Microscopic description of Coulomb gases

Sylvia SERFATY

Courant Institute, New York University

CIRM workshop October 24, 2019

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Setup

Energy

$$H_N(x_1,...,x_N) = \frac{1}{2} \sum_{i \neq j} w(x_i - x_j) + N \sum_{i=1}^N V(x_i) \qquad x_i \in \mathbb{R}^d, d \ge 1$$

interaction potential : Coulomb

$$w(x) = -\log |x|$$
 if $d = 2$
or $w(x) = \frac{1}{|x|^{d-2}}$ $d \ge 3$

 \blacktriangleright V confining potential, sufficiently smooth and growing at ∞ Gibbs measure

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{N,\beta}}e^{-\beta N^{\frac{2}{d}-1}H_N(x_1,\ldots,x_N)}dx_1\ldots dx_N$$

 $Z_{N,\beta}$ partition function

Random matrices and β-ensembles in the logarithmic cases
 Dyson, Mehta, Wigner
 guantum machanics models, Laughlin wave function in the

quantum mechanics models, Laughlin wave-function in the fractional quantum Hall effect, self-avoiding paths in probability, see [Forrester '10]

d ≥ 2 classical Coulomb gas [Lieb-Lebowitz '72,Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Kiessling-Spohn '99, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat' 93...]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Mean Field limit: the equilibrium measure

• μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = rac{1}{2} \int_{\mathbb{R}^d imes \mathbb{R}^d} w(x-y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

- Examples: $V(x) = |x|^2$ (Ginibre ensemble in RMT) then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- For fixed β ,

 $\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}\sim\mu_{V}$ except with exponentially small probability

"Large Deviations Principle" [Petz-Hiai '98, Ben Arous-Guionnet '97, Ben Arous -Zeitouni '98]

Mean Field limit: the equilibrium measure

• μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = rac{1}{2} \int_{\mathbb{R}^d imes \mathbb{R}^d} w(x-y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

- ► Examples: $V(x) = |x|^2$ (Ginibre ensemble in RMT) then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- For fixed β ,

 $\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}\sim\mu_{V}$ except with exponentially small probability

"Large Deviations Principle" [Petz-Hiai '98, Ben Arous-Guionnet '97, Ben Arous -Zeitouni '98]

Mean Field limit: the equilibrium measure

• μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = rac{1}{2} \int_{\mathbb{R}^d imes \mathbb{R}^d} w(x-y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

- ► Examples: $V(x) = |x|^2$ (Ginibre ensemble in RMT) then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- For fixed β ,

 $\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}\sim\mu_{V}\quad\text{except with exponentially small probability}$

"Large Deviations Principle" [Petz-Hiai '98, Ben Arous-Guionnet '97, Ben Arous -Zeitouni '98]

$$w = -\log, V = |x|^2$$
, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

$$w = -\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

$$w = -\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

$$w = -\log, V = |x|^2$$
, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

 $w = -\log, V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

$$w = -\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

$$w = -\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (Thomas Leblé)

Questions

Rigidity of the points?

$$\int_{B_R} \left(\sum_{i=1}^N \delta_{x_i} - N \mu_V \right) \ll N R^d?$$

For which R? Down to microscale $N^{-1/d}$??

- Behavior of the point configurations at the microscale? Limit point processes?
- Fluctuations of linear statistics

$$\int \xi(x) d\left(\sum_{i=1}^N \delta_{x_i} - N \mu_V\right)(x)$$

Are they Gaussian? For which ξ ? Supported at which scale?

- Dependence in β ?
- Free energy expansions

$$-\frac{1}{\beta}\log Z_{N,\beta} = N^2 \mathcal{E}(\mu_V) - \frac{1}{4}N\log N + A_\beta N + B_\beta N^{\frac{1}{2}} + C_\beta \log N + \dots$$

The blow-up procedure

- blow-up the configurations at scale $(\mu_V(x)N)^{1/d}$
- ▶ define interaction energy W for infinite configurations of points in R^d with uniform negative background -1 (*jellium*)
- ► the total energy will be the average W of W over all blow-up centers in supp µ_V.

- ► defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]
- Rigidity and equidistribution results for minimizers by a bootstrap on scales [Rota Nodari-S '17, Petrache - Rota Nodari '17, Armstrong-S'19]
- In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z.
- In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (see [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ► the Cohn-Kumar conjecture remains open in dimension 2. If true, the minimum of W is achieved at the *triangular lattice* (cf equivalent conjectures of [Sandier-S, Brauchart-Hardin-Saff, Bétermin-Sandier]).

- ► defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]
- Rigidity and equidistribution results for minimizers by a bootstrap on scales [Rota Nodari-S '17, Petrache - Rota Nodari '17, Armstrong-S'19]
- In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z.
- In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (see [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ▶ the Cohn-Kumar conjecture remains open in dimension 2. If true, the minimum of W is achieved at the *triangular lattice* (cf equivalent conjectures of [Sandier-S, Brauchart-Hardin-Saff, Bétermin-Sandier]).

- ► defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]
- Rigidity and equidistribution results for minimizers by a bootstrap on scales [Rota Nodari-S '17, Petrache - Rota Nodari '17, Armstrong-S'19]
- ► In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z.
- In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (see [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ▶ the Cohn-Kumar conjecture remains open in dimension 2. If true, the minimum of W is achieved at the *triangular lattice* (cf equivalent conjectures of [Sandier-S, Brauchart-Hardin-Saff, Bétermin-Sandier]).

- ► defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]
- Rigidity and equidistribution results for minimizers by a bootstrap on scales [Rota Nodari-S '17, Petrache - Rota Nodari '17, Armstrong-S'19]
- In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z.
- ► In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (see [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ▶ the Cohn-Kumar conjecture remains open in dimension 2. If true, the minimum of W is achieved at the *triangular lattice* (cf equivalent conjectures of [Sandier-S, Brauchart-Hardin-Saff, Bétermin-Sandier]).

- ► defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]
- Rigidity and equidistribution results for minimizers by a bootstrap on scales [Rota Nodari-S '17, Petrache - Rota Nodari '17, Armstrong-S'19]
- In dimension d = 1, the minimum of W over all possible configurations is achieved for the lattice Z.
- ► In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (see [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ► the Cohn-Kumar conjecture remains open in dimension 2. If true, the minimum of W is achieved at the *triangular lattice* (cf equivalent conjectures of [Sandier-S, Brauchart-Hardin-Saff, Bétermin-Sandier]).

Pictures of limiting point processes

The **Poisson** point process and the **Ginibre** point process (limit as $N \to \infty$ for $\mathbb{P}_{N,\beta}$ when $w = -\log$, V quadratic, $\beta = 2$) (pic. Alon Nishry)

A "Large Deviations Principle" for limiting point processes

Theorem (Leblé-S, '17)

For Coulomb (or log or Riesz interactions with $d - 2 \le s < d$), the Gibbs measure concentrates on configurations whose limiting point processes P^{\times} (after zoom around \times) minimize

$$\mathcal{F}_{\beta}(P) := \int_{\text{supp } \mu_{V}} (\mathbb{W}dP^{x} + \frac{1}{\beta} \text{ent}[P^{x}|\Pi]) \, dx, \qquad \Pi = \text{Poisson intensity 1}$$

- $\beta \gg 1$ rigid behavior expected (complete crystallization proven in 1D)
- $\beta \ll 1$ entropy dominates \rightsquigarrow Poisson point process
- $\beta \propto 1$ intermediate, phase-transition for cristallization?

