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A Model for Granular Flow: Introduction

A Model for Granular Flow: Last contributors

Hadeler-Kutter [1999, Granular Matter]
‘Hadeler is a first-generation pioneer in mathematical biology’

Special issue in his memory on J. of Mathematical Biology

Amadori-Shen [2009, Communications in PDEs]
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A Model for Granular Flow: Introduction

A Model for Granular Flow: Last contributors

. . . physicists Bouchaud, Cates, Prakash, Edwards, Boutreux, de Gennes, . . .
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A Model for Granular Flow: Introduction

A Model for Granular Flow: What we are describing

Wiki: Khimsar Sand Dunes Village, India—Ankur2436

Kelso Dunes Avalanche Deposits, California—A. Wilson, The College of Wooster
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A Model for Granular Flow: Introduction

A Model for Granular Flow: What we are describing

Video: Alessandro Ielpi, Laurentian University (Canada)

https://www.youtube.com/watch?v=curEvUdhro4

Dry sand: A grain flow induced from the brink of an eolian
bedform in the Carcross Sand Dunes, Yukon Territory (June 2016)

Also: gravel in dunes, snow in avalanches,. . .

https://www.youtube.com/watch?v=curEvUdhro4
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A Model for Granular Flow: Introduction

A Model for Granular Flow: PDE formulation

h = h(x, t) > 0 : thickness of the rolling layer (on the top)
s = s(x, t) > 0 : height of the standing layer (at the bottom)
p = p(x, t) : slope of the standing layer (at the bottom)
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A Model for Granular Flow: Introduction

A Model for Granular Flow: PDE formulation

[Hadeler–Kuttler, 1999]

h = h(x, t) > 0 : thickness of the rolling layer (on the top)
s = s(x, t) > 0 : height of the standing layer (at the bottom){

ht −div (h∇s) = (|∇s| − 1)h

st +(|∇s| − 1)h = 0
t ≥ 0, x ∈ R2

normalized model; critical slope: |∇s| = 1

- we study one space dimension

- we differentiate the second equation

- we study p := sx, slope of the standing layer, in place of s
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A Model for Granular Flow: Introduction

A Model for Granular Flow: PDE formulation

h = h(x, t) > 0 : thickness of the rolling layer (on the top)
p = p(x, t) > 0 : slope of the standing layer (at the bottom){

ht − (hp)x = (p− 1)h,

pt + ((p− 1)h)x = 0,
t ≥ 0, x ∈ R

and assign data

h(x, 0) = h(x) , p(x, 0) = p(x) for x ∈ R
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A Model for Granular Flow: Introduction

A Model for Granular Flow: PDE formulation

δ0 > h ≥ 0 : initial thickness of the rolling layer (on the top)
p > p0 > 0 : initial slope of the standing layer (at the bottom)


ht − (hp)x = (p− 1)h,

pt + ((p− 1)h)x = 0,

h(x, 0) = h(x) , p(x, 0) = p(x)

t ≥ 0, x ∈ R (GF)

‘mesoscopic’ description  hyperbolic system of balance laws
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A Model for Granular Flow: Mathematical Analysis

A toy model towards (?) stability for more general systems
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A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow
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A Model for Granular Flow: Mathematical Analysis

System of balance laws:

ut +A(u)ux = g(u), u = (h, p)

A(h, p) =

[
−p −h
p− 1 h

]
g(u) = (p− 1)h (EGF)

with eigenvalues

λ1,2(h, p) =
h− p∓

√
(p− h)2 + 4h

2
λ1 ≈ −p;λ2 ≈

h

p

strictly hyperbolic in Ω = {(h, p) : h ≥ 0, p > p0 > 0}

1–char. field=


GNL for p > 1
LD for p = 1
GNL for p < 1

2–char. field=

{
GNL for h 6= 0

LD for h = 0
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? I

© Classical Solutions for special initial data [Shen, 2008]

§ Lack of regularity in general for conservation laws

u(t, x) smooth sol =⇒ ∂t u+ f ′(u) ∂x u = 0

Gradient Catastrophe also for single, convex equations

x

f ′(u0)

x
x0

compression wave

shock wave

x0

u0(t, ·)

u0(0, ·)

u0
x →∞

u t
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? II

We consider solutions in the sense of distributions

λk(u
−) ≥ σ ≥ λk(u

+)

x

u(t, ·)

σ

ul

ur

∫ +∞

0

∫
R

[
uϕt + f(u)ϕx

]
dxdt = 0 , ϕ ∈ C1c (]0,+∞[×R)
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? II

