Exponential Stability of large BV Solutions in a Model of Granular Flow

L. CARAVENNA

Joint work with: F. Ancona (Padova) & C. Christoforou (Cyprus)

CIRM - Luminy Marseille, 14-18 October 2019 "PDE/Probability Interactions: Particle Systems, Hyperbolic Cons. Laws"

Università degli Studi di Padova

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow

A Model for Granular Flow: Last contributors

Hadeler-Kutter [1999, Granular Matter] 'Hadeler is a first-generation pioneer in mathematical biology'

Special issue in his memory on J. of Mathematical Biology

Amadori-Shen

[2009, Communications in PDEs]

A Model for Granular Flow: Last contributors

... physicists Bouchaud, Cates, Prakash, Edwards, Boutreux, de Gennes, ...

A Model for Granular Flow: What we are describing

Wiki: Khimsar Sand Dunes Village, India-Ankur2436

Kelso Dunes Avalanche Deposits, California-A. Wilson, The College of Wooster

A Model for Granular Flow: What we are describing

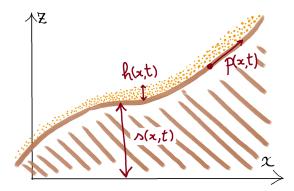
Video: Alessandro Ielpi, Laurentian University (Canada)

https://www.youtube.com/watch?v=curEvUdhro4

Dry sand: A grain flow induced from the brink of an eolian bedform in the Carcross Sand Dunes, Yukon Territory (June 2016)

Also: gravel in dunes, snow in avalanches,...

A Model for Granular Flow: PDE formulation



$$\begin{split} h &= h(x,t) > 0 \text{ : thickness of the rolling layer (on the top)} \\ s &= s(x,t) > 0 \text{ : height of the standing layer (at the bottom)} \\ p &= p(x,t) \qquad \text{: slope of the standing layer (at the bottom)} \end{split}$$

A Model for Granular Flow: PDE formulation

[Hadeler-Kuttler, 1999]

h = h(x,t) > 0: thickness of the rolling layer (on the top) s = s(x,t) > 0: height of the standing layer (at the bottom)

$$\begin{cases} h_t & -\operatorname{div} (h\nabla s) = (|\nabla s| - 1)h \\ s_t & + (|\nabla s| - 1)h = 0 \end{cases} \quad t \ge 0, \ x \in \mathbb{R}^2$$

normalized model; critical slope: $|\nabla s| = 1$

A Model for Granular Flow: PDE formulation

[Hadeler-Kuttler, 1999]

h = h(x,t) > 0: thickness of the rolling layer (on the top) s = s(x,t) > 0: height of the standing layer (at the bottom)

$$\begin{cases} h_t & -\operatorname{div} \left(h\nabla s\right) = (|\nabla s| - 1)h\\ s_t & +(|\nabla s| - 1)h = 0 \end{cases} \quad t \ge 0, \ x \in \mathbb{R}^2 \end{cases}$$

normalized model; critical slope: $|\nabla s| = 1$

- we study one space dimension
- we differentiate the second equation
- we study $p := s_x$, slope of the standing layer, in place of s

A Model for Granular Flow: PDE formulation

h = h(x,t) > 0: thickness of the rolling layer (on the top) p = p(x,t) > 0: slope of the standing layer (at the bottom)

$$\begin{cases} h_t - (hp)_x = (p-1)h, \\ p_t + ((p-1)h)_x = 0, \end{cases} \quad t \ge 0, \ x \in \mathbb{R} \end{cases}$$

and assign data

$$h(x,0) = \overline{h}(x) \,, \qquad p(x,0) = \overline{p}(x) \qquad \quad \text{for} \quad x \ \in \mathbb{R}$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A Model for Granular Flow: PDE formulation

 $\delta_0 > \overline{h} \ge 0$: initial thickness of the rolling layer (on the top) $\overline{p} > p_0 > 0$: initial slope of the standing layer (at the bottom)

$$\begin{cases} h_t - (hp)_x = (p-1)h, \\ p_t + ((p-1)h)_x = 0, & t \ge 0, \ x \in \mathbb{R} \\ h(x,0) = \overline{h}(x), & p(x,0) = \overline{p}(x) \end{cases}$$
(GF)

'mesoscopic' description \rightsquigarrow hyperbolic system of balance laws

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A Model for Granular Flow: PDE formulation

 $\delta_0 > \overline{h} \ge 0$: initial thickness of the rolling layer (on the top) $\overline{p} > p_0 > 0$: initial slope of the standing layer (at the bottom)

$$\begin{cases} h_t - (hp)_x = (p-1)h, \\ p_t + ((p-1)h)_x = 0, & t \ge 0, \ x \in \mathbb{R} \\ h(x,0) = \overline{h}(x), & p(x,0) = \overline{p}(x) \end{cases}$$
(GF)

