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Setup

» Energy
1 N
Hy(x1, ..., xn) = EZW(X;—XJ‘)—HVZ V(x;) Xj ERd,d >1
i i=1

» interaction potential : Coulomb

w(x) = —log|x| ifd=2

1
d>3

or W(X) = W =

» V confining potential, sufficiently smooth and growing at oo
Gibbs measure
1

Zn g

Zp,p partition function

2
dPng(x1, - xn) e BN THNCLoxN) gy



Motivation

» Random matrices and [-ensembles in the logarithmic cases
Dyson, Mehta, Wigner
quantum mechanics models, Laughlin wave-function in the
fractional quantum Hall effect, self-avoiding paths in
probability, see [Forrester '10]

» d > 2 classical Coulomb gas
[Lieb-Lebowitz '72,Lieb-Narnhofer '75, Penrose-Smith '72,
Sari-Merlini '76, Kiessling-Spohn '99, Alastuey-Jancovici '81,
Jancovici-Lebowitz-Manificat’ 93...]



Mean Field limit: the equilibrium measure
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=3 [, wx=y)du(du)+ [ V) du()
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» Ly is the unique minimizer of

£ =5 / WX =) dil) diy) + /R V() dulx).

among probability measures.

» Examples: V(x) = |x|?> (Ginibre ensemble in RMT)
then py = é]lg;1 (circle law).
» For fixed (3,

N

1

N Z(SX,. ~ py  except with exponentially small probability
i=1

“Large Deviations Principle” [Petz-Hiai '98, Ben
Arous-Guionnet '97, Ben Arous -Zeitouni '98]
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Questions

» Rigidity of the points?

N
/ (Z Oy, — Nuv> < NR??
Br

i=1
For which R? Down to microscale N~1/97?
» Behavior of the point configurations at the microscale? Limit

point processes?
» Fluctuations of linear statistics

N
/ £(x)d (Z 5 Nw> (x)
=1

Are they Gaussian? For which £7 Supported at which scale?
» Dependence in 37
» Free energy expansions
1 1
~5lo8 Zns = NE(jav)—5 Nlog N+AgN+BsN2+Cylog N+ ..
(1



The blow-up procedure

¢

» blow-up the configurations at scale (py/(x)N)/9

» define interaction energy W for infinite configurations of
points in R with uniform negative background —1 (jellium)

» the total energy will be the average W of W over all blow-up
centers in supp py .
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» Rigidity and equidistribution results for minimizers by a
bootstrap on scales [Rota Nodari-S '17, Petrache - Rota
Nodari '17, Armstrong-S'19]

» In dimension d = 1, the minimum of W over all possible
configurations is achieved for the lattice Z.

» In dimension d = 8 the minimum of W is achieved by the Eg
lattice and in dimension d = 24 by the Leech lattice:
consequence (see [Petrache-S "19] of the Cohn-Kumar
conjecture proven in
[Cohn-Kumar-Miller-Radchenko-Viazovska '19]

» the Cohn-Kumar conjecture remains open in dimension 2. If
true, the minimum of W is achieved at the triangular lattice
(cf equivalent conjectures of [Sandier-S,
Brauchart-Hardin-Saff, Bétermin-Sandier]).



Pictures of limiting point processes

: d " ‘
o .' o L o o e Ces ¢
. .
Qe
M ... .. .
. .
- . . .
. o . . ‘. .
. . . .
.~".. e o . * N *
o 0% o0 3 o 2. p
Ces % - o . .
g, ° o d . . .
R M . I
* ool ) - d
. - 5 ¢ . .
° ., S e i, A
E
« o
.
s .
JERY
. o)
K ::‘, 3 )
*e .o . .
0y :,. .

The Poisson point process and the Ginibre point process
(limit as N — oo for Py g3 when w = —log, V' quadratic, § = 2)
(pic. Alon Nishry)



A “Large Deviations Principle” for limiting point processes

Theorem (Leblé-S, '17)

For Coulomb (or log or Riesz interactions with d —2 < s < d), the
Gibbs measure concentrates on configurations whose limiting point
processes P* (after zoom around x) minimize

1
Fs(P) := / (WdPX—l—Bent[PX\I'I]) dx, M = Poisson intensity 1
Supp /iy



A “Large Deviations Principle” for limiting point processes
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1
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» 3> 1 rigid behavior expected (complete crystallization
proven in 1D)

» [ < 1 entropy dominates ~» Poisson point process

» 3 o< 1 intermediate, phase-transition for cristallization?