We consider solutions in the sense of distributions

© well-posedness theory developed for small BV data
for entropy weak solutions (Lax ’56, Liu). For CL:

Existence Kružkov, 1970; Glimm, 1965; Bianchini-Bressan, 2000;
Uniqueness Bressan & coll. 1992-1998; (. . . )

Stability Liu–Yang 1999, Bressan–Liu–Yang 1999 for fields LD or GN

§ The problem makes sense with locally large total variation

§ The source is not dissipative

§ The fields have linear degeneracy and genuine nonlinearity
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? III

© Global in time existence of entropy solutions large in BV
[Amadori-Shen, 2009]

§ No uniqueness was proved, neither semigroup properties,
nor stability
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A Model for Granular Flow: Mathematical Analysis

Theorem (Amadori–Shen, CPDE (2009))

For all M0, p0 > 0 there exists δ0 > 0 small enough such that if

TotVar h̄+ TotVar (p̄− 1) ≤M0,

0 ≤ h̄ ≤ δ0 , p0 ≤ p̄ ≤M0

hold then the Cauchy problem for (GF) has an entropy weak
solution (h(t, x), p(t, x)) defined for all t ≥ 0.

Moreover, there exists δ∗0 , p
∗
0,M1 > 0 such that

0 ≤ h(t, x) ≤ δ∗0 p∗0 ≤ p(t, x) ≤M1 ∀t > 0
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A Model for Granular Flow: Mathematical Analysis

Basic Functionals for Amadori-Shen, 2009

Total Variation: V (u)
.
=

∑
α jumps of u

|ρα|

Interaction Potential: Q(u)
.
= Qhh +Qhp +Qpp

Qhh
.
=

∑
kα=kβ=1

xα<xβ

ωαβ|ραρβ| , Qhp(u)
.
=

∑
kα=2, kβ=1
xα<xβ

|ραρβ|,

Qpp(u)
.
=

∑
α or β shock, kα = kβ = 2

|ραρβ|

ωα,β =


δ0 min{|p`α − 1|, |p`β − 1|} ρα, ρβ 1-shocks lying both

either in {p > 1} or {p < 1}
0 otherwise

Note: weighted functional Qhh  existence for large BV data
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A Model for Granular Flow: Mathematical Analysis

Basic Functionals for Amadori-Shen, 2009

Total Variation: V (u)
.
=

∑
α jumps of u

|ρα|

Interaction Potential: Q(u)
.
= Qhh +Qhp +Qpp

Qhh
.
=

∑
kα=kβ=1

xα<xβ

ωαβ|ραρβ| , Qhp(u)
.
=

∑
kα=2, kβ=1
xα<xβ

|ραρβ|,

Qpp(u)
.
=

∑
α or β shock, kα = kβ = 2

|ραρβ|

ωα,β =


δ0 min{|p`α − 1|, |p`β − 1|} ρα, ρβ 1-shocks lying both

either in {p > 1} or {p < 1}
0 otherwise

Glimm functional is: G(u)
.
= V (u) + cQ(u)
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What helps? Special features

© “simple” solutions to Riemann Problems

u(t, x) = ur

ul

ur

Time goes on ....

Riemann datum Packs of i-th waves

u(t, x) = ul

u t

xx

Shocks

Rarefactions

© h, the thickness of the rolling layer, is small
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A Model for Granular Flow: Mathematical Analysis

Wave interactions
I GNL fields: waves do not change nature after interactions

I Non GNL 1-field in GF: shock waves of the first family can
become rarefaction waves (and vice versa) after interactions
with waves of the second family, or also contact discontinuities

sβsβsα

GNL fields Non GNL fields

s′ s′′ s′′s′

sα
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A Model for Granular Flow: Mathematical Analysis

Characteristic and Wave Curves
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Right: Right states connected to the left state (h`, p`) by an
entropy admissible 1-wave or 2-wave of the homogeneous system
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A Model for Granular Flow: Mathematical Analysis
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A Model for Granular Flow: Mathematical Analysis
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A Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? Summary

§ no smooth solutions in general
 entropy weak solutions

§ possibly large total variation

§ it has linear degeneracy and nonlinearity

§ non dissipative source
 special features of the problem

Existence of global solutions established [Amadori-Shen, 2009]

Goal: Uniqueness & Semigroup & L1-stability in the initial data



Exponential Stability of large BV Solutions in a Model of Granular Flow L. Caravenna, Padova

Stability Results

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow
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Stability Results

System of balance laws:

ut +A(u)ux = g(u), u = (h, p)