'mesoscopic' description \rightsquigarrow hyperbolic system of balance laws

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A Model for Granular Flow: PDE formulation

 $\delta_0 > \overline{h} \ge 0$: initial thickness of the rolling layer (on the top) $\overline{p} > p_0 > 0$: initial slope of the standing layer (at the bottom)

$$\begin{cases} h_t - (hp)_x = (p-1)h, \\ p_t + ((p-1)h)_x = 0, \\ h(x,0) = \overline{h}(x), \quad p(x,0) = \overline{p}(x) \end{cases} \quad t \ge 0, \ x \in \mathbb{R}$$
 (GF)

'mesoscopic' description \rightsquigarrow hyperbolic system of balance laws

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow

Exponential Stability of large BV Solutions in a Model of Granular Flow A Model for Granular Flow: Mathematical Analysis

System of balance laws:

$$u_t + A(u)u_x = g(u), \qquad u = (h, p)$$

$$A(h,p) = \begin{bmatrix} -p & -h \\ p-1 & h \end{bmatrix} \qquad g(u) = (p-1)h \qquad (\mathsf{EGF})$$

with eigenvalues

$$\lambda_{1,2}(h,p) = \frac{h-p \mp \sqrt{(p-h)^2 + 4h}}{2} \qquad \lambda_1 \approx -p; \lambda_2 \approx \frac{h}{p}$$

strictly hyperbolic in $\Omega=\{(h,p):\,h\geq 0,\,p>p_0>0\}$

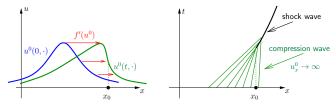
1-char. field=
$$\begin{cases} \mathsf{GNL} & \text{for } p > 1\\ \mathsf{LD} & \text{for } p = 1\\ \mathsf{GNL} & \text{for } p < 1 \end{cases}$$
2-char. field=
$$\begin{cases} \mathsf{GNL} & \text{for } h \neq 0\\ \mathsf{LD} & \text{for } h = 0 \end{cases}$$

L. Caravenna, Padova

A Model for Granular Flow: What difficulties?

- Classical Solutions for special initial data [Shen, 2008]
 Lack of regularity in general for conservation laws
 - u(t,x) smooth sol $\implies \partial_t u + f'(u) \partial_x u = 0$

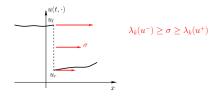
Gradient Catastrophe also for single, convex equations



П

A Model for Granular Flow: What difficulties?

We consider solutions in the sense of distributions



$$\int_0^{+\infty}\!\!\int_{\mathbb{R}} \left[u\varphi_t + f(u)\varphi_x \right] dx dt = 0 \,, \quad \varphi \in \mathcal{C}_c^1(]0, +\infty[\times \mathbb{R})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Ш

A Model for Granular Flow: What difficulties?

We consider solutions in the sense of distributions

 well-posedness theory developed for small BV data for entropy weak solutions (Lax '56, Liu). For CL:
 Existence Kružkov, 1970; Glimm, 1965; Bianchini-Bressan, 2000;
 Uniqueness Bressan & coll. 1992-1998; (...)
 Stability Liu-Yang 1999, Bressan-Liu-Yang 1999 for fields LD or GN

© The problem makes sense with locally large total variation

- The source is not dissipative
- © The fields have linear degeneracy and genuine nonlinearity

ш

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A Model for Granular Flow: What difficulties?

- Global in time existence of entropy solutions large in BV [Amadori-Shen, 2009]
- No uniqueness was proved, neither semigroup properties, nor stability

Theorem (Amadori–Shen, CPDE (2009))

For all $M_0, p_0 > 0$ there exists $\delta_0 > 0$ small enough such that if

TotVar
$$\bar{h}$$
 + TotVar $(\bar{p} - 1) \le M_0$,

 $0 \le \bar{h} \le \frac{\delta_0}{\delta_0}, \quad p_0 \le \bar{p} \le M_0$

hold then the Cauchy problem for (GF) has an entropy weak solution (h(t, x), p(t, x)) defined for all $t \ge 0$.

Moreover, there exists $\delta_0^*, p_0^*, M_1 > 0$ such that

$$0 \le h(t, x) \le \delta_0^* \qquad p_0^* \le p(t, x) \le M_1 \qquad \forall t > 0$$

Exponential Stability of large BV Solutions in a Model of Granular Flow A Model for Granular Flow: Mathematical Analysis

