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Bounded remainder sets



Kronecker sequences and toral translations

Let α = (α1, . . . , αd) ∈ [0, 1]d with 1, α1, · · · , αd Q-linearly
independent. Consider the sequence in [0, 1]d

({nα1}, . . . , {nαd})n

associated with the translation over Td = (R/Z)d

Rα : Td 7→ Td , x 7→ x + α

One has
({nα1}, . . . , {nαd}) = Rn

α(0)



Bounded remainder sets

Discrepancy

∆N = sup
B box

|Card {0 ≤ n < N ;Rn
α(0) ∈ B} − N · µ(B)|

Bounded remainder set A measurable set X for which there
exists C > 0 s.t. for all N

|Card{0 ≤ n ≤ N ;Rn
α(0) ∈ X} − Nµ(X )| ≤ C

Bounded ergodic deviations for ergodic sums associated with
the function 1X for (Td ,Rα)∣∣∑

0≤n≤N−1 1X (Rn
α(0))− Nµ(X )

∣∣ ≤ C for all N
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Bounded remainder sets for toral translations

Bounded remainder set A measurable set X for which there
exists C > 0 s.t. for all N

|Card{0 ≤ n ≤ N ;Rn
α(0) ∈ X} − Nµ(X )| ≤ C

[Kesten’66] d = 1 Intervals that are bounded remainder sets
are the intervals with length in Z + αZ

[Liardet’87] d ≥ 2 There are no nontrivial boxes that are
bounded remainder sets

[Grepstad-Lev,Haynes-Kelly-Koivusalo] Any parallelotope in
Rd spanned by vectors v1, · · · , vd belonging to Zα + Zd is a
bounded remainder set for the translation by α = (α1, · · · , αd)
on Td , with 1, α1, · · · , αd linearly independent.



Rauzy’s program

How to subdivide bounded remainder sets into smaller
ones? How to get multiscale bounded remainder sets?

How to construct bounded remainder sets via symbolic
codings of Kronecker sequences? via subshifts with pure
discrete spectrum?



Symbolic bounded remainder set

The shift T acts on AZ as T ((un)n) = (un+1)n
A subshift (X ,T ) is a closed shift-invariant subset of AZ

Let (X ,T , µ) be a minimal and uniquely ergodic subshift

A bounded remained set is a measurable set A for which there
exists C > 0 such that for all N∣∣∣∣∣ ∑

0≤n≤N−1

1A ◦ T n(x)− Nµ(A)

∣∣∣∣∣ ≤ C

Example Take a cylinder [v ] = {u ∈ X , u0 · · · u|v |−1 = v}

; balance and frequency results



Topological approach
Consider a strictly ergodic subshift (X ,T , µ)
The cylinder [v ] is a bounded remainder set (X ,T ) iff the
ergodic sums

∑N−1
n=0 fv (T n(u)) for fv = 1[v ] − µ[v ] are

bounded

Theorem [Gottschalk-Hedlund] Let X be a compact
metric space and T : X → X be a minimal
homeomorphism. Let f : X → R be a continuous
function. Then f is a coboundary

f = g − g ◦ T

for a continuous function g if and only if there exists x
and there exists C > 0 such that for all N

|
N∑

n=0

f (T n(x))| < C

The cylinder [v ] is a BRS iff 1[v ] − µv is a coboundary
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Bounded remainder sets and spectrum

[v ] is a bounded remainder set iff 1[v ] − µ[v ] is a coboundary

fv = 1[v ] − µv ; fv = g − g ◦ T

exp(2iπ g ◦ T ) = exp(2iπµ[v ]) exp(2iπg)

exp(2iπg) is a continuous eigenfunction associated with the
eigenvalue exp(2iπµ[v ]) ; Topological rotation factor

X −→
T

Xy y
G

R−→ G



Hypercubic billiards



Billiard
Consider a subshift generated by a billiard in the d-dimensional
hypercube with slope (α1, · · · , αd), with (α1, · · · , αd) linearly
independent over Q. It is minimal and uniquely ergodic.

