

# Workshop on Differential Geometry and Nonassociative Algebras

CIRM, Marseille November 12th, 2019

Symplectic Jacobi Jordan algebras

**Amir Baklouti** (with Saïd Benayadi )

Umm Al-Qura University-Saudi Arabia,  
& Sfax University-Tunisia

# Definition

- 1 Motivation
- 2 Symplectic Jacobi-Jordan algebras
- 3 Double extension of symplectic Jacobi-Jordan algebras
- 4 Symplectic Jacobi-Jordan algebras with pseudo-Euclidean structure

A finite dimension algebra  $(J, .)$  is said to be Jacobi Jordan algebra if it is commutative and satisfies the Jacobi identity :

$$J(x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, \quad \forall x, y, z \in J.$$

A finite dimension algebra  $(J, .)$  is said to be Jacobi Jordan algebra if it is commutative and satisfies the Jacobi identity :

$$J(x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, \quad \forall x, y, z \in J.$$

These algebras were introduced recently in :

Burde D, Fialowski A. Jacobi-Jordan algebras. Linear Algebra Appl.  
2014.

A finite dimension algebra  $(J, .)$  is said to be Jacobi Jordan algebra if it is commutative and satisfies the Jacobi identity :

$$J(x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, \quad \forall x, y, z \in J.$$

These algebras were introduced recently in :

Burde D, Fialowski A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014. We remark that it forms a sub-class of Jordan-Lie super-algebras introduced in :

Kamiya N, Okubo S. Jordan-Lie super algebra and Jordan-Lie triple system. J Algebra. 1997.

A finite dimension algebra  $(J, .)$  is said to be Jacobi Jordan algebra if it is commutative and satisfies the Jacobi identity :

$$J(x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, \quad \forall x, y, z \in J.$$

These algebras were introduced recently in :

Burde D, Fialowski A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014. We remark that it forms a sub-class of Jordan-Lie super-algebras introduced in :

Kamiya N, Okubo S. Jordan-Lie super algebra and Jordan-Lie triple system. J Algebra. 1997.

The first interest of Jacobi-Jordan algebras is motivated by the fact that they constitute an interesting sub-class of the well-referenced class of Jordan algebras

A finite dimension algebra  $(J, .)$  is said to be Jacobi Jordan algebra if it is commutative and satisfies the Jacobi identity :

$$J(x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, \quad \forall x, y, z \in J.$$

These algebras were introduced recently in :

Burde D, Fialowski A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014. We remark that it forms a sub-class of Jordan-Lie super-algebras introduced in :

Kamiya N, Okubo S. Jordan-Lie super algebra and Jordan-Lie triple system. J Algebra. 1997.

The first interest of Jacobi-Jordan algebras is motivated by the fact that they constitute an interesting sub-class of the well-referenced class of Jordan algebras

Proposition : D. Burde, A. Fialowski : 2014

Every Jacobi-Jordan algebra  $(J, .)$  is a nilpotent Jordan algebra such that  $x^3 = 0, \forall x \in J$ .

## Example

Let  $(J, .)$  be an anti-associative algebra. Consider the second bilinear product  $\circ$  in  $J$  defined by  $x \circ y := x.y + y.x$ ,  $\forall x, y, z \in J$ . A simple computation proves that  $(J, \circ)$  is a Jacobi-Jordan algebra.

## Example

Let  $(J, \cdot)$  be an anti-associative algebra. Consider the second bilinear product  $\circ$  in  $J$  defined by  $x \circ y := x.y + y.x$ ,  $\forall x, y, z \in J$ . A simple computation proves that  $(J, \circ)$  is a Jacobi-Jordan algebra.

Let  $(J_4, \cdot)$  be the 4-dimensional algebra defined by  $e_1 \cdot e_1 = e_2$ ,  $e_1 \cdot e_3 = e_3 \cdot e_1 = e_4$ , where  $\{e_1, e_2, e_3, e_4\}$  is a basis of  $J_4$ .  
 $(J_4, \cdot)$  is a Jacobi-Jordan algebra.

# Admissible Jacobi-Jordan algebras

Let  $(J, .)$  be an anti-associative algebra. Consider the second bilinear product  $\circ$  in  $J$  defined by  $x \circ y := x.y + y.x$ ,  $\forall x, y, z \in J$ . A simple computation proves that  $(J, \circ)$  is a Jacobi-Jordan algebra.

## Definition

Let  $(J, .)$  be an algebra. We consider the new product  $\circ$  defined as above on the vector space  $J$  by :

$$x \circ y := x.y + y.x, \quad \forall x, y, z \in J.$$

The algebra  $(J, .)$  is called Jacobi-Jordan admissible algebra if  $(J, \circ)$  is a Jacobi-Jordan algebra. In this case the product  $".."$  will be called also Jacobi-Jordan admissible product.

# Admissible Jacobi-Jordan algebras

## Definition

An algebra  $(J, .)$  is said to be left (resp. right) skew-symmetric if

$Aasso(x, y, z) = -Aasso(y, x, z)$ , (resp.

$Aasso(x, y, z) = -Aasso(x, z, y)$ ), for all  $x, y, z \in J$ .

# Admissible Jacobi-Jordan algebras

## Definition

An algebra  $(J, .)$  is said to be left (resp. right) skew-symmetric if

$$Aasso(x, y, z) = -Aasso(y, x, z), \text{ (resp.)}$$

$$Aasso(x, y, z) = -Aasso(x, z, y)), \text{ for all } x, y, z \in J.$$

## Proposition

Any right (resp. left) skew-symmetric algebra is an admissible Jacobi-Jordan algebras.

