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Basic idea of the whole project: suppose Π ⊆ PU(2, 1) is such

that

• Π is a uniform lattice in PU(2, 1),

• Π is torsion free,

• Π/[Π,Π] is finite, and

• covol(Π)) = 1.

Then X = Π\B(C2), the associated quotient of B(C2) is a fake

projective plane. The first condition implies that X is a

compact complex surface, possibly singular. The second implies

that X is smooth. The third implies that b1(X) = 0, and so that

b3(X) = 0. The fourth implies that χ(X) = 3, hence b1(X) = 1.

Conversely several deep results together imply that any fake

projective plane arises in this way. Finally, one knows that such

a Π must be arithmetic: Yeung and Klingler, independently.
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As was explained yesterday

[Prasad, Yeung, 2007] Fake projective planes, Invent. Math.

168, 321–370

gives a short list of possibilities for maximal arithmetic

subgroups Γ̄ ⊂ PU(2, 1) which might contain such a Π. In

particular, it gives the covolume of each of these Γ̄. The

covolume calculation depends on Prasad’s Covolume Formula

from:

[Prasad, 1989] Volumes of S-arithmetic quotients of

semi-simple groups, Publ. Math., Inst. Hautes Etud. Sci. 69,

91–117

The idea of starting this project arose because the Covolume

Formula was available. Prasad and Yeung also proved the

existence of some (but not all) of the fake planes arising from

subgroups of these Γ̄.
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Each of the Γ̄ was described in terms of

• A totally real field k.

• A totally complex extension field ` with [` : k] = 2.

• A central simple algebra D of degree 3 (and dimension 9)

over `.

• A certain collection of parahoric groups giving integrality

conditions for the elements of Γ̄.

As it happens, all fake projective planes arise from cases where

D is a division algebra, so I concentrate on that situation. The

other possibility is D ∼= Mat3×3(`).

The end goal of this lecture is to give more detail on the last

item.
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Recall that in each case D admits an involution of the second

kind, denoted ι. That is:

1. ι2 = ι,

2. ι(xy) = ι(y)ι(x),

3. ι(cx) = c̄ι(x) for c ∈ `.

We need to use an ι which behaves in the right way at the real

places of k. Using a certain Hasse principal, plus some

elementary facts about forms over nonarchimedean local fields,

one deduces that any two possibilities for such an ι are

conjugate by some automorphism of D.
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One might consider the following version of the unitary group:

U(k) = Uι(k) = {x ∈ D ; ι(x)x = 1}

Each x ∈ U(k) gives rise to an `-linear automorphism of D
denoted Cx defined by Cx(y) = xyx−1. One checks that Cx
satisfies Cxι = ιCx. This gives us a map from U(k) to

PU(k) = PUι(k) =

{C : D → D ; C is an `-linear automorphism with Cι = ιC}

Using the Skolem–Noether Theorem, which states that all

`-linear automorphisms of D are inner, one sees that each

C ∈ PU(k) is in fact Cx for some x ∈ U(k). Clearly Cx = id if and

only if x is central, so if and only if x ∈ `.

Conclusion: PU(k) is a version of the projective unitary group.
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Consider a place v of k. This gives rise to an inclusion of fields:

k → kv. For instance if k = Q, and v =∞, then the map is

Q→ Q∞ ∼= R, while if v “is” some rational prime p, the map is

Q→ Qp, the p-adic numbers. If [k : Q] > 1 the situation is

analogous.

A good reference for places is:

[Weil, 1974] Basic Number Theory, Third Edition, Die

Grundlehren der mathematischen Wissenschaften, Band 144,

Springer-Verlag, Berlin.

which also has an excellent exposition of central simple algebras

in general and of central simple algebras over local fields and

over number fields.
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What is meant by PU(kv)? If you know about linear algebraic

groups, you already know the answer. A good reference for

linear algebraic groups and arithmeticity is

[Zimmer, 1984] Ergodic Theory and Semisimple Groups,

Birkhäuser, Boston

First we need to think about Dv = D ⊗k kv.

dim(D/k) = dim(D/`) dim(`/k) = 18. Identify D with k18 by fixing

a basis (ej)1≤j≤18. The algebra structure is given by

ejek =
∑
m

cmjkem

for structure constants cmjk ∈ k.

