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A toy model towards (?) stability for more general systems

A Model for Granular Flow: Introduction



Exponential Stability of large BV Solutions in a Model of Granular Flow L. Caravenna, Padova
La Model for Granular Flow: Introduction

A Model for Granular Flow: Last contributors

Hadeler-Kutter [1999, Granular Matter|

‘Hadeler is a first-generation pioneer in mathematical biology’

Special issue in his memory on J. of Mathematical Biology

Amadori-Shen [2009, Communications in PDEs]
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A Model for Granular Flow: Last contributors

Boutreux, de Gennes, ...




Exponential Stability of large BV Solutions in a Model of Granular Flow
La Model for Granular Flow: Introduction
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A Model for Granular Flow: What we are describing

Wiki: Khimsar Sand Dunes Village, India—Ankur2436

Kelso Dunes Avalanche Deposits, California—A. Wilson, The College of Wooster
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La Model for Granular Flow: Introduction

A Model for Granular Flow: What we are describing

Video: Alessandro lelpi, Laurentian University (Canada)
https://www.youtube.com/watch?v=curEvUdhro4

Dry sand: A grain flow induced from the brink of an eolian
bedform in the Carcross Sand Dunes, Yukon Territory (June 2016)

Also: gravel in dunes, snow in avalanches,. ..


https://www.youtube.com/watch?v=curEvUdhro4
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La Model for Granular Flow: Introduction
:
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A Model for Granular Flow: PDE formulation
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h(z,t) > 0 : thickness of the rolling layer (on the top)
(z,1)
p(z,1)

> 0 : height of the standing layer (at the bottom)
slope of the standing layer (at the bottom)
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A Model for Granular Flow: PDE formulation
[Hadeler—Kuttler, 1999]

h = h(z,t) > 0 : thickness of the rolling layer (on the top)

s = s(z,t) > 0 : height of the standing layer (at the bottom)

—div (hVs) = (|Vs| — 1)k

St

+(|Vs|—1)h =0

t>0, zeR?
normalized model; critical slope: |Vs| =1
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La Model for Granular Flow: Introduction

A Model for Granular Flow: PDE formulation

[Hadeler—Kuttler, 1999]

h = h(z,t) > 0 : thickness of the rolling layer (on the top)
s = s(z,t) > 0 : height of the standing layer (at the bottom)

t>0, zeR?

hy —div(hVs) = (|Vs| —1)h
st +(Vs[=1h=0

normalized model; critical slope: |Vs| =1

- we study one space dimension
- we differentiate the second equation

- we study p := s;, slope of the standing layer, in place of s
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A Model for Granular Flow: PDE formulation

h = h(z,t) > 0 : thickness of the rolling layer (on the top)

p =p(x,t) > 0 : slope of the standing layer (at the bottom)

o= (p)e =P =Dh o g
pe+((p = 1)h)e =0,

and assign data

h(fL‘, 0) = E(fﬂ) )

p(z,0) = p(x)

for z €R
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A Model for Granular Flow: PDE formulation

8o > h >0 : initial thickness of the rolling layer (on the top)
P > po > 0 : initial slope of the standing layer (at the bottom)

— (hp)e = (p— 1)h,
pr+ ((p—1)h), =0, t>0, reR (GF)
h(z,0) = h(z), p(z,0) = Dp(x)
mesoscopic’ description ~» hyperbolic system of balance Iaws|
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A Model for Granular Flow: PDE formulation

8o > h >0 : initial thickness of the rolling layer (on the top)
P > po > 0 : initial slope of the standing layer (at the bottom)

= (hp)a = (p = 1)1,
pt+ ((p—1)h), =0, t>0, zeR  (GF)
h(z,0) = h(z), p(z,0) = Dp(x)
mesoscopic’ description ~» hyperbolic system of balance Iaws|
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A Model for Granular Flow: PDE formulation

8o > h >0 : initial thickness of the rolling layer (on the top)
P > po > 0 : initial slope of the standing layer (at the bottom)

= (hp)a = (p = 1)1,
pr+ ((p—1)h), =0, t>0, zeR  (GF)
h(z,0) = h(z), p(z,0) = Dp(x)
mesoscopic’ description ~» hyperbolic system of balance Iaws|
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A toy model towards (?) stability for more general systems