## Derivation and antiderivation

$D \in \text{Hom}(J, J)$ .  $D$  is called a derivation (resp. anti-derivation) of the algebra  $(J, .)$  if for any  $x, y \in J$  we have

$$D(x.y) := D(x).y + x.D(y), \text{ (resp. } D(x.y) := -D(x).y - x.D(y)).$$

## Derivation and antiderivation

$D \in \text{Hom}(J, J)$ .  $D$  is called a derivation (resp. anti-derivation) of the algebra  $(J, \cdot)$  if for any  $x, y \in J$  we have

$$D(x \cdot y) := D(x) \cdot y + x \cdot D(y), \quad (\text{resp. } D(x \cdot y) := -D(x) \cdot y - x \cdot D(y)).$$

### Examples

Let  $(J, \cdot)$  be a Jacobi-Jordan algebra.

1. For all  $x \in J$ , the left multiplication map  $L_x : J \rightarrow J$ , defined by  $L_x(y) := xy$ ,  $\forall y \in J$ , belong to  $\text{Ader}(J)$ .
2. If  $D, D' \in \text{Ader}(J)$ , then  $\{D, D'\} := DD' + D'D$ , is an anti-derivation if and only if

$$\{D, D'\}(xy) = D(x)D'(y) + D'(x)D(y), \quad \forall x, y \in J.$$



# Admissible pair

## Definition

An admissible pair of a Jacobi-Jordan algebra  $(J, .)$  is a pair  $(D, A_0)$  where  $D \in \text{Ader}(J)$  and  $A_0 \in \text{Ker}D$  such that  $D^2 = -\frac{1}{2}L_{A_0}$ . The set of all admissible pairs of  $(J, .)$  is denoted by  $\text{Padm}(J)$ .

## Admissible pair

### Definition

An admissible pair of a Jacobi-Jordan algebra  $(J, .)$  is a pair  $(D, A_0)$  where  $D \in \text{Ader}(J)$  and  $A_0 \in \text{Ker}D$  such that  $D^2 = -\frac{1}{2}L_{A_0}$ . The set of all admissible pairs of  $(J, .)$  is denoted by  $\text{Padm}(J)$ .

Example : Let  $x \in J$ . Since  $L_x \in \text{Ader}(J)$  and  $J(x, x, y) = 0$ , then  $L_x^2 = -\frac{1}{2}L_{x^2}$  and  $L_x(x^2) = 0$ . Thus,  $(D = L_x, A_0 = x^2)$  is an admissible pair of  $J$ .

## Definition

A symplectic form on a Jacobi-Jordan algebra  $(J, .)$  is a skewsymmetric nondegenerate bilinear form  $\omega$  satisfying

$$\omega(x.y, z) + \omega(y.z, x) + \omega(z.x, y) = 0, \quad \forall x, y, z \in J.$$

A Jacobi-Jordan algebra is called symplectic if it is endowed with a such form.

## Definition

A symplectic form on a Jacobi-Jordan algebra  $(J, .)$  is a skewsymmetric nondegenerate bilinear form  $\omega$  satisfying

$$\omega(x.y, z) + \omega(y.z, x) + \omega(z.x, y) = 0, \quad \forall x, y, z \in J.$$

A Jacobi-Jordan algebra is called symplectic if it is endowed with a such form.

## Example

Let  $(J_4, .)$  be the 4-dimensional Jacobi-Jordan algebra defined above by  $e_1.e_1 = e_2$ ,  $e_1.e_3 = e_3.e_1 = e_4$ , where  $\{e_1, e_2, e_3, e_4\}$  is a basis of the  $\mathbb{K}$ -vector space  $J_4$ . The skew-symmetric bilinear form  $\omega$  defined on  $J_4$  by  $\omega(e_1, e_4) = 1$  and  $\omega(e_3, e_2) = 2$  is a symplectic form on  $J_4$ .

## No symplectic structure :

Example :

Let  $(J, .)$  be the 4-dimensional Jacobi-Jordan algebra defined by  $e_1e_1 = e_2$ , where  $\{e_1, e_2, e_3, e_4\}$  is a basis of the  $\mathbb{K}$ -vector space  $J$ . For any skew-symmetric bilinear form  $\omega$  on  $J$  satisfying  $\omega(x.y, z) + \omega(y.z, x) + \omega(z.x, y) = 0, \forall x, y, z \in J$

we have  $\omega(e_2, e_1) = \omega(e_2, e_2) = \omega(e_2, e_3) = \omega(e_2, e_4) = 0$ .

So, there is no symplectic structure on  $J$ .

## No symplectic structure :

### Example :

Let  $(J, .)$  be the 4-dimensional Jacobi-Jordan algebra defined by  $e_1e_1 = e_2$ , where  $\{e_1, e_2, e_3, e_4\}$  is a basis of the  $\mathbb{K}$ -vector space  $J$ . For any skew-symmetric bilinear form  $\omega$  on  $J$  satisfying  $\omega(x.y, z) + \omega(y.z, x) + \omega(z.x, y) = 0$ ,  $\forall x, y, z \in J$

we have  $\omega(e_2, e_1) = \omega(e_2, e_2) = \omega(e_2, e_3) = \omega(e_2, e_4) = 0$ .