Pasia Eurotionals for Amadari Shan 20

Basic Functionals for Amadori-Shen, 2009

Total Variation:
$$V(u) \doteq \sum |\rho_{\alpha}|$$

Interaction Potential: $\mathcal{Q}(u) \doteq \mathcal{Q}_{hh} + \mathcal{Q}_{hp} + \mathcal{Q}_{pp}$

$$\begin{split} \mathcal{Q}_{hh} \doteq \sum_{\substack{k_{\alpha} = k_{\beta} = 1 \\ x_{\alpha} < x_{\beta}}} \omega_{\alpha\beta} |\rho_{\alpha}\rho_{\beta}| , \ \mathcal{Q}_{hp}(u) \doteq \sum_{\substack{k_{\alpha} = 2, \ k_{\beta} = 1 \\ x_{\alpha} < x_{\beta}}} |\rho_{\alpha}\rho_{\beta}|, \\ \mathcal{Q}_{pp}(u) \doteq \sum_{\alpha \text{ or } \beta \text{ shock, } k_{\alpha} = k_{\beta} = 2} |\rho_{\alpha}\rho_{\beta}| \\ \omega_{\alpha,\beta} = \begin{cases} \delta_{0} \min\{|p_{\alpha}^{\ell} - 1|, |p_{\beta}^{\ell} - 1|\} & \rho_{\alpha}, \rho_{\beta} \text{ 1-shocks lying both} \\ & \text{either in } \{p > 1\} \text{ or } \{p < 1\} \\ 0 & \text{otherwise} \end{cases}$$

Note: weighted functional Q_{hh}

→ existence for large BV data

Exponential Stability of large BV Solutions in a Model of Granular Flow A Model for Granular Flow: Mathematical Analysis

L. Caravenna, Padova

Basic Functionals for Amadori-Shen, 2009

Total Variation:
$$V(u) \doteq \sum_{\alpha} |\rho_{\alpha}|$$

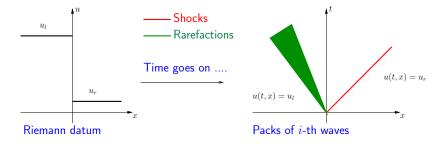
lpha jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hn} + Q_{nn}$

$$\begin{split} \mathcal{Q}_{hh} \doteq \sum_{\substack{k\alpha = k_{\beta} = 1 \\ x_{\alpha} < x_{\beta}}} \omega_{\alpha\beta} |\rho_{\alpha}\rho_{\beta}| , \ \mathcal{Q}_{hp}(u) \doteq \sum_{\substack{k_{\alpha} = 2, \ k_{\beta} = 1 \\ x_{\alpha} < x_{\beta}}} |\rho_{\alpha}\rho_{\beta}|, \\ \mathcal{Q}_{pp}(u) \doteq \sum_{\alpha \text{ or } \beta \text{ shock, } k_{\alpha} = k_{\beta} = 2} |\rho_{\alpha}\rho_{\beta}| \\ \omega_{\alpha,\beta} = \begin{cases} \delta_{0} \min\{|p_{\alpha}^{\ell} - 1|, |p_{\beta}^{\ell} - 1|\} & \rho_{\alpha}, \rho_{\beta} \text{ 1-shocks lying both} \\ & \text{either in } \{p > 1\} \text{ or } \{p < 1\} \\ 0 & \text{otherwise} \end{cases}$$

Glimm functional is: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$

A Model for Granular Flow: What helps? Special features

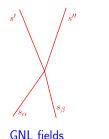
$\ensuremath{\textcircled{}}$ "simple" solutions to Riemann Problems

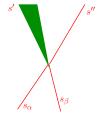


 \odot h, the thickness of the rolling layer, is small

Wave interactions

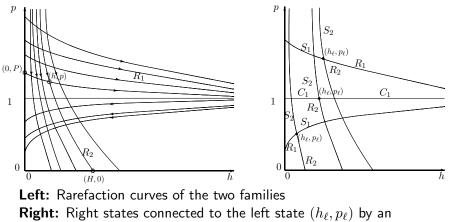
- ► GNL fields: waves do not change nature after interactions
- Non GNL 1-field in GF: shock waves of the first family can become rarefaction waves (and vice versa) after interactions with waves of the second family, or also contact discontinuities





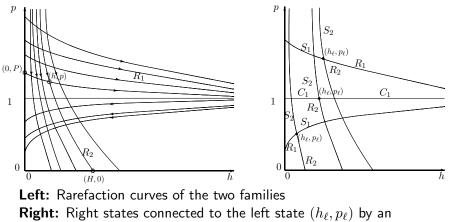
Non GNL fields

Characteristic and Wave Curves



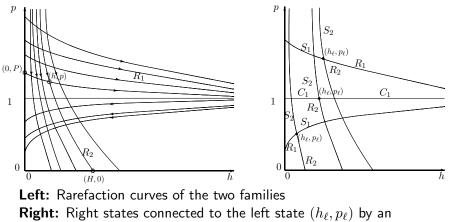
entropy admissible 1-wave or 2-wave of the homogeneous system $(a,b) \in \mathcal{A}^{n} \to (a,b)$

