1, then gh ∈ S.

From this point on, we work with S and forget about A. Let

Γ = 〈S〉 ⊂ Γ̄. We hope Γ = Γ̄, but for this lecture, we’ll just think

about Γ. This is not the same group that was called Γ in earlier

lectures and in [Prasad, Yeung, 2007].
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We hope that

S = {g ∈ Γ ; d(0, g(0)) ≤ r1}

When is this true? How can we prove it?

Consider

FS = {z ∈ B(C2) ; d(z, 0) ≤ d(z, g(0)) for every g ∈ S}

If one used all the elements of g ∈ Γ instead of just g ∈ S, this

would be a Dirichlet fundamental domain for Γ.

Let

r0 = max{d(0, z) ; z ∈ FS}

the radius of FS.

As will be explained later, it is possible to calculate r0

numerically. Elements g ∈ S for which d(0, g(0)) > 2r0 have no

effect on FS.
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If r0 = +∞, then something has gone wrong. Either

• Γ is not cocompact. Thus Γ 6= Γ̄ and [Γ̄ : Γ] =∞; or

• r1 is too small, most likely because N was chosen too

small; or

• because N was chosen too small, S does not contain all of

{g ∈ Γ ; d(0, g(0)) ≤ r1}.

The first possibility can easily arise, almost always because the

original set A isn’t a generating set for Γ̄ or for a finite index

subgroup of Γ̄. The last two possibilities can be dealt with in

principle by increasing N , and this always worked in practice for

the fake plane project.

Question: can one use methods anything like these in the case

of non-uniform lattices?
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From [Cartwright, Steger, 2017] Finding Generators and

Relations for Groups Acting on the Hyperbolic Ball,

arXiv:1701.02452.

Theorem: Suppose S ⊆ PU(2, 1) is a finite set satisfying

• d(0, g(0)) ≤ r1 for g ∈ S.

• S = S−1.

• If g, h ∈ S and d(0, gh(0)) ≤ r1, then gh ∈ S.

Let Γ = 〈S〉, let FS and r0 be as above, and suppose:

• r1 > 2r0.

Then

S = {g ∈ Γ ; d(0, g(0)) ≤ r1}

Moreover, using S as the generators and all true identities of

the form g1g2g3 = 1 for g1, g2, g3 ∈ S as relations, we obtain a

presentation of Γ.
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This theorem is a close cousin of (a particular case of)

Macbeath’s theorem. The key difference is that Macbeath uses

a set like:

S′ = {g ∈ Γ ; g(X) ∩X 6= ∅}

whereas our hypotheses on S can be checked on S itself,

without knowing a priori what the rest of Γ looks like. If it was

possible to apply Macbeath’s theorem in our case, we would do

so using X = {z ; d(0, z) ≤ r0}.

The only properties of B(C2) used in the proof are

• B(C2) is simply connected (as in Macbeath’s theorem), and

• B(C2) is a geodesic metric space.

From here on, assume the hypotheses of the theorem.

Lemma 1: Γ is generated by S0 = {g ∈ S ; d(0, g(0)) ≤ 2r0}.
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Note: the remainder of the talk followed the proof of the

theorem as found in [Cartwright, Steger, 2017]. It had many

pictures, and was given on the chalkboards.
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