So, there is no symplectic structure on  $J$ .

### Remark :

By similar computation as the previous example, we prove that the algebra  $J_4$  given in a previous example is the unique not null symplectic Jacobi Jordan algebra of dimension 4.

# Admissible Jacobi-Jordan algebra from symplectic one :

## Proposition

Let  $(J, ., \omega)$  be a symplectic Jacobi-Jordan Algebra. Consider the product defined by

$$\omega(x \odot y, z) = \omega(x, y.z), \quad \forall x, y, z \in J.$$

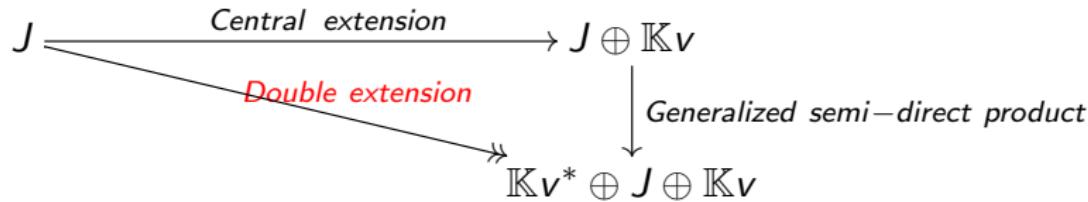
This product satisfies :

(i)  $x.y = x \odot y + y \odot x, \quad \forall x, y \in J.$

This means that  $(J, \odot)$  is an admissible Jacobi-Jordan algebra

(ii) The vector space  $J$  endowed with this new product  $\odot$  is a right skew-symmetric algebra.

# Double extension



## Lie algebras

**A. Medina and Ph. Revoy, 1985** inductive description of quadratic Lie algebras.

**M. Bordemann, 1997**  $T^*$ -extension of nonassociative algebras.

**I.Bajo, S.Benayadi, A.Medina 2007** Symplectic structures on quadratic Lie algebras.

**C.Rger 2013** Double extensions of Lie algebras of Kac-Moody type and applications to some hamiltonian systems.

**S.Benayadi, A.Makhlouf 2014** Hom–Lie algebras with symmetric invariant nondegenerate bilinear forms

**M.C.Rodriguez – Vallarte, G.Salgado 2016** 5-dimensional indecomposable contact Lie algebras as double extensions.

## Lie algebras

**A. Medina and Ph. Revoy, 1985** inductive description of quadratic Lie algebras.

**M. Bordemann, 1997**  $T^*$ -extension of nonassociative algebras.

**I.Bajo, S.Benayadi, A.Medina 2007** Symplectic structures on quadratic Lie algebras.

**C.Rger 2013** Double extensions of Lie algebras of Kac-Moody type and applications to some hamiltonian systems.

**S.Benayadi, A.Makhlouf 2014** Hom–Lie algebras with symmetric invariant nondegenerate bilinear forms

**M.C.Rodriguez – Vallarte, G.Salgado 2016** 5-dimensional indecomposable contact Lie algebras as double extensions.

## Lie triple systems

**J.Lin, Y.Wang, S.Deng, 2009**  $T^*$ —extension of Lie triple systems.

**A.Baklouti, 2017** Quadratic Hom-Lie triple systems.

## Lie superalgebras

**H.Benamor, S.Benayadi, 1999**, Double extension of quadratic Lie superalgebras.

**I.Bajo, S.Benayadi, M.Bordemann, 2007** Generalized double extension and descriptions of quadratic Lie superalgebras.

**E.Barreiro, S.Benayadi, 2009** Quadratic symplectic Lie superalgebras and Lie bi-superalgebras.

**H.Albuquerque, E.Barreiro, S.Benayadi2010**, Quadratic Lie superalgebras with reductive even part, , Odd-quadratic Lie superalgebras.

**S.Benayadi, S.Bouarroudj2018** Double extensions of Lie superalgebras in characteristic 2 with nondegenerate invariant supersymmetric bilinear form.

**S.Benayadi, S.Bouarroudj2019** Double extension of restricted Lie (super) algebras.

## Other algebras and superalgebras :

**H.Albuquerque, S.Benayadi, 2004** Quadratic Malcev superalgebras.

**H.Albuquerque, E.Barreiro, S.Benayadi, 2010** Quadratic Malcev superalgebras with reductive even part.

**I.Ayadi, S.Benayadi, 2010** Symmetric Novikov superalgebras.

**A.Baklouti, S.Benayadi, 2011** Symmetric symplectic commutative associative algebras and related Lie algebras.

**A.Baklouti, W.Bensalah, S.Mansour, 2013** Solvable Pseudo-Euclidean Jordan Superalgebras.

**S.Benayadi, SHidri, 2014** Quadratic Leibniz algebras.

**A.Baklouti, S.Benayadi, 2015**, Pseudo-Euclidean Jordan algebras.

**S.Benayadi, S.Hidri, 2016**, Leibniz Algebras with Invariant Bilinear Forms and Related Lie Algebras.

**S.Benayadi, F.Mhamdi, 2019**, Odd-quadratic Leibniz superalgebras.

# Central extension

## Proposition

Let  $(J_1, \cdot)$  be a Jacobi-Jordan algebra,  $\mathbb{K}v$  a one dimensional vector space and  $\varphi : J_1 \times J_1 \longrightarrow \mathbb{K}$  a bilinear form. On the vector spaces  $J_2 = J_1 \oplus \mathbb{K}v$  we define the following product :

$$(x + \alpha v) \circ (y + \beta v) = x \cdot y + \varphi(x, y)v, \quad \forall x, y \in J_1, \alpha, \beta \in \mathbb{K}.$$