A Model for Granular Flow: Mathematical Analysis
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LA Model for Granular Flow: Mathematical Analysis

System of balance laws:
ur + Awue = g(u),  u=(h,p)
Amp)=| P sw=@-vn (EGH)
D=, g(u) = (p

with eigenvalues

h—pF — h)2 +4h h
A2(h,p) = P (12) ) Al R —p; Ay R »

strictly hyperbolic in Q = {(h,p): h >0, p > po > 0}

GNL forp>1
1—char. field= ¢ LD  forp=1
GNL forp<1

., JGNL for h #0
2—char. field= { LD forh — 0
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LA Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? |

© Classical Solutions for special initial data [Shen, 2008]
© Lack of regularity in general for conservation laws

u(t,z) smooth sol = Ohru+ fl(u)0zu=0

Gradient Catastrophe also for single, convex equations

shock wave

compression wave

ul — 0o

x

Zo
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A Model for Granular Flow: What difficulties?

We consider solutions in the sense of distributions
uft,)
up
_1 Ai(u™) >0 > M(ut)

.4_/

Ur

T

/0 o /R [ugr + f(u)ps]dudt = 0,

@ € CL]0, +00[xR)
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LA Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? [

We consider solutions in the sense of distributions

© well-posedness theory developed for small BV data
for entropy weak solutions (Lax '56, Liu). For CL:

Existence Kruzkov, 1970; Glimm, 1965; Bianchini-Bressan, 2000;
Uniqueness Bressan & coll. 1992-1998; (...)
Stability Liu—-Yang 1999, Bressan—Liu—Yang 1999 for fields LD or GN

© The problem makes sense with locally large total variation
© The source is not dissipative

®© The fields have linear degeneracy and genuine nonlinearity
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LA Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? [l

© Global in time existence of entropy solutions large in BV
[Amadori-Shen, 2009]

®© No uniqueness was proved, neither semigroup properties,
nor stability
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LA Model for Granular Flow: Mathematical Analysis

Theorem (Amadori-Shen, CPDE (2009))

For all My, po > 0 there exists [og > 0 small enough such that if

TotVar h + TotVar (p — 1) < My,

0<h<[dg, po<p<M

hold then the Cauchy problem for (GF) has an entropy weak
solution (h(t,x),p(t,x)) defined for all t > 0.

|
Moreover, there exists &3, py, M1 > 0 such that

0 < h(t,z) < d; py < p(t,z) < M vVt >0
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LA Model for Granular Flow: Mathematical Analysis

Basic Functionals for Amadori-Shen, 2009
Total Variation: V(u) = Z |pal

« jumps of U

Interaction Potential: Q(u) = Qpp + Qpp + Qpp

Qun = > waplpapsl s Wup(w) = D |papsl,

k‘azk;ﬁzl ka=2, kg=1
~Ta<CU,B Ta<Tg

Qpp(u) = Z |pa,0ﬁ|

a or B shock, ko = kg =2

So min{|p, — 1|, |pg — 1|} pa,ps 1-shocks lying both
Wa, g = either in {p > 1} or {p < 1}
0 otherwise

Note: weighted functional Qp;  ~» existence for large BV data
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LA Model for Granular Flow: Mathematical Analysis

Basic Functionals for Amadori-Shen, 2009
Total Variation: V(u) = Z |pa

Q jumps of U

Interaction Potential: Q(u) = Qpp + Qnp + Qpp

Onn = Z Waﬁ|papﬂ| s th(u) = Z |papﬁ|a

ka:klg:l ka=2, kg=1
xa<xﬂ Ta<Tg

Qpp(u) = > |Paps]
« or 3 shock, ko = kg =2
So min{|pf, — 1], |pé — 1|} pa,ps 1-shocks lying both
Wa,8 = either in {p > 1} or {p < 1}
0 otherwise

Glimm functional is: G(u) =V (u) + cQ(u)
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A Model for Granular Flow: What helps? Special features

u
up

© “simple” solutions to Riemann Problems

—— Shocks

¢
Rarefactions

Time goes on
u,

u(t, ) = u,
u(t,z) =

T
Riemann datum

Packs of i-th waves
© h, the thickness of the rolling layer, is small
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LA Model for Granular Flow: Mathematical Analysis

Wave interactions
» GNL fields: waves do not change nature after interactions

» Non GNL 1-field in GF: shock waves of the first family can
become rarefaction waves (and vice versa) after interactions
with waves of the second family, or also contact discontinuities