Characteristic and Wave Curves



entropy admissible 1-wave or 2-wave of the homogeneous system $(a,b) \in \mathcal{A}^{n} \to (a,b)$

Characteristic and Wave Curves



entropy admissible 1-wave or 2-wave of the homogeneous system $(a,b) \in \mathcal{A}^{n} \to (a,b)$

A Model for Granular Flow: What difficulties? Summary

O no smooth solutions in general

```
\rightsquigarrow entropy weak solutions
```

- possibly large total variation
- © it has linear degeneracy and nonlinearity
- On dissipative source

→ special features of the problem

Existence of global solutions established [Amadori-Shen, 2009]

Goal: Uniqueness & Semigroup & L^1 -stability in the initial data

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow

System of balance laws:

$$u_t + A(u)u_x = g(u), \qquad u = (h, p)$$

$$A(h,p) = \begin{bmatrix} -p & -h \\ p-1 & h \end{bmatrix} \qquad g(u) = (p-1)h \qquad (\mathsf{EGF})$$

with eigenvalues

$$\lambda_{1,2}(h,p) = \frac{h - p \mp \sqrt{(p-h)^2 + 4h}}{2} \qquad \lambda_1 \approx -p; \lambda_2 \approx \frac{h}{p}$$

strictly hyperbolic in $\Omega=\{(h,p):\,h\geq 0,\,p>p_0>0\}$

$$1-\text{char. field} = \begin{cases} \text{GNL} \quad D\lambda_1 \cdot \mathbf{r}_1 > 0 & \text{for } p > 1 \\ \text{LD} \quad D\lambda_1 \cdot \mathbf{r}_1 = 0 & \text{for } p = 1 \\ \text{GNL} \quad D\lambda_1 \cdot \mathbf{r}_1 < 0 & \text{for } p < 1 \end{cases}$$
$$2-\text{char. field} = \begin{cases} \text{GNL} \quad D\lambda_2 \cdot \mathbf{r}_2 < 0 & \text{for } h \neq 0 \\ \text{LD} \quad D\lambda_2 \cdot \mathbf{r}_2 = 0 & \text{for } h = 0 \end{cases}$$

Existing L¹–Stability Results Homotopy Method

Careful a-priori estimates on weighted norm of generalized tangent vectors to the flow generated by the system of conservation laws

- conservation laws GNL or LD, small BV
- \blacktriangleright non-GNL only 2×2 or Temple conservation laws, small BV
- ► a single work on GN Temple conservation laws in large BV
- ▶ a single work on 2×2 GN balance laws, small BV

[Amadori, Ancona, Bianchini, **Bressan**, Colombo, Corli, Crasta, Goatin, Gosse, Guerra, Marson, Piccoli 1996-2010]

Existing L^1 -Stability Results

Others

Probabilistic approach

Diagonal strictly hyperbolic systems with large monotonic data

conservation laws non-GNL, large BV data but monotonic

[Bolley-Brenier-Loeper 2005, Jourdain-Reygner 2016]

"Vasseur" approach [refer to his course, not L^1]

Existing L¹–Stability Results Lyapunov-like

Construction of nonlinear functional, equivalent to \mathbf{L}^1 distance, decreasing in time along pairs of solutions

1. Conservation laws GNL or LD

[Liu-Yang 1999, Bressan-Liu-Yang 1999]

- 2. Conservation laws GNL or LD, special data, in large BV [Lewicka-Trivisa 2002, Lewicka 2004, 2005]
- 3. Balance laws GNL or LD, dissipative source

[Amadori-Guerra 2002]

4. Balance laws GNL or LD with non-resonant source

[Amadori-Gosse-Guerra 2002]

5. Balance laws of Temple class non-GNL, in large BV [Colombo-Corli 2004]

Existing L^1 -Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the L^1 -distance between pairs of approximate solutions

 $\Phi=\Phi(u,v)$ $u,v\in \mathbf{L}^1$ piecewise constant

$$\frac{1}{C} \cdot \left\| u - v \right\|_{\mathbf{L}^1} \le \Phi(u, v) \le C \cdot \left\| u - v \right\|_{\mathbf{L}^1}$$

(*C* depends on system, on TV of u, v, on \mathbf{L}^{∞} norm of u_h, v_h)

Existing L^1 -Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the \mathbf{L}^1 -distance between pairs of approximate solutions

 $\Phi = \Phi(u,v)$ $u,v \in \mathbf{L}^1$ piecewise constant

$$\frac{1}{C} \cdot \left\| u - v \right\|_{\mathbf{L}^1} \le \Phi(u, v) \le C \cdot \left\| u - v \right\|_{\mathbf{L}^1}$$

(*C* depends on system, on TV of u, v, on \mathbf{L}^{∞} norm of u_h, v_h)

Features:

[on ε -front-tracking]