Generalization to the 2D "two component plasma" Leblé-S-Zeitouni

A "Large Deviations Principle" for limiting point processes

Theorem (Leblé-S, '17)

For Coulomb (or log or Riesz interactions with $d - 2 \le s < d$), the Gibbs measure concentrates on configurations whose limiting point processes P^{\times} (after zoom around \times) minimize

$$\mathcal{F}_{\beta}(P) := \int_{\text{supp } \mu_{V}} (\mathbb{W}dP^{x} + \frac{1}{\beta} \text{ent}[P^{x}|\Pi]) \, dx, \qquad \Pi = \text{Poisson intensity 1}$$

- ▶ $\beta \gg 1$ rigid behavior expected (complete crystallization proven in 1D)
- $\beta \ll 1$ entropy dominates \rightsquigarrow Poisson point process
- $\beta \propto 1$ intermediate, **phase-transition for cristallization?**

Generalization to the 2D "two component plasma" Leblé-S-Zeitouni

Next order free energy expansion

Corollary (Leblé-S '17)

$$\log Z_{N,\beta} = -\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}(\mu_{\theta}) + \left(\frac{\beta}{4} N \log N\right) \mathbb{1}_{d=2} \\ - \frac{N\beta}{4} \mathbb{1}_{d=2} \int \mu_{\theta} \log \mu_{\theta} - N\beta \int f(\beta \mu_{\theta}^{1-\frac{2}{d}}) d\mu_{\theta} + o(N)$$

where we denote

$$f(\beta) = \min_{P} \left(\frac{1}{2c_d} \mathbb{W}(P) + \frac{1}{\beta} \mathsf{ent}[P|\Pi] \right)$$

P=stationary point processes of intensity 1.

to be compared with [Borot-Guionnet '13, Shcherbina '13] $(d = 1, \log)$, [Wiegmann-Zabrodin '09] $(d = 2, \log)$ (formal), is, is, is a second

Next order free energy expansion

Corollary (Leblé-S '17)

$$\log Z_{N,\beta} = -\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}(\mu_{\theta}) + \left(\frac{\beta}{4} N \log N\right) \mathbb{1}_{d=2} \\ - \frac{N\beta}{4} \mathbb{1}_{d=2} \int \mu_{\theta} \log \mu_{\theta} - N\beta \int f(\beta \mu_{\theta}^{1-\frac{2}{d}}) d\mu_{\theta} + o(N)$$

where we denote

$$f(\beta) = \min_{P} \left(\frac{1}{2c_d} \mathbb{W}(P) + \frac{1}{\beta} \mathsf{ent}[P|\Pi] \right)$$

P=stationary point processes of intensity 1.

to be compared with [Borot-Guionnet '13, Shcherbina '13] (d = 1, log), [Wiegmann-Zabrodin '09] (d = 2, log) (formal), and the set d = 2, log) (formal).

Treating general β : the thermal equilibrium measure

Instead of μ_V minimizing

$$\mathcal{E}(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

use μ_{θ} minimizing

$$\mathcal{E}_{\theta}(\mu) = \frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^{d}} V d\mu + \frac{1}{\theta} \int_{\mathbb{R}^{d}} \mu \log \mu$$

with

$$\theta := \beta N^{\frac{2}{d}}.$$

If β fixed or $\beta \gg N^{-\frac{2}{d}}$, then $\theta \to \infty$ and $\mu_{\theta} \to \mu_{V}$ (precise asymptotics obtained in [Armstrong-S '19]). Introduces new lengthscale $\frac{1}{\sqrt{\theta}} = \beta^{-\frac{1}{2}} N^{-\frac{1}{d}}$ for macroscopic rigidity

Splitting with respect to the thermal equilibrium measure

$$H_{N}(X_{N}) = N^{2} \mathcal{E}_{\theta}(\mu_{\theta}) - \frac{N}{\theta} \sum_{i=1}^{N} \log \mu_{\theta}(x_{i})$$

+
$$\underbrace{\frac{1}{2} \iint_{\triangle^{c}} w(x-y) d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\mu_{\theta}\right)(x) d\left(\sum_{i=1}^{N} \delta_{x_{i}} - N\mu_{\theta}\right)(y)}_{F(X_{N},\mu_{\theta})}$$