# Central extension

## Proposition

Let  $(J_1, .)$  be a Jacobi-Jordan algebra,  $\mathbb{K}v$  a one dimensional vector space and  $\varphi : J_1 \times J_1 \longrightarrow \mathbb{K}$  a bilinear form. On the vector spaces  $J_2 = J_1 \oplus \mathbb{K}v$  we define the following product :

$$(x + \alpha v) \circ (y + \beta v) = x.y + \varphi(x, y)v, \quad \forall x, y \in J_1, \alpha, \beta \in \mathbb{K}.$$

The product above is a Jacobi-Jordan algebra if and only if  $\varphi$  satisfies

$$\sum_{\circlearrowleft} \varphi(x, yz) = 0, \quad \text{for all } x, y, z \in J_1.$$

In this case, We say that  $(J_2, \circ)$  is the central extension of  $(J_1, .)$  by means of  $\varphi$  .

# Generalized semi-direct product

## Proposition

Let  $(J_1, .)$  be a Jacobi-Jordan algebra,  $\mathbb{K}v$  a one dimensional vector space,  $D : J_1 \rightarrow J_1$  a linear map and  $A_0 \in J_1$ .

On the vector spaces  $J_2 = J_1 \oplus \mathbb{K}v$  we define the following product :

$$(x + \alpha v) \bullet (y + \beta v) = x.y + \beta D(x) + \alpha D(y) + \alpha \beta A_0,$$

$\forall x, y \in J_1, \alpha, \beta \in \mathbb{K}$ .

# Generalized semi-direct product

## Proposition

Let  $(J_1, .)$  be a Jacobi-Jordan algebra,  $\mathbb{K}\nu$  a one dimensional vector space,  $D : J_1 \rightarrow J_1$  a linear map and  $A_0 \in J_1$ .

On the vector spaces  $J_2 = J_1 \oplus \mathbb{K}\nu$  we define the following product :

$$(x + \alpha\nu) \bullet (y + \beta\nu) = x.y + \beta D(x) + \alpha D(y) + \alpha\beta A_0,$$

$\forall x, y \in J_1, \alpha, \beta \in \mathbb{K}$ . The product above is a Jacobi-Jordan algebra if and only if  $(D, A_0)$  is an admissible pair of  $(J_1, .)$ .

In this case, We say that  $(J_2, \bullet)$  is a generalized semi-direct product of  $(J_1, .)$  by means of  $(D, A_0)$ .

## Theorem : Double extension

Let  $(J, ., \omega)$  be a symplectic Jacobi-Jordan algebra and  $(D, A_0) \in \text{Padm}(J)$  such that  $A_0 \in (\text{Im}(D))^\perp$ . Let  $\mathbb{K}e$  and  $\mathbb{K}e^*$  two dual linear spaces

The vector space  $\tilde{J} := \mathbb{K}e \oplus J \oplus \mathbb{K}e^*$  endowed with the product  $\star$  :

$$\begin{cases} e \star e := A_0, \quad e^* \star X = X \star e^* := 0, \quad \forall X \in \tilde{J} \\ e \star x = x \star e := D(x) + \frac{1}{2}\omega(A_0, x)e^*, \\ x \star y := xy + \omega((D - D^*)(x), y)e^*, \quad \forall x, y \in J, \end{cases}$$

and the skew-symmetric bilinear form  $\tilde{\omega}$  :

$$\tilde{\omega}|_{J \times J} = \omega, \quad \tilde{\omega}(e, e^*) = 1,$$

$$\tilde{\omega}(e, J) = \tilde{\omega}(e^*, J) = \{0\}, \quad \tilde{\omega}(e, e) = \tilde{\omega}(e^*, e^*) = 0,$$

is a symplectic Jacobi-Jordan algebra.

**Proof :** Let us consider the bilinear form  $\varphi$  of  $J$  defined by

$$\varphi(x, y) = \omega((D - D^*)x, y), \quad \forall x, y \in J.$$

Since  $D$  is an antiderivation and  $\omega$  is symplectic, then

$$\begin{aligned} \sum_{\circlearrowleft} \varphi(xy, z) &= \sum_{\circlearrowleft} \omega((D - D^*)(xy), z) \\ &= -\omega(yD(z), x) - \omega(D(z)x, y) + \omega(D(x)y, z) + \omega(xD(y), z) = 0, \end{aligned}$$

for all  $x, y, z \in J$ . Thus,  $\varphi$  is a symmetric 2- cocycle of  $J$ .

It follows that we can consider the central extension  $J_1 = J \oplus \mathbb{K}e^*$  of  $J$  by means of  $\varphi$ . Now, Let  $(\tilde{D}, A_0) \in \text{End}(J_1) \times J_1$  be the pair defined by :  $\tilde{D}(x + \alpha e^*) := D(x) + \frac{1}{2}\omega_1(x, A_0)e^*$ ,  $\forall x \in J, \alpha \in \mathbb{K}$ .

We have to check that  $(\tilde{D}, \tilde{A}_0)$  is an admissible pair of  $J_1$ . After that, we can consider the generalized semi-direct product  $\tilde{J} = \mathbb{K}e \oplus J_1$  of  $J_1$  by means of  $(\tilde{D}, A_0)$ .