GNL fields Non GNL fields
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LA Model for Granular Flow: Mathematical Analysis

Characteristic and Wave Curves

0

2l 1

2

0

(H,0) h

L. Caravenna, Padova

0

Left: Rarefaction curves of the two families
Right: Right states connected to the left state (hy, ps) by an
entropy admissible 1-wave or 2-wave of the homogeneous system
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LA Model for Granular Flow: Mathematical Analysis

Characteristic and Wave Curves
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0

Left: Rarefaction curves of the two families
Right: Right states connected to the left state (hy, ps) by an
entropy admissible 1-wave or 2-wave of the homogeneous system
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LA Model for Granular Flow: Mathematical Analysis

A Model for Granular Flow: What difficulties? Summary

© no smooth solutions in general
~> entropy weak solutions

© possibly large total variation
@ it has linear degeneracy and nonlinearity

@ non dissipative source
~> special features of the problem

Existence of global solutions established [Amadori-Shen, 2009]

Goal: Uniqueness & Semigroup & L'-stability in the initial data
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L. Caravenna, Padova

A toy model towards (?) stability for more general systems

Stability Results
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LStabiIity Results

System of balance laws:

ut + A(u)uy = g(u),  u=(h,p)
Ahp=| PP gw=m-vr (EGF)
’ p—1 h
with eigenvalues
h — —h)2 +4h h
A12(h,p) = P (12) ) AL~ —p; A2 & »

strictly hyperbolic in Q = {(h,p): h >0, p > po > 0}

GNL DX\
LD DX\
GNL DX\

1—char. field=

2—char. field= {

GNL DAs -
LD DXy

‘r1>0 forp>1
‘r1=0 forp=1
‘r1<0 forp<1

ro <0 forh+#0
ro=0 forh=0
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LStability Results

Existing L!-Stability Results Homotopy Method

Careful a-priori estimates on weighted norm of generalized tangent
vectors to the flow generated by the system of conservation laws

» conservation laws GNL or LD, small BV

» non-GNL only 2 x 2 or Temple conservation laws, small BV
> a single work on GN Temple conservation laws in large BV
> a single work on 2 x 2 GN balance laws, small BV

[Amadori, Ancona, Bianchini, Bressan, Colombo, Corli,
Crasta, Goatin, Gosse, Guerra, Marson, Piccoli
1996-2010]
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LStability Results

Existing L!-Stability Results Others

Probabilistic approach
Diagonal strictly hyperbolic systems with large monotonic data

» conservation laws non-GNL, large BV data but monotonic

[Bolley-Brenier-Loeper 2005, Jourdain-Reygner 2016]

“Vasseur”" approach [refer to his course, not L!]
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LStability Results

Existing L!-Stability Results Lyapunov-like

Construction of nonlinear functional, equivalent to L! distance,
decreasing in time along pairs of solutions
1. Conservation laws GNL or LD
[Liu-Yang 1999, Bressan-Liu-Yang 1999]
2. Conservation laws GNL or LD, special data, in large BV
[Lewicka-Trivisa 2002, Lewicka 2004, 2005]
3. Balance laws GNL or LD, dissipative source
[Amadori-Guerra 2002]
4. Balance laws GNL or LD with non-resonant source
[Amadori-Gosse-Guerra 2002]
5. Balance laws of Temple class non-GNL, in large BV
[Colombo-Corli 2004]
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LStability Results

Existing L!-Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the
L!-distance between pairs of approximate solutions
b = d(u,v) u,v € L' piecewise constant

1
o le=vll, <@ v) <O flu—vlf|,

(C depends on system, on TV of u,v, on L norm of uy,vp)
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LStability Results

Existing L!-Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the
L!-distance between pairs of approximate solutions
b = d(u,v) u,v € L' piecewise constant

1
o le=vll, <@ v) <O flu—vlf|,

(C depends on system, on TV of u,v, on L norm of uy,vp)

Features: [on e-front-tracking]

» At interaction times: ¢ — ®(ug(t), vg(t)) \
» Between interaction times: %@(uk(t),vk(t)) <0(1)e
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LStability Results

Existing L!-Stability Results: Bressan-Liu-Yang 1999

Lyapunov-like functional that controls the growth of the
L!-distance between pairs of approximate solutions

b = D(u,v) u,v € L' piecewise constant

1

G lu=2]