This way

$$Z_{N,\beta} = \exp\left(-\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}(\mu_{\theta})\right) \\ \times \int_{(\mathbb{R}^{d})^{N}} e^{-\beta N^{\frac{2}{d}-1} F(X_{N},\mu_{\theta})} d\mu_{\theta}(x_{1}) \dots d\mu_{\theta}(x_{N})$$

(ロト (個) (E) (E) (E) (E) (O) (O)

The electric formulation

Define the potential generated by the distribution $\sum_i \delta_{x_i} - N\mu_{\theta}$

$$h = w * \left(\sum_{i} \delta_{x_{i}} - N\mu_{\theta}\right)$$
$$-\Delta h = c_{d} \left(\sum_{i} \delta_{x_{i}} - N\mu_{\theta}\right)$$

and rewrite the energy as

$$F(X_N,\mu_{ heta})\simeq\int |
abla h|^2$$

(renormalized with truncations) Formally

$$\mathbb{W} = \lim_{R \to \infty} \oint_{\square_R} |\nabla h|^2$$

for the *h* computed after blow-up at scale $N^{1/d}$

Local laws

 $\chi(\beta) = egin{cases} 1 & ext{if } d \geq 3 \ ext{ or } d = 2 ext{ and } eta \geq 1 \ |\log eta| + 1 & ext{if } d = 2 ext{ and } eta \leq 1. \end{cases}$

Theorem (Armstrong-S. '19)

Let Σ be a set where $\mu'_{\theta} \ge m > 0$ (blown-up by $N^{1/d}$ of μ_{θ}), $x'_i = N^{1/d}x_i$. There exists a minimal scale $\rho_{\beta} \simeq \max(\beta^{-1/2}\chi(\beta)^{1/2}, 1)$ and C(d, m, M) such that if $R \ge C\rho_{\beta}$ and dist $(\Box_R, \partial \Sigma) \ge N^{\frac{1}{d+2}}$

► (Local energy control) $\left|\log \mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\frac{1}{2}\beta F^{\Box_{R}}(X'_{N},\mu'_{\theta})\right)\right)\right| \leq C\beta\chi(\beta)R^{d}$

• (Rigidity of number of points) Set $\omega_N = \sum_{i=1}^N \delta_{x'_i} - d\mu'_{\theta}$,

$$\left|\log \mathbb{E}_{\mathbb{P}_{N,\beta}}\left(\exp\left(\frac{\beta}{C}\frac{(\omega_N(\Box_R))^2}{R^{d-2}}\min(1,\frac{|\omega_N(\Box_R)|}{R^d})\right)\right)\right| \leq C\beta\chi(\beta)R^d$$

```
previous results:

[Leblé, Bauerschmidt-Bourgade-Nikula-Yau] d = 2, \beta fixed,

mesoscales R \ge N^{\varepsilon}, \varepsilon > 0.
```

Corollary

Up to a subsequence, and after blow-up by $N^{1/d}$, there exists a limiting point process.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

CLT for fluctuations in d = 2

Theorem (Leblé-S. '16)

Assume d = 2, $\beta > 0$ arbitrary fixed, $V \in C^{3,1}$. Assume $\Sigma = \text{supp } \mu_V$ has one connected component. Let $\xi \in C_c^{3,1}(\mathbb{R}^2)$ or $C_c^{2,1}(\Sigma)$ and $\xi^{\Sigma} =$ harmonic extension of ξ outside Σ . Then

$$\sum_{i=1}^{N} \xi(x_i) - N \int_{\Sigma} \xi \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\textit{mean} = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta \xi \left(\mathbbm{1}_{\Sigma} + \log \Delta V \right)^{\Sigma} \qquad \textit{var} = \frac{1}{2\pi\beta} \int_{\mathbb{R}^2} |\nabla \xi^{\Sigma}|^2.$$