**Example :** Let us consider the algebra  $J_4$  given above, defined by

$e_1 \cdot e_1 = e_2, \quad e_1 \cdot e_3 = e_3 \cdot e_1 = e_4$ . It is clear that

$$Ann(J_4) = Vect\{e_2, e_4\}.$$

Let  $D$  be the antiderivation of  $J_4$  defined by

$$D(e_1) = \alpha e_3 + \beta e_4, \quad D(e_2) = -2\alpha e_4, \quad D(e_3) = D(e_4) = 0$$

and let  $A_0 := \gamma e_4$ . We can verify that the pair  $(D, A_0)$  is admissible. Thus, we can consider the double extension of  $J_4$ . We obtain the new Jacobi-Jordan algebra  $\tilde{J}_4 := \mathbb{K}e \oplus J_4 \oplus \mathbb{K}e^*$  with the product defined by

$$e \star e = \gamma e_4, \quad e \star e_1 = \alpha e_3 + \beta e_4 - \frac{1}{2}\gamma e^*, \quad e \star e_2 = -2\alpha e_4,$$

$$e_1 \star e_1 = e_2 - 2\beta e^*, \quad e_1 \star e_3 = e_4.$$

A symplectic structure  $\tilde{\omega}$  on  $\tilde{J}_4$  is defined by

$$\tilde{\omega}(e_1, e_4) = 1, \quad \tilde{\omega}(e_2, e_3) = 2, \quad \tilde{\omega}(e, e^*) = 1.$$

# Symplectomorphism :

## Definition

A symplectomorphism between two symplectic Jacobi-Jordan algebras  $(\tilde{J}, \star, \tilde{\omega})$  and  $(\tilde{J}', \bullet, \tilde{\omega}')$  is an isomorphism

$\Phi : (\tilde{J}, \star) \rightarrow (\tilde{J}', \bullet)$  of Jacobi-Jordan algebras such that  
 $\tilde{\omega}'(\Phi(X), \Phi(Y)) = \tilde{\omega}(X, Y), \forall X, Y \in \tilde{J}.$

# Symplectomorphism :

## Definition

A symplectomorphism between two symplectic Jacobi-Jordan algebras  $(\tilde{J}, \star, \tilde{\omega})$  and  $(\tilde{J}', \bullet, \tilde{\omega}')$  is an isomorphism

$\Phi : (\tilde{J}, \star) \rightarrow (\tilde{J}', \bullet)$  of Jacobi-Jordan algebras such that  
 $\tilde{\omega}'(\Phi(X), \Phi(Y)) = \tilde{\omega}(X, Y), \forall X, Y \in \tilde{J}.$

Now, For a symplectic Jacobi-Jordan algebra  $(J, ., \omega)$ , we consider  $(\tilde{J} := \mathbb{K}e \oplus J \oplus \mathbb{K}e^*, \star, \tilde{\omega})$  (resp.  $(\tilde{J}' = \mathbb{K}e' \oplus J \oplus \mathbb{K}e'^*, \bullet, \tilde{\omega}')$ ) the symplectic double extension of  $(J, ., \omega)$  by means of  $(D, A_0)$  (resp.  $(D', A'_0)$ ). We will investigate how  $(D, A_0)$  and  $(D', A'_0)$  are connected with each other when  $(\tilde{J}, \star, \tilde{\omega})$  and  $(\tilde{J}', \bullet, \tilde{\omega}')$  are symplectomorphic.

## Theorem

Under the conditions above, the two double extensions  $(\tilde{J}, \star, \tilde{\omega})$  and  $(\tilde{J}', \bullet, \tilde{\omega}')$  are symplectomorphic if and only if there exists a symplectomorphism  $\Phi_0$  of  $(J, ., \omega)$ ,  $x_0 \in J$  and  $\gamma \in \mathbb{K} - \{0\}$  such that

$$\Phi_0(A_0) = \gamma^{-2} A'_0 + 2\gamma^{-1} D'(x_0) + x_0 \cdot x_0 \quad (1)$$

$$L_{x_0} = \Phi_0 \circ D \circ \Phi_0^{-1} - \gamma^{-1} D'. \quad (2)$$

In this case, there exists a symplectomorphism

$\Phi : (\tilde{J}, \star, \tilde{\omega}) \iff (\tilde{J}', \bullet, \tilde{\omega}')$  defined by :

$$\begin{cases} \Phi(e) = \gamma^{-1} e' + x_0 + \beta e'^*, \text{ where } \beta \in \mathbb{K}, \\ \Phi(e^*) = \gamma e'^*, \\ \Phi(x) = \Phi_0(x) + \gamma \omega(\Phi_0(x), x_0) e'^*, \quad \forall x \in J, \end{cases}$$

## Theorem

Let  $(\tilde{J}, \star, \tilde{\omega})$  be a symplectic Jacobi-Jordan algebra such that  $\tilde{J} \neq \{0\}$ . Then,  $(\tilde{J}, \star, \tilde{\omega})$  is a symplectic double extension of a symplectic Jacobi-Jordan algebra  $(J, ., \omega)$ .

## Theorem

Let  $(\tilde{J}, \star, \tilde{\omega})$  be a symplectic Jacobi-Jordan algebra such that  $\tilde{J} \neq \{0\}$ . Then,  $(\tilde{J}, \star, \tilde{\omega})$  is a symplectic double extension of a symplectic Jacobi-Jordan algebra  $(J, ., \omega)$ .