A(h, p) =

[
−p −h
p− 1 h

]
g(u) = (p− 1)h (EGF)

with eigenvalues

λ1,2(h, p) =
h− p∓

√
(p− h)2 + 4h

2
λ1 ≈ −p;λ2 ≈

h

p

strictly hyperbolic in Ω = {(h, p) : h ≥ 0, p > p0 > 0}

1–char. field=


GNL Dλ1 · r1> 0 for p > 1
LD Dλ1 · r1 = 0 for p = 1
GNL Dλ1 · r1< 0 for p < 1

2–char. field=

{
GNL Dλ2 · r2 < 0 for h 6= 0

LD Dλ2 · r2 = 0 for h = 0
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Stability Results

Existing L1–Stability Results Homotopy Method

Careful a-priori estimates on weighted norm of generalized tangent
vectors to the flow generated by the system of conservation laws

I conservation laws GNL or LD, small BV

I non-GNL only 2× 2 or Temple conservation laws, small BV

I a single work on GN Temple conservation laws in large BV

I a single work on 2× 2 GN balance laws, small BV

[Amadori, Ancona, Bianchini, Bressan, Colombo, Corli,

Crasta, Goatin, Gosse, Guerra, Marson, Piccoli

1996-2010]
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Stability Results

Existing L1–Stability Results Others

Probabilistic approach
Diagonal strictly hyperbolic systems with large monotonic data

I conservation laws non-GNL, large BV data but monotonic

[Bolley-Brenier-Loeper 2005, Jourdain-Reygner 2016]

“Vasseur” approach [refer to his course, not L1]
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Stability Results

Existing L1–Stability Results Lyapunov-like

Construction of nonlinear functional, equivalent to L1 distance,
decreasing in time along pairs of solutions

1. Conservation laws GNL or LD
[Liu-Yang 1999, Bressan-Liu-Yang 1999]

2. Conservation laws GNL or LD, special data, in large BV
[Lewicka-Trivisa 2002, Lewicka 2004, 2005]

3. Balance laws GNL or LD, dissipative source
[Amadori-Guerra 2002]

4. Balance laws GNL or LD with non-resonant source
[Amadori-Gosse-Guerra 2002]

5. Balance laws of Temple class non-GNL, in large BV
[Colombo-Corli 2004]
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Stability Results

Existing L1–Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the
L1-distance between pairs of approximate solutions

Φ = Φ(u, v) u, v ∈ L1 piecewise constant

1

C
·
∥∥u− v∥∥

L1
≤ Φ(u, v) ≤ C ·

∥∥u− v∥∥
L1

(C depends on system, on TV of u, v, on L∞ norm of uh, vh)

Features: [on ε-front-tracking]

I At interaction times: t 7→ Φ(uk(t), vk(t)) ↘
I Between interaction times: d

dtΦ(uk(t), vk(t)) ≤ O(1)ε
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Stability Results

Existing L1–Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the
L1-distance between pairs of approximate solutions

Φ = Φ(u, v) u, v ∈ L1 piecewise constant

1

C
·
∥∥u− v∥∥

L1
≤ Φ(u, v) ≤ C ·

∥∥u− v∥∥
L1

(C depends on system, on TV of u, v, on L∞ norm of uh, vh)

§ large BV data

§ fields either linearly degenerate or genuinely nonlinear

§ no source
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Stability Results

Basic Functionals for (GF) in Bressan-Liu-Yang 1999
Total Variation: V (u)

.
=

∑
α jumps of u

|ρα| [strength of waves in u]

Interaction Potential: Q(u)
.
= Qhh +Qhp +Qpp

[
controls future interactions

among waves in u

]
Glimm functional: G(u)

.
= V (u) + cQ(u)

[
controls over time

the variation of u

]

Φ(u(t), v(t))
.
=

∫ +∞

−∞
[|η1|(t, x)W1(t, x) + |η2|(t, x)W2(t, x)] dx

1 ≤

Wi
.
= 1 + κ1

[
strength of waves in u and v

which approach the i-wave ηi

]
+ κ1κ2(Q(u) +Q(v))

≤ 2

ηi
.
= [distance along the i-th field among states u(x, t) and v(x, t)]
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Stability Granular Flow

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow
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Stability Granular Flow

Almost all available results deal with GNL or LD CLs

Goal: Construct Lyapunov-like functional Φ for GF system in BV
I from [Amadori-Shen, 2009]: approximate solutions combining

