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Normal sets

Let Λ = (tn) be a sequence of positive integers (more generally real numbers).

Definition
The normal set associated to Λ is

B(Λ) = {x ∈ R, (tnx) u.d. mod 1}

equivalently (Weyl’s criterion)

B(Λ) = {x ∈ R, ∀k 6= 0, 1
N

∑
n≤N

e(ktnx)→ 0.}

First examples.

1 B(N) = R\Q ; the same holds for Λ = (P(n)) with P ∈ Z[X ].
2 If q ≥ 2 and tn = qn, then B(Λ) =: Nq ( normal numbers to base q) with negligible

– but uncountable – complement set (Borel).
3 For intermediate growth rate ? For example, the Furstenberg sequence :

(sn) = {2j3k , j ≥ 1, k ≥ 1} re-arranged in increasing order?
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Let B ⊂ R.

Definition (MMF)
B is a normal set if there exists Λ such that B = B(Λ).

What does a normal set look like ?
G. Rauzy (1970) gives the following description :

Theorem
B ⊂ R is a normal set if and only if

1 0 /∈ B, B + 1 = B.
2 ∀q ∈ Z∗, qB ⊂ B.
3 There exists a sequence of continuous functions on R, (fn), such that

lim
n→∞

fn(x) = 0⇐⇒ x ∈ B.

Comments. 1. No information on the associated sequence Λ.
2. No such result if we impose Λ to be an increasing sequence.
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Christian’s result on substitutive normal sets

In 1980, together with Christol, Kamae and Mendes France, G. Rauzy has written a
founding paper on algebraic numbers, automata and substitutions.
Unsurprinsingly, Rauzy proposed to his student, Christian, the study of sequences of
integers defined by some automaton or substitution. In particular, can we describe the
associated normal sets ?

In 1989 Christian brings a complete answer to this problem in the irreducible case.

Theorem
B ⊂ R is a normal set associated to some irreducible substitution if and only if R\B is a
finite real field extension of Q.

We need some clarification...
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Reminds on substitutions

Let ζ be a substitution on a finite alphabet A of cardinality s (a map A→ A∗ extended
by concatenation). A is identified to {1, 2, . . . , s}.

1 M := M(ζ) is the s × s-matrix with entries

mi,j = #{j ∈ ζ(i)}, i , j ∈ A.

2 M (or ζ) is irreducible if, for every (i , j) there exists n = n(i , j) such that j appears
in ζn(i) i.e. (Mn)i,j > 0.

3 M (or ζ) is primitive if n exists such that Mn
i,j > 0 for every (i , j) (or Mn > 0).

4 The eigenvalues of M are algebraic integers.
If M is primitive, M admits a simple positive and dominant eigenvalue θ, which is a
Perron number, i.e. |θj | < θ (θj other eigenvalues of M) ;
if M irreducible only, one has |θj | ≤ θ only.

Example. 1→ 2, 2→ 346, 3→ 15, 4→ 1, 5→ 2, 6→ 5 irreducible but not primitive.
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Reminds on substitutions

Let ζ be an irreducible substitution on A := {1, 2, . . . , s}.
1 There exists a ∈ A such that ζ(a) begins with a and |ζ(a)| ≥ 2 (up to some

iteration). Thus ζ∞(a) =: u is a fixed point of ζ.

2 Every letter, every word of u occurs in u infinitely often.
3 If e is the column vector (1, 1, . . . , 1), Mne = `n where
`n := (`n(1) = |ζn(1)|, . . . , `n(s) = |ζn(s)|) (the column length vector).

Back to Christian’s result. Let ζ be an irreducible substitution on A admitting an
infinite fixed point u. Let Λ := Λ(u, a) be the increasing sequence obtained by indexing
the appearances of the letter a in u. Then

B = B(Λ) for some u, a⇐⇒ R\B is a finite real field extension of Q

(generated by the θj involved in Λ).
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Sketch of proof
Two main steps for the necessary condition and two ingredients for the reciprocal.

(=⇒) 1. W := R\B non-normal set. Christian proves (key point)

W = {α ∈ R, ∃k 6= 0, ∀i ∈ {1, . . . , s} lim
n→∞

e(k`n(i)α) = 1}

(because the sequence (tn) is generated by the (`n(i)), i ∈ A, and irreducibility.)