One concrete way to construct Dv is to let Dv = k18v , with

multiplication defined by the same structure constants using the

inclusion k → kv.
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In the same way one constructs `v = `⊗k kv, and one has:

kv ↪→ `v ↪→ Dv

From ι one constructs ιv : Dv → Dv. This is

ιv = ι⊗ id : D ⊗k kv → D ⊗k kv. Or more concretely, ιv is the

kv-linear map k18v → k18v which has the same matrix as the

k-linear map ι : k18 → k18.

Similarly, the conjugation map `→ ` gives rise to a conjugation

map `v → `v. It is easy to see that ιv is an involution of the

second kind of the algebra Dv/`v relative to the conjugation

map on `v.
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Then

PU(kv) = PUι(kv) =

{C : Dv → Dv ; C is an `v-linear automorphism with Cιv = ιvC}

and there is a natural inclusion

PU(k)→ PU(kv)

induced by the inclusion k → kv.

If kv ∼= R, then `v ∼= C (because ` is totally complex) and

necessarily Dv ∼= Mat3×3(C). Also ι(x) = F−1x∗F for some F with

F ∗ = F . It follows that PU(kv) ∼= PU(3) or PU(kv) ∼= PU(2, 1),

depending on the signature of F .
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To get an arithmetic subgroup of PU(2, 1) from this

construction, it must be that

• For one real place v, PU(kv) ∼= PU(2, 1).

• For any other real place w, PU(kw) ∼= PU(3).

Since all the fields k on Prasad–Yeung’s list satisfy [k : Q] ≤ 2,

there is at most one place of the second sort.

Then PU(k) ↪→ PU(kv) ∼= PU(2, 1). This is the sense in which

PU(k) and its subgroups can be considered as subgroups

of PU(2, 1).

In this situation PU(k) is what is called a k-form of PU(2, 1).

If k = Q, then PU(Q) is called a rational form of PU(2, 1). To

get an arithmetic subgroup of PU(2, 1) we need to identify a

corresponding “integral” form of PU(2, 1).
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As usual, let ok denote the ring of algebraic integers in k. One

has that x ∈ ok if and only x is integral as an element of kv for

every non-archimedean place v. For k = Q, this translates to

saying that x ∈ Q is integral if and only if for every prime p it

can be expressed using no factor of p in its denominator (duh).

As before, any basis for D over k determines a bijection D ∼= k18.

For a very particular sort of basis, the maximal arithmetic

subgroups Γ̄ which Prasad–Yeung specified are given by

Γ̄ = {C ∈ PU(k) ; C(o18k ) = o18k }

The condition is that the entries of the matrices for C and C−1

must be algebraic integers.
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There are many possible bases. If two of them are conjugate

under the action of PU(k), they give rise to conjugate arithmetic

subgroups. But even up to conjugacy, there are many possible

bases. And only some of them give maximal arithmetic

subgroups. This looks terribly complicated.

Fortunately, a place by place analysis, based on the Strong

Approximation Theorem and the Bruhat–Tits theory of

buildings, brings order out of chaos.

One fundamental point is that given any two bases of D, the

matrix in GL(18, k) converting one to the other is integral in kv

for all but finitely many places v.
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The Strong Approximation Theorem is a super-duper version of

the Chinese Remainder Theorem. It implies that for each

non-archimedean place v of k we can choose which v-adic

integrality condition to use, and these choices can be made

independently, so long as we make the “standard” choice for all

but finitely many primes. Also, the overall condition will be

determined, up to conjugacy, by the conjugacy classes of the

various v-adic conditions. To be precise, this last depends also

on some case-by-case class number calculations.

To specify the integrality condition at the place v, it is necessary

and sufficient to specify a subgroup Pv ⊂ PU(kv) so that the

v-adic integrality condition is x ∈ Pv where x ∈ PU(k) ↪→ PU(kv).

To get a maximal arithmetic subgroup, it is necessary that

each Pv be maximal compact in PU(kv). For the Γ̄ on

Prasad–Yeung’s list, the Pv are always of the sort known as

parahoric subgroups. We proceed to give a little detail about

the various possibilities for the Pv.
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One says that a place v of k splits over ` when there exist a pair

of maps `→ kv extending k → kv. If, for example ` = k[
√
−3],

then v splits if and only if there is some square root of −3 in kv.