I front-tracking algorithm
I operator splitting scheme with time steps tk = k∆t

I For the homogeneous system

I Φ(uk(t), vk(t)) shall decrease at interaction times
I between interactions, d

dtΦ(uk(t), vk(t)) ≤ O(1)ε

I Estimating at time-steps, Φ exponentially increases in time



Exponential Stability of large BV Solutions in a Model of Granular Flow L. Caravenna, Padova

Stability Granular Flow

Approximate solutions: (hs, ps)
Homogeneous System{

ht − (hp)x = 0

pt + ((p− 1)h)x = 0.
[tk−1, tk)

Next, at time tk the function (hs, ps) is updated as follows{
hs(tk) = hs(tk−) + ∆t[ps(tk−)− 1]hs(tk−)

ps(tk) = ps(tk−).

tk−1

tk+1

6

?
s = ∆t

6t

-
x

tk

Figure:
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Functions needed for existence

Total Variation: V (u)
.
=

∑
α jumps of u

|ρα|
[

measures

strength of waves in u

]

Interaction Potential: Q(u)
.
= Qhh +Qhp +Qpp

 controls interactions

possibly occurring in the

future among waves in u


Glimm functional: G(u)

.
= V (u) + cQ(u)

[
controls over time

the variation of u

]
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Stability Functional New!
u, v approximate solutions; Si(·; ·) i-shock curve
η1 and η2 scalar functions defined implicitly by

v(t, x) = S2(η2(t, x); ·) ◦ S1(η1(t, x);u(t, x))

Define

t 7→ Φ
(
u, v)

.
=

2∑
i=1

∫ ∞
−∞

[
W1(x)

∣∣η1(x)
∣∣+W2(x)

∣∣η2(x)
∣∣] dx

where the weights Wi have the following form:

W1(t, x)
.
= 1 + κ1A · A1(t, x) + κ1G · [G(u(t)) + G(v(t))]

W2(t, x)
.
= 1 + κ2A · A2(t, x) + κ2G · [G(u(t)) + G(v(t))]
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Stability Functional New!

u, v approximate solutions; Si(·; ·) i-shock curve
η1 and η2 scalar functions defined implicitly by

v(t, x) = S2(η2(t, x); ·) ◦ S1(η1(t, x);u(t, x))

Define

t 7→ Φ
(
u, v)

.
=

2∑
i=1

∫ ∞
−∞

[
W1(x)

∣∣η1(x)
∣∣+W2(x)

∣∣η2(x)
∣∣] dx

Φ is equivalent to the L1 norm

C0‖u(t)− v(t)‖L1 ≤ Φ(u(t), v(t)) ≤ C̄0‖u(t)− v(t)‖L1
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Weights in Φ: Wi(x)
.
= 1 + κiAAi(x) + κiG[G(u) + G(v)]

A1(x)
.
=
∑
α

|ρα| · |p`α − 1| summing over
{

1-waves in u and in v

which approach the 1-wave η1(x)
}

+

+
∑
α

|ρα| summing over
{

2-waves in u and in v

which approach the 1-wave η1(x)
}
,

A2(x)
.
=
∑
α

|ρα| summing over
{

1-waves and 2-waves in u and in v

which approach the 2-wave η2(x)
}
,
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Approaching Waves in A1: in v towards η1(x) > 0

-
x

η1(x) > 0

p > 1

p < 1

p > 1

p < 1

p < 1

v1
x1 x2 x3 x5 x6

p > 1

1

2

21 2

p < 1

1

2

p > 1

p > 1

1

v1

x4 x7 x8

u1

u1

Regions p < 1, p > 1 are connected by 2−waves crossing {p = 1}
1−waves : γ → λ1(γ; ·) strictly increasing on {p > 1} xα < x

1−waves : γ → λ1(γ; ·) strictly decreasing on {p < 1} xα > x



Exponential Stability of large BV Solutions in a Model of Granular Flow L. Caravenna, Padova

Stability Granular Flow

Three categories of times:

A: at interaction times: t 7→ Φ(u(t), v(t)) ↘

B: at times between interactions: d
dtΦ(u(t), v(t)) ≤ O(1) · ε

Φ
(
u(t, ·), v(t, ·)

)
≤ Φ

(
u(s, ·), v(s, ·)

)
+O(1) · ε (t− s) ,

∀ tk < s < t < tk+1.