2. Algebraic description of Wi = {α ∈ R, limn→∞ e(`n(i)α) = 1}.
Observe : `n(i) =

∑
θ∈Θi

Pi (n)θn. Christian invokes a famous theorem of Pisot :

Theorem (Pisot 1939)
Let θ be an algebraic number, |θ| ≥ 1, and λ ∈ R such that ||λθn|| → 0 ; then θ Pisot
number and λ ∈ Q(θ).

He gets this improvement (and the implication) :

Theorem (Pisot family)
Let θ1, . . . , θr be distinct algebraic numbers, |θi | ≥ 1 for 1 ≤ i ≤ r ; let Pi ∈ Z[X ], and
αi ∈ R, 1 ≤ i ≤ r , not all zero, with ||

∑
1≤i≤r αiPi (n)θn

i || → 0. Then the θ′i s are
algebraic integers, every conjugate of the θ′i s (different from θi) belongs to the unit open
disk and αi ∈ Q(θi ) for every i.
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Sketch of proof
Two main steps for the necessary condition and two ingredients for the reciprocal.
(=⇒) 1. W := R\B non-normal set. Christian proves (key point)

W = {α ∈ R, ∃k 6= 0, ∀i ∈ {1, . . . , s} lim
n→∞

e(k`n(i)α) = 1}

(because the sequence (tn) is generated by the (`n(i)), i ∈ A, and irreducibility.)

2. Algebraic description of Wi = {α ∈ R, limn→∞ e(`n(i)α) = 1}.
Observe : `n(i) =

∑
θ∈Θi

Pi (n)θn. Christian invokes a famous theorem of Pisot :

Theorem (Pisot 1939)
Let θ be an algebraic number, |θ| ≥ 1, and λ ∈ R such that ||λθn|| → 0 ; then θ Pisot
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(⇐=) 1. Pisot proved in his thesis :
If F is a finite real field extension of Q of degree s, there exists a Pisot number θ of
degree s such that F = Q(θ).

Let us fix this θ.

Theorem (Lind 1992)
If θ is a Perron number (|θj | < θ), there exists M = (mi,j ) ∈ Ns×s , M ≥ 0 and M
primitive such that θ and its conjugates are the set of eigenvalues of M.

2. Finally ζ defined on A = {a1, . . . , as} by

ζ(ai ) = ami,1
1 ami,2

2 · · · ami,s
s ∀ai ∈ A,

u = ζ∞(a1) and Λ indexing the occurrences of a1 in u do the job. ♦♦♦

Examples. 1. Fibonacci : ζ(a) = ab, ζ(b) = a, u = ζ∞(a) ; here,
`n(a) = fn+1, `n(b) = fn and W = Q(

√
5).

2. ζ(a) = abb, ζ(b) = ba, u = ζ∞(a) ; here, W = Q(
√
2), since

`n(a) = ((1 +
√
2)n+1 + (1−

√
2)n+1)/2, `n(b) = ((1 +

√
2)n+1 − (1−

√
2)n+1)/2

√
2.
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Further perspectives in the spirit of Christian’s result

1 Normal set associated to subsequences of prime numbers (cf Bruno’s talk).
2 Normal set associated to (subsets of) ellipsephic integers (cf Cécile’s talk).
3 Noticeable subgroups of the circle (emerging from the proof).
4 Size of more general non-normal sets.
5 Link with rigid sequences.
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Noticeable subgroups of the circle

We focus now on the circle T ∼ [0, 1).
Let Λ = (tn) be a sequence of positive integers. Inspired by the part 1. of the proof, we
denote

H∞(Λ) = {x ∈ T, ||tnx || → 0};
and more generally, for p ≥ 1

Hp(Λ) = {x ∈ T,
∑

n

||tnx ||p <∞}.

Questions. 1. When are those subgroups countable ?
2. If not, what is the Hausdorff dimension of such a subgroup ?
3. More widely, role of the lacunarity, of the arithmetic properties of Λ ?

Theorem (Eggleston 1951)
1. If 1 < tn+1/tn ≤ K then H∞(Λ) is at most countable.
2. If tn ↑ and tn+1/tn →∞ then dimH∞(Λ) = 1 (thus uncountable).

Theorem (Erdòs and Taylor 1970)
If

∑
n tn/tn+1 <∞ then H1(Λ) is uncountable.
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An interesting class : denominators sequences

In the case of Fibonacci (more generally caracteristic sturmian sequence), the lengths
sequence is nothing but (qn(θ)), with θ = (

√
5− 1)/2.