## Corollary

Every symplectic Jacobi-Jordan algebra  $(J \neq \{0\}, \omega)$  is obtained from the algebra  $\{0\}$  by a finite sequence of symplectic double extensions of symplectic Jacobi-Jordan algebras.

## Definition

Let  $(J, .)$  be a Jacobi-Jordan algebra. A bilinear form  $B$  on  $J$  is said to be an associative scalar product on  $(J, .)$  if  $B$  a nondegenerate, symmetric and associative (or invariant) bilinear.  $B$  is associative (or invariant) means  $B(x.y, z) = B(x, y.z), \forall x, y, z \in J$ .

A Jacobi-Jordan algebra  $(J, .)$  is said to be pseudo-Euclidean algebra if it is endowed with an invariant scalar product.

## Definition

Let  $(J, .)$  be a Jacobi-Jordan algebra. A bilinear form  $B$  on  $J$  is said to be an associative scalar product on  $(J, .)$  if  $B$  a nondegenerate, symmetric and associative (or invariant) bilinear.  $B$  is associative (or invariant) means  $B(x.y, z) = B(x, y.z), \forall x, y, z \in J$ .

A Jacobi-Jordan algebra  $(J, .)$  is said to be pseudo-Euclidean algebra if it is endowed with an invariant scalar product.

**Example :** Let  $J_4 := \text{Span}\{e_1, e_2, e_3, e_4\}$  be the 4-dimentional Jacobi-Jordan algbera defined by :  $e_1.e_1 = e_2$ ,  $e_1.e_3 = e_3.e_1 = e_4$ . The symmetric bilinear form defined on  $J$  by :  $B(e_1, e_4) = B(e_2, e_3) = 1$ , is an invariant scalar product. Moreover, we have shown that  $J_4$  has a symplectic structure

## Definition

Let  $(J, .)$  be a Jacobi-Jordan algebra. A bilinear form  $B$  on  $J$  is said to be an associative scalar product on  $(J, .)$  if  $B$  a nondegenerate, symmetric and associative (or invariant) bilinear.  $B$  is associative (or invariant) means  $B(x.y, z) = B(x, y.z), \forall x, y, z \in J$ .

A Jacobi-Jordan algebra  $(J, .)$  is said to be pseudo-Euclidean algebra if it is endowed with an invariant scalar product.

**Example :** Let  $J_4 := \text{Span}\{e_1, e_2, e_3, e_4\}$  be the 4-dimentional Jacobi-Jordan algbera defined by :  $e_1.e_1 = e_2$ ,  $e_1.e_3 = e_3.e_1 = e_4$ . The symmetric bilinear form defined on  $J$  by :

$B(e_1, e_4) = B(e_2, e_3) = 1$ , is an invariant scalar product. Moreover, we have shown that  $J_4$  has a symplectic structure

**Remark :**  $J_4$  is the unique 4-dimentional Jacobi-Jordan which is simultaneously symplectic and pseudo-Euclidean.

# Not symplectic nor pseudo-Euclidean Jacobi-Jordan algebra :

**Example :** Let  $J := \text{Span}\{e_1, e_2, e_3, e_4\}$  be the 4-dimensional Jacobi-Jordan algebra defined by :  $e_1 \cdot e_1 = e_2$ ,  $e_3 \cdot e_3 = e_2$ . For any symmetric invariant bilinear form  $B$  and for any skew-symmetric bilinear form  $\omega$  which satisfies

$\omega(x \cdot y, z) + \omega(y \cdot z, x) + \omega(z \cdot x, y) = 0, \forall x, y, z \in J$ , we have :

$$B(e_2, e_1) = B(e_2, e_2) = B(e_2, e_3) = B(e_2, e_4) = 0$$

and

$$\omega(e_2, e_1) = \omega(e_2, e_2) = \omega(e_2, e_3) = \omega(e_2, e_4) = 0.$$

So, there is neither pseudo-Euclidean structure nor symplectic structure on  $(J, \cdot)$ .

# Pseudo-Euclidean but not symplectic Jacobi-Jordan algebra :

## Example :

We have shown that the 4-dimensional Jacobi-Jordan algebra  $J := \text{Span}\{e_1, e_2, e_3, e_4\}$  with the product defined by :  $e_1 \cdot e_1 = e_2$  have no symplectic structure on  $L$ . In fact, for any skew-symmetric bilinear form  $\omega$  on  $J$  satisfying

$$\omega(x \cdot y, z) + \omega(y \cdot z, x) + \omega(z \cdot x, y) = 0, \quad \forall x, y, z \in J$$

we have

$$\omega(e_2, e_1) = \omega(e_2, e_2) = \omega(e_2, e_3) = \omega(e_2, e_4) = 0.$$

But the bilinear form  $B$  defined by :  $B(e_1, e_4) = B(e_2, e_3) = 1$  is a pseudo-Euclidean structure on this Jacobi-Jordan algebra  $(J, \cdot)$ .

## Theorem

Let  $(J, ., B)$  be a pseudo-euclidean Jacobi-Jordan algebra,  $(D, A_0) \in \text{adm}(J)$  such that  $D^2 = 0$  and  $D$  is symmetric with respect to  $B$ ,  $A_0 \in \text{Ann}(J)$  and  $B(A_0, A_0) = 0$ .