C

(C depends on system, on TV of u,v, on L> norm of uy,, vy)

Ll < @(u,v) <C- ”u - UHLl

© large BV data
@ fields either linearly degenerate or genuinely nonlinear

® no source
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LStability Results

Basic Functionals for (GF) in Bressan-Liu-Yang 1999
Total Variation: V(u) = Z |pal [strength of waves in u]

Q¢ jumps of U

Interaction Potential: Q(u) = Qpp + Qnp + Opp [

controls future interactions:|

among waves in u

Glimm functional: G(u) =V (u) 4+ cQ(u) [C:m'f °_Ver tifme}
—+o00
(u(t),v(t)) = / [l |(t, )Wi(t, ) + |n2| (¢, 2) Wa(t, z)] dz

Wi - + K1 |:strength of waves in u and v:| + /€1I€2(Q(u) —+ Q('U))

which approach the i-wave 7;

n; = [distance along the i-th field among states u(z,t) and v(z, )]
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Basic Functionals for (GF) in Bressan-Liu-Yang 1999
Total Variation: V(u) = Z |pal [strength of waves in u]

Q¢ jumps of U

Interaction Potential: Q(u) = Opj + Qrp + Opp [

controls future interactions:|

among waves in u

Glimm functional: G(u) =V (u) 4+ cQ(u) [C:m'f °_Ver tifme}
—+o00
(u(t),v(t)) = / [l |(t, )Wi(t, ) + |n2| (¢, 2) Wa(t, z)] dz

strength of waves in u and v

L=W;=1+r [ ] + K1k (Qu) + Q(v))< 2

which approach the i-wave 7);

n; = [distance along the i-th field among states u(z,t) and v(z,t)]
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Basic Functionals for (GF) in Bressan-Liu-Yang 1999
Total Variation: V(u) = Z |pal [strength of waves in u]

Q¢ jumps of U

Interaction Potential: Q(u) = Opj + Qrp + Opp [
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among waves in u
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A toy model towards (?) stability for more general systems

Stability Granular Flow
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LStability Granular Flow

Almost all available results deal with GNL or LD CLs

Goal: Construct Lyapunov-like functional & for GF system in BV
» from [Amadori-Shen, 2009]: approximate solutions combining

» front-tracking algorithm
» operator splitting scheme with time steps ¢, = kAt

> For the homogeneous system

> P(uk(t), vi(t)) shall decrease at interaction times
> between interactions, - ®(uy(t), vg(t)) < O(1)e

» Estimating at time-steps, ® exponentially increases in time
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Approximate solutions: (h*, p®)
Homogeneous System
hi — (hp)e =0
pe+ ((p = 1h)z = 0.
Next, at time t; the function (h®, p®) is updated as follows
h*(te) = h*(te—=) + At[p®(tr—) — 1]h* (L —)
p*(tr) = p°*(t—)-

[th—1,tk)

TR T
e aav gy
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Functions needed for existence

Total Variation: V(u) = Z |pal

|: measures :|
« jumps of U

strength of waves in u
controls interactions
Interaction Potential: Q(U) = th + th + Qpp possibly occurring in the

Glimm functional: G(u)

future among waves in u

Vi(u) +cQ(u)

the variation of u

|:controls over time:|
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LStability Granular Flow

Stability Functional

u, v approximate solutions; Si(+;+) i-shock curve
11 and 79 scalar functions defined implicitly by

v(t, ) = Sa(na(t, )5 ) 0 Sa(m (L, )5 ult, x))

Define
2 o]

b @(wr) =Y / (W1 (@) |m ()| + Wa()|ne(2)]] da
=17 ">

where the weights W; have the following form:

Wit z) =1+ ria- At 2) + kg - [G(u(t) + G(u(?))]
Wo(t, ) = 14 ko - Aa(t, @) + rag - [G(u(t)) + G(v(2))]
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Stability Functional

L. Caravenna, Padova

u, v approximate solutions;

New!|
Si(+;+) i-shock curve
11 and 72 scalar functions defined implicitly by
Define

(t, ) = Sa(n2(t, 2);-) 0 S1(m (¢, 2); ult, )