Trajectories are coded according to the type of face they
hit ; coding words in {1, 2, · · · , d}Z.

These coding words code translations on the torus Td−1

represented by a domain exchange acting on the following
hexagonal fundamental domain.

[Arnoux-Mauduit-Shiokawa-Tamura’94, Baryshnikov’95]



Billiard

Consider a subshift generated by a billiard in the d-dimensional
hypercube with slope (α1, · · · , αd), with (α1, · · · , αd) linearly
independent over Q. It is minimal and uniquely ergodic.

Sturmian case d = 2. Cylinders are bounded remainder sets.



Billiard
Consider a subshift generated by a billiard in the d-dimensional
hypercube with slope (α1, · · · , αd), with (α1, · · · , αd) linearly
independent over Q. It is minimal and uniquely ergodic.

Cubic case and beyond d ≥ 3 [B.-Bedaride-Julien]
Letter cylinders are bounded remainder sets but cylinders
associated with factors of length at least 2 are not bounded
remainder sets.

“Proof” Assume that w has bounded discrepancy. Let µ stand
for the invariant measure. Then, µ[w ] is an additive
eigenvector and µ[w ] ∈ 〈α1, · · · , αd〉. However, the areas of
the zones that correspond to factors of length large enough do
not belong to 〈α1, · · · , αd〉.

Factors of length 2 ;



Bounded remainder sets for toral translations

Let α = (α1, . . . , αd) ∈ [0, 1]d , Rα : Td → Td , x 7→ x + α

[Kesten’66] d = 1 Intervals that are bounded remainder sets
are the intervals with length in Z + αZ.
Cylinders are bounded remainder sets for Sturmian words.

[Grepstad-Lev’15,Haynes-Kelly-Koivusalo’17] Any
parallelotope in Rd spanned by vectors v1, · · · , vd belonging to
Zα + Zd is a bounded remainder set for the translation by
α = (α1, · · · , αd) on Td , with 1, α1, · · · , αd linearly
independent.
Letter cylinders are bounded remainder sets for hypercubic
billiard words.



Toward self-similarity

Kronecker sequences ; Multidimensional continued fractions

; Products of nonnegative matrices

; Products of substitutions

; Symbolic bounded remainder sets ; Fractals

Based on the Substitution/Induction correspondence and on
the fact that:

“Induced of toral translations with respect to bounded
remainder sets are translations” [Rauzy’84,Ferenczi’92]



Dynamical dimension group

Let (X ,T ) be a minimal subshift

Coboundaries β : C (X ,Z)→ C (X ,Z), f 7→ f ◦ T − f

Dimension group H(X ,T ) = C (X ,Z)/βC (X ,Z)

Thue-Morse substitution
a 7→ ab, b 7→ ba
H(X ,T ) = Z[1/2]

M =

[
1 1
1 1

]
1aa − 1/6 6∈ βC (X ,T )

[aa] is not a BRS

Fibonacci substitution
a 7→ ab, b 7→ a
H(X ,T ) = Z2

M =

[
1 1
1 0

]
1[w ] ∈ 〈1[0], 1[1]〉
Cylinders are BRS



From letters to factors
Theorem [B.-Cecchi-Durand-Leroy-Perrin-Petite] Let (X , S) be
a primitive unimodular proper S-adic subshift. Any function
f ∈ C (X ,Z) is cohomologuous to some integer linear
combination of the form∑

a∈A

αa1[a] ∈ C (X ,Z)

Moreover, the classes [1[a]], a ∈ A, are Q-independent.

• Holds for interval exchanges or Arnoux-Rauzy sequences.