If  $\mathbb{K}e$  is a one-dimensional linear space and  $\mathbb{K}e^*$  its dual Linear space, then the vector space  $\tilde{J} := \mathbb{K}e \oplus J \oplus \mathbb{K}e^*$  endowed with the product  $\diamond$  define by :

$$\left\{ \begin{array}{l} e \diamond e := A_0 + \lambda e^*, \text{ where } \lambda \in \mathbb{K}, \\ e \diamond x = x \diamond e := D(x) + B(A_0, x)e^*, \quad \forall x \in J, \\ x \diamond y := x.y + B(D(x), y)e^*, \quad \forall x, y \in J, \\ e^* \diamond x = x \diamond e^* := 0, \quad \forall x \in J, \end{array} \right.$$

is a Jacobi-Jordan algebra.

Moreover, the symmetric bilinear form  $\tilde{B}$  defined by :

$$\tilde{B}_{|J \times J} = B, \quad \tilde{B}(e, e^*) = 1, \quad \tilde{B}(e, J) = \tilde{B}(e^*, J) = \{0\},$$

$$\tilde{B}(e, e) = \tilde{B}(e^*, e^*) = 0,$$

is an associative scalar product on  $(\tilde{J}, \diamond, \tilde{B})$ .

The pseudo-euclidean Jacobi-Jordan algebra  $(\tilde{J}, \diamond, \tilde{B})$  is called a double extension of  $(J, ., B)$  by means of  $(D, A_0, \lambda)$ .

## Definition

An isometry between two pseudo-euclidean Jacobi-Jordan algebras  $(\tilde{J}, \diamond, \tilde{B})$  and  $(\tilde{J}', \triangleright, \tilde{B}')$  is an isomorphism  $\Phi : (\tilde{J}, \diamond) \rightarrow (\tilde{J}', \triangleright)$  of Jacobi-Jordan algebras such that

$$\tilde{B}'(\Phi(X), \Phi(Y)) = \tilde{B}(X, Y), \quad \forall X, Y \in \tilde{J}.$$

## Definition

An isometry between two pseudo-euclidean Jacobi-Jordan algebras  $(\tilde{J}, \diamond, \tilde{B})$  and  $(\tilde{J}', \triangleright, \tilde{B}')$  is an isomorphism  $\Phi : (\tilde{J}, \diamond) \rightarrow (\tilde{J}', \triangleright)$  of Jacobi-Jordan algebras such that

$$\tilde{B}'(\Phi(X), \Phi(Y)) = \tilde{B}(X, Y), \quad \forall X, Y \in \tilde{J}.$$

## Theorem

Two double extensions  $(\tilde{J}, \diamond, \tilde{B})$  and  $(\tilde{J}', \triangleright, \tilde{B}')$  of  $(J, ., B)$  are isometric if and only if there exists an isometry  $\Phi_0$  of  $(J, ., B)$ ,  $p_0 \in J$  and  $t \in \mathbb{K} \setminus \{0\}$  satisfying

$$\begin{cases} D' = t(\Phi_0 \circ D \circ \Phi_0^{-1} - L_{p_0}), \\ p_0 \cdot p_0 = 0, \\ D'(p_0) = t(\Phi_0 \circ D \circ \Phi_0^{-1}(p_0)). \end{cases}$$

Let  $(J, ., \omega, B)$  be a symplectic pseudo-euclidean Jacobi-Jordan algebra. Let  $(D, A_0)$  be a special admissible such that  $D$  is symmetric with respect to  $B$ ,  $A_0 \in \text{Ann}(J)$  and  $B(A_0, A_0) = 0$ . Let  $\delta$  be the invertible derivation of  $(J, .)$  such that  $\omega(x, y) = B(\delta(x), y)$ ,  $\forall x, y \in J$ . Assume that there exists  $\mu \in \mathbb{K} \setminus \{0\}$  and  $d_0 \in J$  satisfying

$$[D, \delta] = \mu D - L_{d_0}, \quad D(d_0) = \frac{1}{2}\delta(A_0) + \mu A_0.$$

The symplectic double extension  $(\tilde{J}, \star, \tilde{\omega})$  of  $(J, ., \omega)$  by means of  $(D, A_0)$  is endowed with the pseudo-Euclidean structure  $\tilde{B}$ , (where  $(\tilde{J}, \diamond := \star, \tilde{B})$  is the double extension of  $(J, ., B)$  by means  $(D, A_0, 0)$ ).

Let  $(J, ., \omega, B)$  be a symplectic pseudo-euclidean Jacobi-Jordan algebra. Let  $(D, A_0)$  be a special admissible such that  $D$  is symmetric with respect to  $B$ ,  $A_0 \in \text{Ann}(J)$  and  $B(A_0, A_0) = 0$ . Let  $\delta$  be the invertible derivation of  $(J, .)$  such that  $\omega(x, y) = B(\delta(x), y)$ ,  $\forall x, y \in J$ . Assume that there exists  $\mu \in \mathbb{K} \setminus \{0\}$  and  $d_0 \in J$  satisfying

$$[D, \delta] = \mu D - L_{d_0}, \quad D(d_0) = \frac{1}{2}\delta(A_0) + \mu A_0.$$