Generalization to the 2D “two component plasma"” Leblé-S-Zeitouni



Next order free energy expansion

Corollary (Leblé-S '17)

log Zn,g = — BN Ep(up) + <5Nlog N) L=

N _2
— f]ld:2/,u0 log p1g — N/J’/f(ﬁu; “)dpg + o(N)

where we denote
1

f(8) = mPin <2ch(P) + ;ent[PH—I]>

P=stationary point processes of intensity 1.



Next order free energy expansion

Corollary (Leblé-S '17)

log Zn,5 = — BN 3 Eg(ug) + <5Nlog N) Ty—>

N _2
— f]ldzz/ue log p1g — N/J’/f(ﬁu; “)dpg + o(N)

where we denote
1

f(8) = mPin <2ch(P) + ;ent[PH—I]>

P=stationary point processes of intensity 1.

to be compared with [Borot-Guionnet '13, Shcherbina "13] (d =1,
log), [Wiegmann-Zabrodin '09] (d = 2, log) (formal)



Treating general § : the thermal equilibrium measure

Instead of py minimizing

& =3 [, wix=dutduln) + [ V() du(.

use ftp Minimizing

1 1
E(p) = 2/Rd y w(x —y) dp(x) du(y)+/Rd Vdﬂ+9/Rdulogu
X

with ,
0:=[BNd.

If 3 fixed or 3> N~3d, then 0 — oo and pg — v (precise
asymptotics obtained in [Armstrong-S '19]).

1 1 . T
Introduces new lengthscale % = B~ 2N"4d for macroscopic rigidity



Splitting with respect to the thermal equilibrium measure

Hn(Xn) = N?Eg(p1g) — — Zlogue (xi)
1 N
+3 //A w(x —y)d (Z Ox; — Nue) (x)d (Z Ox; — Nue) (v)
i=1 i=1
F(Xn;po)
This way

Zng = exp (—5N1+%56(M9))

2
» / e_ﬁNd IF(XN"U‘G)dIU,G(X]_)-"dMQ(XN)
(Rd)N



The electric formulation

Define the potential generated by the distribution ) . 6., — Ny

h=wx (Z(SX,. — NM)
—Ah=cy (Z Ox, — Nug)

1

and rewrite the energy as

F (X ) =~ / V2

(renormalized with truncations)

Formally
W = Iim][ |V h|?
R—00 DR

for the h computed after blow-up at scale N/¢.



Local laws

(8) = 1 ifd>3 ord=2and g >1
Y77 llogBl+1 ifd=2and B< 1.

Theorem (Armstrong-S. '19)

Let ¥ be a set where iy > m > 0 (blown-up by N*/? of ),

5= NY4x;. There exists a minimal scale

ps =~ max(87Y2x(B)Y/2,1) and C(d, m, M) such that if R > Cpg
and dist(Og, 9T) > Ntz

» (Local energy control)

1
08 Te,, (o0 (59F% (X)) )| < CoX(AIR?

» (Rigidity of number of points) Set wy = SN | Oy — dug,

o5y, (o0 (22 ming nlCell)))| < eoxorrt




previous results:
[Leblé, Bauerschmidt-Bourgade-Nikula-Yau] d = 2, 3 fixed,
mesoscales R > N¢, € > 0.

Corollary

Up to a subsequence, and after blow-up by N9 there exists a
limiting point process.



CLT for fluctuations in d = 2

Theorem (Leblé-S. '16)

Assume d = 2, 3 > 0 arbitrary fixed, V € C>'. Assume ¥ = supp v
has one connected component. Let £ € C31(R?) or C>1(X) and X =
harmonic extension of £ outside ¥. Then

N
;f(Xi) - ’V/zfdllv

converges in law as N — oo to a Gaussian distribution with

_ (it z _ 1 52
mean = (5 4)/A§(]lz+logAV) var= 8 /]RZ|V§ |.

~ AT (Z,N:l O = N/,LV) converges to the Gaussian Free Field.
The result can be localized with & supported on mesoscales N=¢, o < %
Simultaneous result by [Bauerschmidt-Bourgade-Nikula-Yau] for
¢ € C(supp pv)
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Theorem (S. '19)

Assume d = 2,3. Assume V &y € CP for some p large enough.
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CLT for fluctuations in d = 2,3, all temperatures

Theorem (S. '19)

Assume d = 2,3. Assume V &y € CP for some p large enough.
If d = 3 assume in addition that f € CP (“no phase transitions”
near that 3) and |f(K)(3)| < CB~K for all k < p.