Let Λ(α) = (qn(α)) with α /∈ Q.

Theorem (Larcher, Jager and Liardet 1988)
H∞(α) := H∞(qn(α)) is countable if and only if α ∈ Bad , and in this case
H∞(α) = Zα ∩ T.

The proof is a direct consequence of the base α decomposition (Gillet’s decomposition).
Put αn = |qnα− pn| : Every x ∈ [0, 1[ can be uniquely decomposed into

x =
∑

n

bnαn, 0 ≤ bn ≤ an+1 with bn = an+1 =⇒ bn+1 = 0.

Questions and comments. 1. What can we say if α is Liouville for example ?
2. dimH∞(α) when α /∈ Bad ?
3. Pollington and Velani proved that G(α) = {β ∈ Bad , lim infn ||qn(α)β|| = 0} has
dimension 1 when α ∈ Bad .
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Size of non-normal sets

Notation. Λ = (tn) sequence of positive integers

W (Λ) = {x ∈ T, (tnx) not u.d. mod 1} ⊃ ∪k 6=0H∞(kΛ)

Three tools : cardinality, dimensions, measures supported on.
Well-known facts :

If Λ is increasing, m(W (Λ)) = 0 (H.Weyl 1912).
If Λ is lacunary, dim(W (Λ)) = 1 (Erdòs-Taylor 1957).
If Λ = {3j + 3k , j, k ≥ 1} re-arranged in increasing order (non-lacunary),
dim(W (Λ)) = 1.
If Λ is the Furstenberg sequence, W (Λ) is uncountable (it contains Liouville
numbers of the form

∑
n≥1 εn6−n!, εn = 0 and 1 i .o.). What is its dimension ?
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Measures supported on non-normal sets

A set supporting a continuous measure must be uncountable. We go further...

Definition
Let µ be a bounded measure on T ; we say that µ ∈ M0 (or µ Rajchman measure) if
lim|n|→∞ µ̂(n) = 0.

The support of a Rajchman measure cannot be too "porous" : the triadic Cantor set
(consisting in non-3-normal numbers) supports no such measure.
Also Russel Lyons (1984) observed that

Proposition
A measure µ ∈ M(T) such that µ(E) = 0 for every E = W (Λ) is a Rajchman measure.

Nevertheless, there exist a non-normal set supporting a Rajchman measure. Note the
following result :

Theorem
Let Λ = (tn) an increasing sequence of integers with tn|tn+1. Then W (Λ) supports a
Rajchman measure.
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Link with rigid sequences

Definition (/Proposition)
A sequence of integers (nk ) is rigid if there exists a weak mixing system (X ,T , µ) such
that

||f ◦ T nk − f ||L2(µ), ∀f ∈ L2(µ).

⇐⇒ There exists a continuous probability measure µ on T such that µ̂(nk )→ 1.

Among many results (FT, BJLR, EG, BG, BGM, .....) we retain

Theorem
1. If the sequence Λ := (nk ) is rigid then W (Λ) is uncountable.
2. If H∞(Λ) is dense then the sequence Λ is rigid.

Examples.

If nk |nk+1 for every k, the sequence is rigid (H∞(Λ) is dense).
If nk+1/nk →∞ then (nk ) is rigid (since H∞(Λ) uncountable by Eggleston).
For every α /∈ Q, (qn(α)) is rigid (α ∈ H∞(α)).
Prime numbers sequence is not rigid (W (Λ) countable – Vinogradov).
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Open questions

1 Is the sequence nk = 2k + 3k rigid ?
2 Is the Furstenberg sequence sequence rigid ?
3 We can define B(Λ), W (Λ), and H∞(Λ) for a real sequence Λ. The quoted theorem

of Pisot says that H∞((θn)) = Q(θ) as soon as θ is algebraic. What about θ
transcendental ?

4 Does W ((tn)) support a Rajchman measure for some (tn) without the divisibility
property ? Which lacunarity condition gives the result ?

5 Erdòs proved : there exists infinitely many prime numbers in (qn(α)) for a.e. α. In
which proportion ?

6 Automatic sequence of integers (Christian). If Λ consists of integers, the 2-adic
representation of which obeys the language of parenthesis, is it true that
B(Λ) ⊃ R\Q ?
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THANK YOU Christian!
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