The symplectic double extension  $(\tilde{J}, \star, \tilde{\omega})$  of  $(J, ., \omega)$  by means of  $(D, A_0)$  is endowed with the pseudo-Euclidean structure  $\tilde{B}$ , (where  $(\tilde{J}, \diamond := \star, \tilde{B})$  is the double extension of  $(J, ., B)$  by means  $(D, A_0, 0)$ ). In addition, the derivation  $\Delta$  of  $(\tilde{J}, \star)$  which satisfies  $\tilde{\omega}(X, Y) = \tilde{B}(\Delta(X), Y)$ . is defined by :

$$\Delta(e^*) = \mu e^*, \quad \Delta(e) = -\mu e + d_0 + \nu e^*, \quad \Delta(x) = \delta(x) + \omega(x, d_0)e^*,$$

Let  $(J, ., \omega, B)$  be a symplectic pseudo-euclidean Jacobi-Jordan algebra,  $(\tilde{J} := \mathbb{K}e \oplus J \oplus \mathbb{K}e^*, \star, \tilde{\omega}, \tilde{B})$  (resp.  $(\tilde{J}' = \mathbb{K}e' \oplus J \oplus \mathbb{K}e'^*, \bullet, \tilde{\omega}'\tilde{B}')$ ) the double extension of  $(J, ., \omega, B)$  by means of  $(D, A_0)$  (resp.  $(D', A'_0)$ ). Let  $\delta, \Delta, \Delta'$  be the invertible derivations satisfying

$$\omega = B(\delta(.), .), \tilde{\omega} := \tilde{B}(\Delta(.), .), \tilde{\omega}' := \tilde{B}'(\Delta'(.), .).$$

A symplecto-isometry from  $(\tilde{J}, \star, \tilde{\omega}, \tilde{B})$  to  $(\tilde{J}', \bullet, \tilde{\omega}'\tilde{B}')$  is a Jacobi-Jordan isomorphism  $\Phi : (\tilde{J}, \star) \rightarrow (\tilde{J}', \bullet)$  such that

$$\tilde{\omega}'(\Phi(X), \Phi(Y)) = \tilde{\omega}(X, Y) \text{ and } \tilde{B}'(\Phi(X), \Phi(Y)) = \tilde{B}(X, Y).$$

Let  $(\tilde{J} := \mathbb{K}e \oplus J \oplus \mathbb{K}e^*, \star, \tilde{\omega}, \tilde{B})$  and  $(\tilde{J}' = \mathbb{K}e' \oplus J \oplus \mathbb{K}e'^*, \bullet, \tilde{\omega}'\tilde{B}')$  be two sympletomorphic double extensions of  $J$ .

Let  $\Delta$  and  $\Delta'$  be the invertible derivations relating respectively the two structure of the double extensions  $\tilde{J}$  and  $\tilde{J}'$  which are defined respectively by :

$$\Delta(e^*) = \mu e^*, \Delta(e) = -\mu e + d_0 + \nu e^*, \Delta(x) = \delta(x) + \omega(x, d_0)e^*,$$

$$\Delta'(e'^*) = \mu' e'^*, \Delta'(e') = -\mu' e' + d'_0 + \nu' e'^*, \Delta'(x) = \delta(x) + \omega(x, d'_0)e'^*.$$

The two double extension above are symplecto-isometric if and only if

$$\left\{ \begin{array}{l} (i) \mu = \mu', \\ (ii) \delta \circ \Phi_0 = \Phi_0 \circ \delta, \\ (iii) \Phi_0(d_0) - \gamma^{-1}d'_0 = \delta(x_0) + \mu x_0, \\ (iv) \omega(\Phi_0(d_0) - x_0, d'_0 - \gamma x_0) = \gamma b - \gamma^{-1}b' - \beta(\mu + \mu'). \end{array} \right.$$

## Theorem

Let  $(\tilde{J} \neq \{0\}, \star, \tilde{\omega}, \tilde{B})$  be a symplectic pseudo-euclidean Jacobi-Jordan algebra and let  $\Delta$  be the invertible derivation of  $(\tilde{J}, \star)$  such that  $\tilde{\omega}(X, Y) = \tilde{B}(\Delta(X), Y)$ ,  $\forall X, Y \in \tilde{J}$ . If either  $\Delta$  admits an eigenvector in  $\text{Ann}(\tilde{J})$  or  $\mathbb{K}$  is algebraically closed, then  $(\tilde{J}, \star, \tilde{\omega}, \tilde{B})$  is a double extension of a symplectic pseudo-euclidean Jacobi-Jordan algebra  $(J, ., \omega, B)$ .

## Theorem

Let  $(\tilde{J} \neq \{0\}, \star, \tilde{\omega}, \tilde{B})$  be a symplectic pseudo-euclidean Jacobi-Jordan algebra and let  $\Delta$  be the invertible derivation of  $(\tilde{J}, \star)$  such that  $\tilde{\omega}(X, Y) = \tilde{B}(\Delta(X), Y)$ ,  $\forall X, Y \in \tilde{J}$ . If either  $\Delta$  admits an eigenvector in  $\text{Ann}(\tilde{J})$  or  $\mathbb{K}$  is algebraically closed, then  $(\tilde{J}, \star, \tilde{\omega}, \tilde{B})$  is a double extension of a symplectic pseudo-euclidean Jacobi-Jordan algebra  $(J, ., \omega, B)$ .

## Corollary

If  $\mathbb{K}$  is algebraically closed, then every non-zero symplectic pseudo-euclidean Jacobi-Jordan algebra  $(J \neq \{0\}, B)$  is obtained from the algebra  $\{0\}$  by a finite sequence of double extensions of a symplectic pseudo-euclidean Jacobi-Jordan algebra.

Thank you for your attention