 $\rightsquigarrow \Delta^{-1}\left(\sum_{i=1}^{N} \delta_{x_i} - N\mu_V\right)$ converges to the Gaussian Free Field. The result can be localized with ξ supported on mesoscales $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Simultaneous result by [Bauerschmidt-Bourgade-Nikula-Yau] for $\xi \in C_c^4(\text{supp } \mu_V)$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_\beta N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_\beta N^{-\frac{1}{d}} N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial \{\mu_{\theta} > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_{\beta}N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_{\beta}N^{-\frac{1}{d}}N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial\{\mu_{\theta} > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_\beta N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_\beta N^{-\frac{1}{d}} N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial\{\mu_\theta > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_\beta N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_\beta N^{-\frac{1}{d}} N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial\{\mu_\theta > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_\beta N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_\beta N^{-\frac{1}{d}} N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial\{\mu_\theta > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Theorem (S. '19)

Assume d = 2, 3. Assume $V, \xi_0 \in C^p$ for some p large enough. If d = 3 assume in addition that $f \in C^p$ ("no phase transitions" near that β) and $|f^{(k)}(\beta)| \leq C\beta^{-k}$ for all $k \leq p$. Assume $\ell \gg \rho_\beta N^{-\frac{1}{d}}$ (in d = 3, $\ell \gg \rho_\beta N^{-\frac{1}{d}} N^{\alpha/p}$). Assume $\beta \ll (N\ell^d)^{1-\frac{2}{d}-\frac{4}{3d}}$. Assume $\xi := \xi_0(\frac{x-x_0}{\ell})$ is supported in $\{\text{dist}(x, \partial\{\mu_\theta > m\}) \geq N^{\frac{1}{d+2}-\frac{1}{d}}\}$. Then

$$\beta^{\frac{1}{2}}N^{\frac{1}{d}-\frac{1}{2}}\ell^{1-\frac{d}{2}}\left(\sum_{i=1}^{N}\xi(x_i)-N\int\xi d\mu_{\theta}\right)-C_{N,\beta,\ell,\xi}$$

Comparison with the literature

2D log case

- [Rider-Virag] same result for $\beta = 2$, $V(x) = |x|^2$
- [Ameur-Hedenmalm-Makarov] same result for $\beta = 2$, $V \in C^{\infty}$ and analyticity in case the support of ξ intersects $\partial \Sigma$
- Concentration bounds (in N^ε, but with quantified error in probability), including at mesoscale, on || Σ^N_{i=1} δ_{xi} − Nμ_V || [Sandier-S, Leblé], [Chafai-Hardy-Maida], [Bauerschmidt-Bourgade-Nikula-Yau]
- ► Number fluctuations for *hierarchical* Coulomb gas [Chatterjee] (d=2,3), [Ganguly-Sarkar] (all d).
- ► 1D log case
 - ▶ [Johansson] 1-cut, V polynomial
 - [Borot-Guionnet], [Shcherbina] 1-cut and V, ξ locally analytic, multi-cut and V analytic
 - new proof by [Lambert-Ledoux-Webb] 1-cut, Stein method, [Bekerman-Leblé-S]

Method of proof for local laws

Use idea of sub/superadditive quantities of [Armstrong-Smart] (in homogenization theory), like Dirichlet-Neumann bracketing: in any cube \Box_R define the partition functions $K_N(\Box_R)$ and $L_N(\Box_R)$ for the energies $\int_{\Box_R} |\nabla u|^2$, resp. $\int_{\Box_R} |\nabla v|^2$ where u solves

$$\begin{cases} -\Delta u = c_d \left(\sum_{i=1}^N \delta_{x_i} - 1 \right) & \text{in } \Box_R \\ u = 0 & \text{on } \partial \Box_R. \end{cases}$$
$$\begin{cases} -\Delta v = c_d \left(\sum_{i=1}^N \delta_{x_i} - 1 \right) & \text{in } \Box_R \\ \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial \Box_R. \end{cases}$$

The first one works well by restriction \rightsquigarrow subadditive, while the second one works well by patching \rightsquigarrow superadditive.

 $\frac{\log K_N(\Box_R)}{|\Box_R|} \text{ and } \frac{\log L_N(\Box_R)}{|\Box_R|} \text{ both converge monotonically to the same limit } f(\beta).$

Moreover by "screening procedure", they differ only by $O(R^{d-1})$. Hence *almost additivity* on cubes and expansion of the true partition function up to R^{d-1} .