- At interaction times: $t \mapsto \Phi(u_k(t), v_k(t)) \searrow$
- ▶ Between interaction times: $\frac{d}{dt}\Phi(u_k(t), v_k(t)) \leq O(1)\varepsilon$

Existing L^1 -Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the \mathbf{L}^1 -distance between pairs of approximate solutions

 $\Phi=\Phi(u,v)$ $u,v\in \mathbf{L}^1$ piecewise constant

$$\frac{1}{C} \cdot \left\| u - v \right\|_{\mathbf{L}^1} \le \Phi(u, v) \le C \cdot \left\| u - v \right\|_{\mathbf{L}^1}$$

(*C* depends on system, on TV of u, v, on \mathbf{L}^{∞} norm of u_h, v_h)

☺ large BV data

-1

© fields either linearly degenerate or genuinely nonlinear

O no source

Basic Functionals for (GF) in Bressan-Liu-Yang 1999 Total Variation: $V(u) \doteq \sum |\rho_{\alpha}|$ [strength of waves in u] α jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$ controls over time the variation of uGlimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$ $\Phi(u(t), v(t)) \doteq \int_{-\infty}^{+\infty} \left[|\eta_1|(t, x)W_1(t, x) + |\eta_2|(t, x)W_2(t, x) \right] dx$ $W_{i} \doteq 1 + \kappa_{1} \left[\begin{smallmatrix} \text{strength of waves in } u \text{ and } v \\ \text{which approach the } i \text{-wave } \eta_{i} \end{smallmatrix} \right] + \kappa_{1} \kappa_{2} (\mathcal{Q}(u) + \mathcal{Q}(v))$ $\eta_i \doteq [\text{distance along the } i\text{-th field among states } u(x,t) \text{ and } v(x,t)]$

Basic Functionals for (GF) in Bressan-Liu-Yang 1999 Total Variation: $V(u) \doteq \sum |\rho_{\alpha}|$ [strength of waves in u] α jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$ controls over time the variation of uGlimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$ $\Phi(u(t), v(t)) \doteq \int_{-\infty}^{+\infty} \left[|\eta_1|(t, x)W_1(t, x) + |\eta_2|(t, x)W_2(t, x) \right] dx$ $1 \leq W_i \doteq 1 + \kappa_1 \begin{bmatrix} \text{strength of waves in } u \text{ and } v \\ \text{which approach the } i \text{-wave } \eta_i \end{bmatrix} + \kappa_1 \kappa_2 (\mathcal{Q}(u) + \mathcal{Q}(v)) \leq 2$ $\eta_i \doteq [\text{distance along the } i\text{-th field among states } u(x,t) \text{ and } v(x,t)]$

Basic Functionals for (GF) in Bressan-Liu-Yang 1999 Total Variation: $V(u) \doteq \sum |\rho_{\alpha}|$ [strength of waves in u] α jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$ controls over time the variation of uGlimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$ $\Phi(u(t), v(t)) \doteq \int_{-\infty}^{+\infty} \left[|\eta_1|(t, x)W_1(t, x) + |\eta_2|(t, x)W_2(t, x) \right] dx$ $1 \leq W_i \doteq 1 + \kappa_1 \left[\begin{smallmatrix} \text{strength of waves in } u \text{ and } v \\ \text{which approach the } i \text{-wave } \eta_i \end{smallmatrix} \right] + \kappa_1 \kappa_2 (\mathcal{Q}(u) + \mathcal{Q}(v)) \leq 2$ $\eta_i \doteq [\text{distance along the } i\text{-th field among states } u(x,t) \text{ and } v(x,t)]$

Basic Functionals for (GF) in Bressan-Liu-Yang 1999 Total Variation: $V(u) \doteq \sum |\rho_{\alpha}|$ [strength of waves in u] α jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$ controls over time the variation of uGlimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$ $\Phi(u(t), v(t)) \doteq \int_{-\infty}^{+\infty} \left[|\eta_1|(t, x)W_1(t, x) + |\eta_2|(t, x)W_2(t, x) \right] dx$ $1 \leq W_i \doteq 1 + \kappa_1 \left[\begin{smallmatrix} \text{strength of waves in } u \text{ and } v \\ \text{which approach the } i \text{-wave } \eta_i \end{smallmatrix} \right] + \kappa_1 \kappa_2 (\mathcal{Q}(u) + \mathcal{Q}(v)) \leq 2$ $\eta_i \doteq [\text{distance along the } i\text{-th field among states } u(x,t) \text{ and } v(x,t)]$