• If letter cylinders are bounded remainder sets, then all
cylinders are bounded remainder sets. Moreover, every
f ∈ C (X ,R) is balanced for (X ,T ), i.e., there exists a
constant Cf > 0 such that

|
n∑

i=0

f (T ix)− f (T iy)| ≤ Cf for all x , y ∈ X and for all n.
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Substitutions and bounded remainder sets

Let σ be a primitive substitution.
Theorem [Adamczewski]

If σ is a Pisot substitution, then letter cylinders are
bounded remainder sets in Xσ.

Conversely, if letter cylinders are bounded remainder sets
in Xσ, then the Perron–Frobenius eigenvalue of Mσ is the
unique eigenvalue of Mσ that is larger than 1 in modulus,
and all possible eigenvalues of modulus one of Mσ are
roots of unity.



The Pisot substitution conjecture

Substitutive structure + Algebraic assumption (Pisot)

= Order

Order ≡ discrete spectrum ≡ translation on a compact group

The Pisot substitution conjecture If σ is a Pisot irreducible
substitution, then (Xσ,T ) has discrete spectrum

Dates back to the 80’s [Bombieri-Taylor, Rauzy,Thurston] and
proved for two-letter alphabets [Host, Hollander-Solomyak]
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Beyond the Pisot conjecture
Classical multidimensional continued fraction algorithms
generate bounded remainder sets

Take your favorite continued fraction algorithm A
(Jacobi-Perron, Brun, (Cassaigne)-Selmer, Arnoux-Rauzy, etc.)

Theorem [B.-Steiner-Thuswaldner]
For almost every (α, β) ∈ [0, 1]2, the translation by (α, β) on
the torus T2 admits a symbolic model: the S-adic system
provided by the multidimensional continued fraction algorithm
A applied to (α, β) is measurably conjugate to the translation
by (α, β). Moreover, the geometric realization of cylinders
provides bounded remainder sets for the translation by (α, β).

See also [N. Pytheas Fogg: Andrieu, Bedaride, Bertazzon,
Cassaigne, Mercat, Monteil]
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Continued fractions and codings of translations

Let A be a d-dimensional multidimensional continued fraction
algorithm satisfying Lagarias’ conditions. If moreover the
following holds:

The Pisot condition holds λ1(A) > 0 > λ2(A).

The set of admissible matrices is described by a graph
with finitely many vertices (sofic).

Cylinders have positive measure.

Then it is possible to associate an S-adic shift such that a.e.
this S-adic shift is measurably conjugate to a translation on
the torus Td−1; in particular, its measure-theoretic spectrum is
purely discrete and cylinders give bounded remainder sets.
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Lagarias’ conditions

(H1) Ergodicity The map T admits an ergodic invariant
probability measure µ that is absolutely
continuous with respect to Lebesgue measure.

(H2) Covering Property The map T is piecewise continuous
with non-vanishing Jacobian almost everywhere.

(H3) Semi-Weak convergence This is a mixing condition for T
which implies weak convergence.

(H4) Boundedness This is log-integrability of the cocycle A
which is necessary in order to apply the Oseledets
Theorem.

(H5) Partial quotient mixing The expectation of the number
n for which A(n)(x) becomes a strictly positive
matrix is finite.



Higher-dimensional case
Numerical experiments indicate that classical multidimensional
continued fraction algorithms seem to cease to be strongly
convergent for high dimensions. The only exception seems to
be the Arnoux-Rauzy algorithm which, however, is defined only
on a set of measure zero [B.-Steiner-Thuswaldner]

d λ2(AB) 1− λ2(AB)
λ1(AB)

d λ2(AB) 1− λ2(AB)
λ1(AB)

2 −0.11216 1.3683 7 −0.01210 1.0493
3 −0.07189 1.2203 8 −0.00647 1.0283
4 −0.04651 1.1504 9 −0.00218 1.0102
5 −0.03051 1.1065 10 +0.00115 0.9943
6 −0.01974 1.0746 11 +0.00381 0.9799

Table: Heuristically estimated values for the second Lyapunov
exponent and the uniform approximation exponent of the Brun
Algorithm
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