Method of proof for the CLT

Compute the Laplace transform of the fluctuations

$$\mathbb{E}_{\mathbb{P}_{N,\beta}}\left[-e^{\beta t N^{\frac{2}{d}}(\sum_{i=1}^{N}\xi(x_i)-N\int\xi\mu_{\theta})}\right],$$

with $t = \frac{\tau}{N}$, and show it converges to that of a Gaussian. • it amounts to computing

 $\frac{Z(V_t)}{Z(V)}$

where $V_t := V + t\xi$, thermal equilibrium measure μ_{θ}^t .

• use map Φ_t that transports µ to µ^t, Φ_t ≃ l + tψ. By using change of variables y_i = Φ_t(x_i), we find

$$\frac{K_N(\mu^t)}{K_N(\mu)} = \mathbb{E}_{\mathbb{P}_{N,\beta}}\left(F_N(\Phi_t(X_N), \Phi_t \# \mu) - F_N(X_N, \mu)\right)$$

▶ use expansion in t small for the rhs + expansion of $\log Z_{N,\beta}$ with a rate to evaluate this with o(1) error when $t = \tau/N$.

Method of proof for the CLT

Compute the Laplace transform of the fluctuations

$$\mathbb{E}_{\mathbb{P}_{N,\beta}}\left[-e^{\beta t N^{\frac{2}{d}}(\sum_{i=1}^{N}\xi(x_{i})-N\int\xi\mu_{\theta})}\right],$$

with $t = \frac{\tau}{N}$, and show it converges to that of a Gaussian.

it amounts to computing

$$\frac{Z(V_t)}{Z(V)}$$

where $V_t := V + t\xi$, thermal equilibrium measure μ_{θ}^t .

► use map Φ_t that transports μ to μ^t , $\Phi_t \simeq I + t\psi$. By using change of variables $y_i = \Phi_t(x_i)$, we find

$$\frac{K_N(\mu^t)}{K_N(\mu)} = \mathbb{E}_{\mathbb{P}_{N,\beta}} \left(F_N(\Phi_t(X_N), \Phi_t \# \mu) - F_N(X_N, \mu) \right)$$

▶ use expansion in *t* small for the rhs + expansion of log $Z_{N,\beta}$ with a rate to evaluate this with o(1) error when $t = \tau/N$.

Free energy expansions

 $\log K$ is known for constant densities on cubes. By transport, we can evaluate it for nonconstant densities that are close to their average, on cubes. Then use almost additivity (with surface errors) on cubes to obtain

Theorem (S'19+)

$$\log Z_{N,\beta} = -\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}(\mu_{\theta}) + \left(\frac{\beta}{4} N \log N\right) \mathbb{1}_{d=2} - \frac{N\beta}{4} \mathbb{1}_{d=2} \int \mu_{\theta} \log \mu_{\theta} - N\beta \int f(\beta \mu_{\theta}^{1-\frac{2}{d}}) d\mu_{\theta} + \operatorname{Rem}$$

where f is as above.

[Leblé-S '15] any $d \ge 2$: Rem = $o_{\beta}(N)$ (also for 1D log gas) [Bauerschmidt-Bourgade-Nikula-Yau '16] d = 2: Rem = $O_{\beta}(N^{1-\varepsilon})$ [S '19] any $d \ge 2$: Rem = $O(\beta\chi(\beta)N^{1-\varepsilon}), \varepsilon = \frac{2}{3d}$ for relative expansion + localizable, relative version

Free energy expansions

 $\log K$ is known for constant densities on cubes. By transport, we can evaluate it for nonconstant densities that are close to their average, on cubes. Then use almost additivity (with surface errors) on cubes to obtain

Theorem (S'19+)

$$\log Z_{N,\beta} = -\beta N^{1+\frac{2}{d}} \mathcal{E}_{\theta}(\mu_{\theta}) + \left(\frac{\beta}{4} N \log N\right) \mathbb{1}_{d=2} - \frac{N\beta}{4} \mathbb{1}_{d=2} \int \mu_{\theta} \log \mu_{\theta} - N\beta \int f(\beta \mu_{\theta}^{1-\frac{2}{d}}) d\mu_{\theta} + \operatorname{Rem}$$

where f is as above.