Basic Functionals for (GF) in Bressan-Liu-Yang 1999 Total Variation: $V(u) \doteq \sum |\rho_{\alpha}|$ [strength of waves in u] α jumps of uInteraction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$ controls over time the variation of uGlimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$ $\Phi(u(t), v(t)) \doteq \int_{-\infty}^{+\infty} \left[|\eta_1|(t, x)W_1(t, x) + |\eta_2|(t, x)W_2(t, x) \right] dx$ $1 \leq W_i \doteq 1 + \kappa_1 \left[\begin{smallmatrix} \text{strength of waves in } u \text{ and } v \\ \text{which approach the } i \text{-wave } \eta_i \end{smallmatrix} \right] + \kappa_1 \kappa_2 (\mathcal{Q}(u) + \mathcal{Q}(v)) \leq 2$ $\eta_i \doteq [\text{distance along the } i\text{-th field among states } u(x,t) \text{ and } v(x,t)]$

A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction

A Model for Granular Flow: Mathematical Analysis

Stability Results

Stability Granular Flow

Almost all available results deal with GNL or LD CLs

Goal: Construct Lyapunov-like functional Φ for GF system in BV

- ▶ from [Amadori-Shen, 2009]: approximate solutions combining
 - front-tracking algorithm
 - operator splitting scheme with time steps $t_k = k \Delta t$
- For the homogeneous system
 - $\Phi(u_k(t), v_k(t))$ shall decrease at interaction times
 - ▶ between interactions, $\frac{d}{dt}\Phi(u_k(t), v_k(t)) \leq \mathcal{O}(1)\varepsilon$
- \blacktriangleright Estimating at time-steps, Φ exponentially increases in time

Exponential Stability of large BV Solutions in a Model of Granular Flow

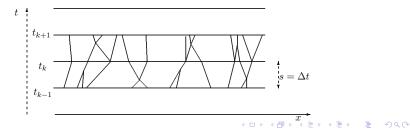
Approximate solutions: (h^s, p^s)

Homogeneous System

$$\begin{cases} h_t - (hp)_x = 0\\ p_t + ((p-1)h)_x = 0. \end{cases} [t_{k-1}, t_k)$$

Next, at time t_k the function (h^s, p^s) is updated as follows

$$\begin{cases} h^{s}(t_{k}) = h^{s}(t_{k}-) + \Delta t[p^{s}(t_{k}-) - 1]h^{s}(t_{k}-) \\ p^{s}(t_{k}) = p^{s}(t_{k}-). \end{cases}$$



п

Functions needed for existence

Total Variation:
$$V(u) \doteq \sum_{\alpha \text{ jumps of } u} |\rho_{\alpha}|$$

Interaction Potential: $Q(u) \doteq Q_{hh} + Q_{hp} + Q_{pp}$
$$\begin{bmatrix} \text{controls interactions} \\ \text{possibly occurring in the} \\ \text{future among waves in } u \end{bmatrix}$$

Glimm functional: $\mathcal{G}(u) \doteq V(u) + c\mathcal{Q}(u)$

controls over time the variation of u

г

Stability Functional

New!

u, v approximate solutions;

 $\mathbf{S}_i(\cdot;\cdot)$ *i*-shock curve

 η_1 and η_2 scalar functions defined implicitly by

$$v(t,x) = \mathbf{S}_2(\eta_2(t,x);\cdot) \circ \mathbf{S}_1(\eta_1(t,x);u(t,x))$$

Define

$$t \mapsto \Phi(u,v) \doteq \sum_{i=1}^{2} \int_{-\infty}^{\infty} \left[W_1(x) |\eta_1(x)| + W_2(x) |\eta_2(x)| \right] dx$$

where the weights W_i have the following form:

$$W_1(t,x) \doteq 1 + \kappa_{1\mathcal{A}} \cdot \mathcal{A}_1(t,x) + \kappa_{1\mathcal{G}} \cdot \left[\mathcal{G}(u(t)) + \mathcal{G}(v(t))\right]$$
$$W_2(t,x) \doteq 1 + \kappa_{2\mathcal{A}} \cdot \mathcal{A}_2(t,x) + \kappa_{2\mathcal{G}} \cdot \left[\mathcal{G}(u(t)) + \mathcal{G}(v(t))\right]$$

Stability Functional

New!

u, v approximate solutions; $\mathbf{S}_i(\cdot; \cdot)$ *i*-shock curve η_1 and η_2 scalar functions defined implicitly by

$$v(t,x) = \mathbf{S}_2(\eta_2(t,x);\cdot) \circ \mathbf{S}_1(\eta_1(t,x);u(t,x))$$

Define

$$t \mapsto \Phi(u,v) \doteq \sum_{i=1}^{2} \int_{-\infty}^{\infty} \left[W_1(x) |\eta_1(x)| + W_2(x) |\eta_2(x)| \right] dx$$

 Φ is equivalent to the L^1 norm

 $C_0 \|u(t) - v(t)\|_{L^1} \le \Phi(u(t), v(t)) \le \bar{C}_0 \|u(t) - v(t)\|_{L^1}$