Assume £ >> pngi (ind=3,0> pgN*%NQ/P).

Assume [ < (N¢9)? — .

Assume § = &o(*5°) is supported in

{dist(x, 0{pg > m}) > Nd%f%}. Then

B3NT—31~% (Zf X;) /de) — Cnypee

converges in law to a Gaussian with mean 0 and variance
2Cd [1V&l|? (with cv rate).




Comparison with the literature

» 2D log case

» [Rider-Virag] same result for 8 =2, V(x) = |x|?

» [Ameur-Hedenmalm-Makarov| same result for § =2, V € C*
and analyticity in case the support of £ intersects 0%

» Concentration bounds (in N¢, but with quantified error in
probability), including at mesoscale, on || vazl 0, — Npy ||
[Sandier-S, Leblé], [Chafai-Hardy-Maida],
[Bauerschmidt-Bourgade-Nikula-Yau]

» Number fluctuations for hierarchical Coulomb gas [Chatterjee]
(d=2,3), [Ganguly-Sarkar] (all d).

» 1D log case

» [Johansson] 1-cut, V polynomial

» [Borot-Guionnet], [Shcherbina] 1-cut and V/, ¢ locally analytic,
multi-cut and V analytic

» new proof by [Lambert-Ledoux-Webb]| 1-cut, Stein method,
[Bekerman-Leblé-S]



Method of proof for local laws

Use idea of sub/superadditive quantities of [Armstrong-Smart] (in
homogenization theory), like Dirichlet-Neumann bracketing: in any
cube Og define the partition functions Ky(Og) and Ly(Og) for
the energies [ |Vul?, resp. [ [Vv|* where u solves

~Bu=cy( X104 -1) inDg
u=20 on Jg.

—Av = Cd(Z,N:l Oy, — 1) in Ogr
% =0 on 00g.

The first one works well by restriction ~» subadditive, while the
second one works well by patching ~~ superadditive.

% and % both converge monotonically to the same

limit 7(3).

Moreover by “screening procedure”, they differ only by O(R9™1).
Hence almost additivity on cubes and expansion of the true
partition function up to RI~1.



Method of proof for the CLT

» Compute the Laplace transform of the fluctuations

Ep , |- BNG (I £06) N [ no)

with t = &, and show it converges to that of a Gaussian.



Method of proof for the CLT

» Compute the Laplace transform of the fluctuations
g N 3
Ep, , _ BN (i, €()=N [ €po) ’
with t = ﬁ and show it converges to that of a Gaussian.
» it amounts to computing
Z(Vt)
Z(V)
where V; := V + t&, thermal equilibrium measure 1.

» use map ®; that transports p to u*, ®; ~ | + ti). By using
change of variables y; = ®(x;), we find

Kn (1)
Kn (1)

= Ezy, (Fu(®e(Xn), Petne) — Fu(Xn, 1))

» use expansion in t small for the rhs + expansion of log Zy s
with a rate to evaluate this with o(1) error when t = 7/N.



Free energy expansions

log K is known for constant densities on cubes. By transport, we
can evaluate it for nonconstant densities that are close to their
average, on cubes. Then use almost additivity (with surface errors)
on cubes to obtain

Theorem (S '19+)

log Zn.s = —BN*aEy(ue) + (fl\/log N) 14—

NG
4

1—2
ld:z/ue log 1o — Nﬁ/f(ﬁug 9)d g + Rem
where f is as above.

[Leblé-S "15] any d > 2: Rem = og(N) (also for 1D log gas)
[Bauerschmidt-Bourgade-Nikula-Yau '16] d = 2: Rem = Og(N'~)



Free energy expansions

log K is known for constant densities on cubes. By transport, we
can evaluate it for nonconstant densities that are close to their
average, on cubes. Then use almost additivity (with surface errors)
on cubes to obtain

Theorem (S '19+)

log Zn.s = —BN*aEy(ue) + (fl\/log N) 14—

NG
4

1—2
ld:z/ue log 1o — Nﬁ/f(ﬁug 9)d g + Rem

where f is as above.

[Leblé-S "15] any d > 2: Rem = og(N) (also for 1D log gas)
[Bauerschmidt-Bourgade-Nikula-Yau '16] d = 2: Rem = Og(N'~)
[S '19] any d > 2: Rem = O(Bx(B)NI~¢),e = % for relative
expansion

+ localizable, relative version
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