[Leblé-S '15] any $d \ge 2$: Rem = $o_{\beta}(N)$ (also for 1D log gas) [Bauerschmidt-Bourgade-Nikula-Yau '16] d = 2: Rem = $O_{\beta}(N^{1-\varepsilon})$ [S '19] any $d \ge 2$: Rem = $O(\beta\chi(\beta)N^{1-\varepsilon}), \varepsilon = \frac{2}{3d}$ for relative expansion

+ localizable, relative version

THANK YOU FOR YOUR ATTENTION !

... and a little advertising ...

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

PROBABILITY and MATHEMATICAL PHYSICS

The Journal

About the Assessed
About the Journal
Editorial Board
Subscriptions
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
To Appear
Other MSP Journals

EDITORS-IN-CHIEF

Alexei Borodin	Massachusetts Institute of Technology, United States					
Hugo Duminil-Copin	Institut des Hautes Études Scientifiques, France, & Université de Genève, Switzerland					
Robert Seiringer	Institute of Science and Technology, Austria					
<u>Sylvia Serfaty</u>	Courant Institute, New York University, United States					
	EDITORIAL BOARD					
Nalini Anantharaman	Université de Strasbourg, France					
Scott Armstrong	Courant Institute, New York University, United States					
Roland Bauerschmidt	University of Cambridge, UK					
Ivan Corwin	Columbia University, United States					
Mihalis Dafermos	Princeton University, United States					
Semyon Dyatlov	University of California Berkeley, United States					
Yan Fyodorov	King's College London, UK					
Christophe Garban	Université Claude Bernard Lyon 1, France					
Alessandro Giuliani	Università degli studi Roma Tre, Italy					
Alice Guionnet	École normale supérieure de Lyon & CNRS, France					
Pierre-Emmanuel Jabin	University of Maryland, United States					
Mathieu Lewin	Université Paris Dauphine & CNRS, France					
Eyal Lubetzky	Courant Institute, New York University, United States					
Jean-Christophe Mourrat	Courant Institute, New York University, United States					
Laure Saint Raymond	École normale supérieure de Lyon & CNRS, France					
Benjamin Schlein	Universität Zürich, Switzerland					
Vlad Vicol	Courant Institute, New York University, United States					
Simone Warzel	Technische Universität München, Germany					

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

UNIVERSITY PRESS	Academic 🗸	Cambridge English	Education	Bibles	Digital Products	About Us 🗸	Careers	
Cambridge Cor	e							Search all journal & book content
Browse subjects Wi	nat we publish Se	rvices About Camb	ridge Core				✓ Access provide	ed by Register Log in

Home > Journals > Forum of Mathematics, Sigma > Information > Editorial board

	Forum of Mathematics, Sig		
	Search Forum of Mathematics, Sigma content	Q	
	Submit your article Information		
< Back to journal			
Publication Agreement	Editorial board		
Forum of Mathematics, Pi and Forum of Mathematics, Sigma information	Managing Editor Professor Robert Guralnick, Department of Mathematics University of Southern C	alifornia Los Angeles CA 900	089-2532 USA
Editorial board	guralnic@usc.edu		
	Editory (Marthematical Division)		

Editors (Mathematical Physics)

Professor Sylvia Serfaty, University of Paris Pierre et Marie Curie | 4 place Jussieu | 75005 Paris | France serfaty@cims.nyu.edu

Professor Bruno Nachtergaele, Department of Mathematics |University of California |Davis, CA 95616-8633 |USA bxn@math.ucdavis.edu

Professor Richard Thomas, Mathematics Department | Imperial College London | SW7 2AZ London | UK rpwt@ic.ac.uk

English | Fra