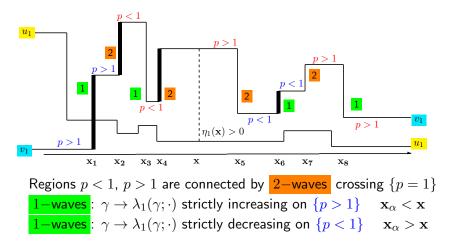
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Weights in Φ : $W_i(x) \doteq 1 + \kappa_{i\mathcal{A}}\mathcal{A}_i(x) + \kappa_{i\mathcal{G}}[\mathcal{G}(u) + \mathcal{G}(v)]$

$$\begin{split} \mathcal{A}_{1}(x) &\doteq \sum_{\alpha} |\rho_{\alpha}| \cdot |p_{\alpha}^{\ell} - 1| & \text{summing over } \left\{ \begin{array}{l} 1\text{-waves in } u \text{ and in } v \\ & \text{which approach the 1-wave } \eta_{1}(x) \end{array} \right\} + \\ & + \sum_{\alpha} |\rho_{\alpha}| & \text{summing over } \left\{ 2\text{-waves in } u \text{ and in } v \\ & \text{which approach the 1-wave } \eta_{1}(x) \right\}, \\ \mathcal{A}_{2}(x) &\doteq \sum_{\alpha} |\rho_{\alpha}| & \text{summing over } \left\{ 1\text{-waves and } 2\text{-waves in } u \text{ and in } v \\ \end{array} \right. \end{split}$$

which approach the 2-wave $\eta_2(x)$ $\big\}$,

Approaching Waves in A_1 : in v towards $\eta_1(\mathbf{x}) > 0$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Three categories of times:

- A: at interaction times: $t \mapsto \Phi(u(t), v(t)) \searrow$
- B: at times between interactions: $\frac{d}{dt}\Phi(u(t), v(t)) \leq \mathcal{O}(1) \cdot \varepsilon$

$$\Phi(u(t,\cdot),v(t,\cdot)) \leq \Phi(u(s,\cdot),v(s,\cdot)) + \mathcal{O}(1) \cdot \varepsilon (t-s) ,$$

 $\forall t_k < s < t < t_{k+1}.$

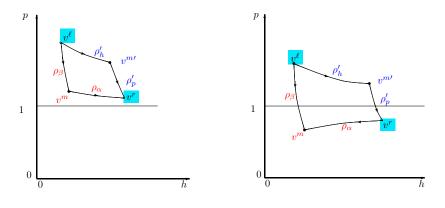
C: at time steps t_k , we prove that

 $\Phi(u(t_k+), v(t_k+)) - \Phi(u(t_k-), v(t_k-)) \le \mathcal{O}(1) \, \Delta t \, \Phi(u(t_k-), v(t_k-))$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

[A:] at interaction times

$$\mathcal{A}_1(\tau+;x) - \mathcal{A}_1(\tau-;x) = |p_{\beta}^{\ell} - 1||\rho_h'| \le \mathcal{O}(1)|\rho_{\beta}||\rho_{\alpha}|$$



Examples of 2-1 interactions

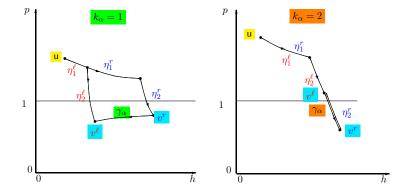
[B:] at times between interactions

$$\frac{d}{dt}\Phi(u(t), v(t)) = \sum_{\alpha \text{ jumps of } u \text{ and } v} \left(\frac{E_{\alpha, 1}}{E_{\alpha, 1}} + \frac{E_{\alpha, 2}}{E_{\alpha, 2}} \right) \leq \mathcal{O}(1) \cdot \varepsilon$$

$$E_{\alpha, i} \doteq W_i^{\alpha, r} |\eta_i^{\alpha, r}| (\lambda_i^{\alpha, r} - \dot{x}_\alpha) - W_i^{\alpha, \ell} |\eta_i^{\alpha, \ell}| (\lambda_i^{\alpha, \ell} - \dot{x}_\alpha) \quad \text{errors}$$

$$\frac{u_1}{\sum_{x_1, x_2, x_3, x_4, x_4, x_5, x_5, x_6, x_7, x_8}} \left(\frac{u_1}{\sum_{x_1, x_2, x_3, x_4, x_4, x_5, x_5, x_6, x_7, x_8}} \right)$$

Exponential Stability of large BV Solutions in a Model of Granular Flow



Left: The jump at x_{α} is a 1-shock: $v^r = S_1(\gamma_{\alpha}; v^{\ell})$ **Right**: The jump at x_{α} is a 2-shock: $v^r = S_2(\gamma_{\alpha}; v^{\ell})$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