2 oo
o o)=Y [ INM@lnE)] + Wa@)n@)] de
=17 ">

® is equivalent to the L' norm

Collu(®) —v(®)l[r < P(u(t), v(t)) < Collu(t) — v(#)]| 1
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Weights in ®: W;(z) = 1 + kiadi(x) + kiglG(u) + G(v)]

A (x) = Z lpal - 0%, — 1| summing over { 1-waves in u and in v
«
which approach the 1-wave 7 (x) } +
+ Y 1pal
[e%

summing over {2—waves inu and in v

which approach the 1-wave 7; (x)} ,

Ao(@) = Y |pal

summing over{ 1-waves and 2-waves in u and in v

which approach the 2-wave 7, (x)} ,
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Approaching Waves in A;: in v towards n;(x) > 0

X2 X3 X4 X

X6

X7 X8

Regions p < 1, p > 1 are connected by - crossing {p =1}
-: v — A1(7y; -) strictly increasing on {p > 1}

Xo < X
-: v — A1(7y; ) strictly decreasing on {p < 1}

Xo > X
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Three categories of times:

A: at interaction times: t — ®(u(t),v(t)) N\
B: at times between interactions: %@(u(f),v(t)) <0Q1)-e

Vi <s<t<tlpyr.

®(u(t,-),v(t,-) < P(uls, ), v(s, )+ OQ1)-e(t—s),

C: at time steps tj, we prove that

O (u(tr+), v(tes+))—P(u(ty—), v(ts—)) < O(1) At (u(ty—), v(tg—))
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[A:] at interaction times

Ay (45 2) — Ar(r—32) = [p — 1]|ph] < O()|psl|pal
» p
o
v !
P / & !
ym " :
1 1 ! .
W
o 0
5 7

Examples of 2 — 1 interactions

[m]
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[B:] at times between interactions

D

« jumps of u and v
W T
Ea»l - 7 ’ !

n (A"

=) -
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errors
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! ha=1 ? ka=2
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) 5 % ) [ |
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Left: The jump at 2, is a 1-shock: v" = S1(Va;0%)
Right: The jump at x, is a 2-shock: v" = S5(Vq; v)
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[B:] at times between interactions

Generalized Interaction Estimates:

(i) The jump at 2, is a [15ShOEK|: v" = S (Va; v%)

=1t —Yal+|m5—m5] < C [Ipa — 1P[n{ + YalInival + hmaxlnﬁwl]

(i) The jump at z, is along [2heeks|: v" = S5(va; v%)

Iy = 1i| + | = 15 — Yal < Clhg + 15 PIn5al 15 + Yal
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[C]: at time steps t;

L. Caravenna, Padova

p

®(u,0)(t]) — D(u, v)(t;) < OL)IBHP(u, v)(t;)

The shock curves connecting the states u~, v~ before a time step
of size At, and the states ™, v™ after such time step

[m]

=
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Semigroup S for Homogeneous System

Theorem 1 (Ancona—C.—Christoforou, Preprint 2018)

V My 36,0, >0, 30805 Mg, L >0, 3lmap (t, 1) S

TotVar (T)El) < M, TotVar (pﬁl) < Mg
S:[0,+00)xq0<h < & ~{0<h <8
p—1< 6 p—1] <6y

which enjoys the following properties:
(i) Sou=u, Sitsu=35; (Ssﬁ) “semigroup”
(i) || S — Ssv|py < L (Is — t| + ||z — vllga)

(iii) (h,p) = Sgu(x) entropy solution of conservation laws (GF)
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Semigroup P for Non—-Homogeneous System

Theorem 2 (Ancona—C.—Christoforou, Preprint 2018)

V My 380,06, >0, 305050 Mg, L',C, 3map (t,7) — Pru

TotVar (551) < M, TotVar(pﬁl) < M
P:]0,+00)x40<h < b — <0< h <0
p-1l< 5, p—1] <[5

which enjoys the following properties:

(i) Pou=1u, Pipsu="P; (Psﬂ) “semigroup”
(ii) ||P — Psv||pa < L' - (e“tl[m — g1 + (t — 5))
(iii) (h,p) = Pyu(x) entropy weak solution of balance laws (GF)
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What we want to improve?

L. Caravenna, Padova

» what happens with boundary conditions?

» the Lipschitz constant shall really blow up in time?

» of course, there are other interesting models. . .

...could we do it ‘more in general'?

THANK YOU
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