If v splits over `, then `v ∼= kv ⊕ kv and c⊕ d = d⊕ c. Also

Dv = D̂v ⊕ D̂op
v where D̂v is a central simple algebra of degree 3

over kv. Moreover, in this case, ιv : Dv → Dv maps x̂⊕ ŷop to

ŷ ⊕ x̂op. From this it follows without difficulty that PU(kv) is the

projectived version of D̂×v .

CASE A: v splits over ` and D̂v is a division algebra.

In this case PU(kv) ∼= P(D̂×v ) is itself compact, and one

necessarily takes Pv = PU(kv). This means that at the place v

one doesn’t impose any non-trivial integrality condition.

Recall that T0 is the set of places of this sort. As Cartwright

pointed out, for each of the items on Prasad–Yeung’s |T0| ≤ 1,

and |T0| = 1 if and only if D is a division algebra.
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CASE B: v splits over ` and D̂v ∼= Mat3×3(kv).

In this case PU(kv) ∼= PGL(3, kv). Let ov denote the integral

elements of kv. Here we take Pv = PGL(3, ov).

Equivalently, if L = o3v, one may define Pv as the image in

PGL(3, kv) of

{x ∈ GL(3, kv) ; x(L) = L} ⊂ GL(3, kv)

Here L is what is called a lattice in k3v, namely a free

ov-submodule with a 3-element basis. All lattices are in a single

orbit under GL(3, kv). If one changed the lattice in the definition

of Pv, it would amount to conjugating Pv by an element of

PU(kv) ∼= PGL(3, kv). The effect of such a change on Γ̄ is

likewise a conjugation, basically irrelevant.

The set of lattices (modulo multiplication by scalars) give the

vertex set of the building of PGL(3, kv). Thus, another way of

describing Pv is as the stabilizer of a vertex of that building.
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CASE C: v doesn’t split over `; Type 1 parahoric.

When v doesn’t split over `, there is exactly one place of `

which lies over v. Denote this likewise by v. Then if we define

`v = `⊗k kv, as before, `v is a field, and the map `→ `v is indeed

the map associated to the place v of `. We have [`v : kv] = 2,

and the conjugation map on `v is the nontrivial automorphism

of `v over kv.

Here Dv is a central simple algebra of degree 3 over `v. The

existence of ι implies that Dv ∼= Dop
v . For a division algebra of

degree 3 (or any degree > 2) over a non-archimidean local field,

this is impossible. Thus Dv ∼= Mat3×3(`v).

The map ιv : Mat3×3(`v)→ Mat3×3(`v) must be of the form

ιv(x) = F−1x∗F where x∗ is calculated using the conjugation map

on `v and where F is some self-adjoint matrix in Mat3×3(`v).
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Tracing through the definition of PU(kv) = PUι(kv), one finds

PU(kv) ∼= PU(`3v) = PU(`3v, 〈·, ·〉F ) where

〈u, v〉F = u∗Fv

Actually, up to scalars, there is only one conjugacy class of

sesquilinear forms on `3v, so a change of basis would permit one

to use F = id.

For a lattice L ∈ `3v, define its dual lattice by

L′ = {x ∈ `3v; 〈x,L〉F ⊆ ov}

where here ov stands for the integral subring of `v. It is easy to

verify that (L′)′ = L and that for x ∈ U(`3v) one has

(x(L))′ = x(L′).
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In analogy with CASE B, Pv is defined as the image in PU(`3v) of

{x ∈ U(`3v) ; x(L) = L}

for some lattice in `3v. In this case, different choices of lattice

give rise to non-conjugate Pv. Indeed, only some choices of

lattice lead to Pv which are maximal compact.

Here’s the problem. If x ∈ U(`3v) stabilizes L, it also stabilizes L′.
Thus it also stabilizes L+ L′, which is again a lattice. For an

arbitrary choice of L, the stabilizer of L+ L′ can be a larger

group than the stabilizer of L, and if that is so, then the

stabilizer of L is not maximal compact (and not parahoric

either).