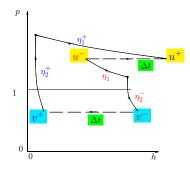
[B:] at times between interactions

Generalized Interaction Estimates: (i) The jump at x_{α} is a 1-shock: $v^r = S_1(\gamma_{\alpha}; v^{\ell})$ $|\eta_1^r - \eta_1^{\ell} - \gamma_{\alpha}| + |\eta_2^r - \eta_2^{\ell}| \le C \left[|p_{\alpha} - 1|^2 |\eta_1^{\ell} + \gamma_{\alpha}| |\eta_1^{\ell} \gamma_{\alpha}| + h_{\max} |\eta_2^{\ell} \gamma_{\alpha}| \right]$ (ii) The jump at x_{α} is along 2-shocks: $v^r = S_2(\gamma_{\alpha}; v^{\ell})$ $|\eta_1^r - \eta_1^{\ell}| + |\eta_2^r - \eta_2^{\ell} - \gamma_{\alpha}| \le C |h_{\alpha} + \eta_1^{\ell}|^2 |\eta_2^{\ell} \gamma_{\alpha}| |\eta_2^{\ell} + \gamma_{\alpha}|$

L. Caravenna, Padova

[C]: at time steps t_k

 $\Phi(u,v)(t_k^+) - \Phi(u,v)(t_k^-) \le \mathcal{O}(1) \Delta t \Phi(u,v)(t_k^-)$



The shock curves connecting the states u^- , v^- before a time step of size Δt , and the states u^+ , v^+ after such time step

Semigroup \mathcal{S} for Homogeneous System

Theorem 1 (Ancona–C.–Christoforou, Preprint 2018)

 $\forall \begin{array}{cc} M_0 & \exists \end{array} \delta_0, \ \delta_p \end{array} > 0, \ \exists \begin{array}{cc} \delta_0^*, \ \delta_p^*, \ M_0^* \end{array}, \\ L > 0, \quad \exists ! \textit{map} \ (t, \overline{u}) \mapsto \mathcal{S}_t \overline{u} \end{array}$

$$\mathcal{S}: [0, +\infty) \times \begin{cases} \operatorname{TotVar}\left(\frac{\overline{h}}{\overline{p}-1}\right) \leq \underline{M_{0}}\\ 0 \leq \overline{h} \leq \underline{\delta_{0}}\\ |\overline{p}-1| \leq \underline{\delta_{p}} \end{cases} \rightarrow \begin{cases} \operatorname{TotVar}\left(\frac{h}{p-1}\right) \leq \underline{M_{0}^{*}}\\ 0 \leq h \leq \underline{\delta_{0}^{*}}\\ |p-1| \leq \underline{\delta_{p}^{*}} \end{cases} \end{cases}$$

which enjoys the following properties:

(i) $S_0 \overline{u} = \overline{u}$, $S_{t+s} \overline{u} = S_t (S_s \overline{u})$ "semigroup" (ii) $\|S_t \overline{u} - S_s \overline{v}\|_{\mathbf{L}^1} \le L \cdot (|s - t| + \|\overline{u} - \overline{v}\|_{\mathbf{L}^1})$ (iii) $(h, p) \doteq S_t \overline{u}(x)$ entropy solution of conservation laws (GF)

Semigroup \mathcal{P} for Non–Homogeneous System

Theorem 2 (Ancona-C.-Christoforou, Preprint 2018) $\forall M_0 \quad \exists \delta_0, \delta_p > 0, \exists \delta_0^*, \delta_p^*, M_0^*, L', C, \quad \exists !map (t, \overline{u}) \mapsto \mathcal{P}_t \overline{u}$ $\mathcal{P} : [0, +\infty) \times \begin{cases} \operatorname{TotVar} \left(\frac{\overline{h}}{\overline{p}-1} \right) \leq M_0 \\ 0 \leq \overline{h} \leq \delta_0 \\ |\overline{p}-1| \leq \delta_p \end{cases} \rightarrow \begin{cases} \operatorname{TotVar} \left(\frac{h}{p-1} \right) \leq M_0^* \\ 0 \leq h \leq \delta_0^* \\ |p-1| \leq \delta_p^* \end{cases}$

which enjoys the following properties:

(i) $\mathcal{P}_{0}\overline{u} = \overline{u}$, $\mathcal{P}_{t+s}u = \mathcal{P}_{t}(\mathcal{P}_{s}\overline{u})$ "semigroup" (ii) $\|\mathcal{P}_{t}\overline{u} - \mathcal{P}_{s}\overline{v}\|_{\mathbf{L}^{1}} \leq L' \cdot (e^{C}t\|\overline{u} - \overline{v}\|_{\mathbf{L}^{1}} + (t-s))$ (iii) $(h, p) \doteq \mathcal{P}_{t}\overline{u}(x)$ entropy weak solution of balance laws (GF)

What we want to improve?

- what happens with boundary conditions?
- the Lipschitz constant shall really blow up in time?
- of course, there are other interesting models...

... could we do it 'more in general'?

THANK YOU