C: at time steps tk, we prove that

Φ(u(tk+), v(tk+))−Φ(u(tk−), v(tk−)) ≤ O(1) ∆tΦ(u(tk−), v(tk−))
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[A:] at interaction times

A1(τ+;x)−A1(τ−;x) = |p`β − 1||ρ′h| ≤ O(1)|ρβ||ρα|

-

6

h

p

1

0
0

v`

vm

-

6

h

p

1

0

q

z

W

N

0

r

r r

r

r r
r

ρβ

ρα
r

ρβ

ρα

ρ′h

ρ′p

vr

vm′

v`

ρ′h

ρ′p

vm vr

vm′

q
?

N
�

Examples of 2− 1 interactions
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[B:] at times between interactions

d

dt
Φ(u(t), v(t)) =

∑
α jumps of u and v

(
Eα,1 + Eα,2

)
≤ O(1) · ε

Eα,i
.
= Wα,r

i |η
α,r
i |(λ

α,r
i − ẋα)−Wα,`

i |η
α,`
i |(λ

α,`
i − ẋα) errors

-
x

η1(x) > 0

v1
x1 x2 x3 x5 x6

1

2

21 2
1

2

1

v1

x4 x7 x8

u1

u1
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-

6

h

p

1

0
0

u

v`

-

6

h

p

1

0

q

U

N

0

r

r r

r

r
r

r
r

η`2
γα

ηr1

ηr2

vr

u
ηr1

v`

q
?

N
�

η`1
r

kα = 1 kα = 2

vr

ηr2

η`2

η`1

γα

Left: The jump at xα is a 1-shock: vr = S1(γα; v`)
Right: The jump at xα is a 2-shock: vr = S2(γα; v`)
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[B:] at times between interactions

Generalized Interaction Estimates:

(i) The jump at xα is a 1-shock : vr = S1(γα; v`)

|ηr1−η`1−γα|+|ηr2−η`2| ≤ C
[
|pα − 1|2|η`1 + γα||η`1γα|+ hmax|η`2γα|

]
(ii) The jump at xα is along 2-shocks : vr = S2(γα; v`)

|ηr1 − η`1|+ |ηr2 − η`2 − γα| ≤ C|hα + η`1|2|η`2γα||η`2 + γα|
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[C]: at time steps tk

Φ(u, v)(t+k )− Φ(u, v)(t−k ) ≤ O(1) ∆t Φ(u, v)(t−k )

-

6

h

p

1

0

?

j

0

r

r

r
r

r
r

v+

u−

η−1

η−2

v−

u+

η+1

η+2

y

U

�

-

∆t

∆t

The shock curves connecting the states u−, v− before a time step
of size ∆t, and the states u+, v+ after such time step
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Semigroup S for Homogeneous System

Theorem 1 (Ancona–C.–Christoforou, Preprint 2018)

∀M0 ∃ δ0, δp > 0, ∃ δ∗0 , δ∗p, M∗0 , L > 0, ∃!map (t, u) 7→ Stu

S : [0,+∞)×


TotVar

(
h
p−1

)
≤ M0

0 ≤ h ≤ δ0

|p− 1| ≤ δp

→


TotVar
(

h
p−1
)
≤ M∗0

0 ≤ h ≤ δ∗0

|p− 1| ≤ δ∗p


which enjoys the following properties:

(i) S0u = u, St+su = St
(
Ssu
)

“semigroup”

(ii)
∥∥Stu− Ssv∥∥L1 ≤ L · (|s− t|+ ‖u− v‖L1)

(iii)
(
h, p
) .

= Stu(x) entropy solution of conservation laws (GF)
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Semigroup P for Non–Homogeneous System

Theorem 2 (Ancona–C.–Christoforou, Preprint 2018)

∀M0 ∃ δ0, δp > 0, ∃ δ∗0 , δ∗p, M∗0 , L
′, C, ∃!map (t, u) 7→ Ptu

P : [0,+∞)×


TotVar

(
h
p−1

)
≤ M0

0 ≤ h ≤ δ0

|p− 1| ≤ δp

→


TotVar
(

h
p−1
)
≤ M∗0

0 ≤ h ≤ δ∗0

|p− 1| ≤ δ∗p


which enjoys the following properties:

(i) P0u = u, Pt+su = Pt
(
Psu

)
“semigroup”

(ii)
∥∥Ptu− Psv∥∥L1 ≤ L′ ·

(
eCt‖u− v‖L1 + (t− s)

)
(iii)

(
h, p
) .

= Ptu(x) entropy weak solution of balance laws (GF)
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What we want to improve?

I what happens with boundary conditions?

I the Lipschitz constant shall really blow up in time?

I of course, there are other interesting models. . .
. . . could we do it ‘more in general’?

THANK YOU
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