In this case, CASE C, one chooses a Type 1 parahoric; that

means one chooses L self-dual: L = L′. All Type 1 parahorics

are conjugate; equivalently the self-dual lattices lie in a single

orbit of U(`3v).
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As Cartwright explained, the building associated to PU(`3v) is a

tree, and (modulo scalars) the self-dual lattices correspond to

“half” of its vertices, known as Type 1 vertices.

When v doesn’t split over `, the “standard” condition is a

Type 1 condition. Thus, one must use a Type 1 condition for

all but finitely many places. However, there is another

possibility, which can be chosen at finitely many places.

CASE D: v doesn’t split over `; Type 2 parahoric.

All is as in CASE C, but we make a different sort of choice

for L. Let πv ∈ ov be a uniformizer of `v. Choose L so that

πvL ⊂ L′ ⊂ L. As before define Pv as the image in PU(`3v) of

{x ∈ U(`3v) ; x(L) = L}

This parahoric stabilizes both L and L′.
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As Cartwright mentioned, the Type 2 parahorics (or the

corresponding lattices L) correspond to the other “half” of the

vertices of the tree of PU(`3v). The action of PU(`3v) is transitive

on either type of vertex, but it never exchanges the two types.

Equivalently, any two Type 2 parahorics are conjugate, but they

are not conjugate to the Type 1 parahorics.

This means that if two examples of Γ̄, say Γ̄1 and Γ̄2 are

conjugate, then the corresponding parahorics must be Type 2

at exactly the same places of k.

Let T1 be the set of places where we are going to use Type 2

parahorics. Then T1 is part of the data which determine the

conjugacy class of Γ̄. As Cartwright explained, the choice of T1
influences the covolume of Γ̄, and for a given choice of k, `, and

D, there are never more than 6 possibilities for T1.

The only choice available is the choice between a Type 1 and a

Type 2 parahoric when v doesn’t split. So the set T1 gives all

the additional information needed to determine Γ̄.21



How does this work for concrete calculations? First of all, we

choose a basis of D over k. In principle the choice is arbitrary,

but in practice a good choice significantly reduces the work to

be done. Using this basis, we identify D with k18. If if k = Q,

this makes D ∼= Q18. If [k : Q] = 2 we also choose a basis of k/Q,

and so identify D with Q36. One chooses the basis of k/Q so

that Z2 corresponds to ok.

Any potential element x ∈ Γ̄ has to satisfy the integrality

conditions given by the choice of parahorics, more precisely, the

choice of the types of the parahorics, in short by the choice

of T1. We start with the naive condition x ∈ Z18 or x ∈ Z36.

Only rarely will this be just right, but it needs modification at

only finitely many primes. Indeed the naive condition as above

will correspond to the “standard” integrality condition at all but

finitely many places; at all but finitely many places the standard

integrality condition is what we wish to use.
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To be explicit, when v splits, the standard integrality condition

is as in CASE B; when v doesn’t split the standard integrality

condition is as in CASE C, where the parahoric is Type 1.

Thus, the only places where we need a non-standard integrality

condition are those in T0, where we use the non-condition of

CASE A, and those of T1 where we use a condition as in

CASE D, a parahoric of Type 2.

As to the unique place in T0, this always corresponds to a single

rational prime, p. No condition should be used at that prime;

consequently one should allow powers of p in the denominators

of the elements of x ∈ Z18 or x ∈ Z36. One knows that the size

of that power is limited; in practice it was always enough to ask

that p4x have integral entries.
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For places in T1, explicit calculations are needed to find a

replacement for the naive integrality condition. In particular,

one needs to find some explicit lattice L ∈ `3v satisfying

πvL ⊂ L′ ⊂ L. Next, one needs to express membership in the

corresponding parahoric in terms of congruence conditions on

elements of x ∈ Z18 or x ∈ Z36.

Similar calculations are necessary for places where a standard

integrality condition is desired, but where the naive integrality

condition doesn’t give one. This tends to happen whenever a

place v of k ramifies over `.

These calculations were done by Steger using GAP and

independently by Cartwright using REDUCE.
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Once the integrality conditions for Γ̄ are translated into concrete

conditions, one can proceed to search for elements of Γ̄.

How can one ever be sure that enough elements have been

found? That is doable because one knows the covolume of Γ̄.
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